An introduction to the geometry and topology of point cloud data

Peter Bubenik
p.bubenik@csuohio.edu
http://academic.csuohio.edu/bubenik_p/

Cleveland State University
Department of Mathematics
September 19, 2005
Motivation: Given a set of points that “looks like a circle”

We would like to be able to say so mathematically.
2. The Rips complex
2. The Rips complex
The Rips complex

X_1 r_1 X_2 r_2 X_3 r_3 X_4 r_4
The Rips complex

An introduction to the geometry and topology of point cloud data – p. 4/13
The Rips complex

A diagram showing points labeled X_1, X_2, X_3, and X_4 connected by arcs with radii r_1, r_2, r_3, and r_4. The radii $r_1 + r_3\pi$ and $r_2 + r_3$ are also indicated.
The Rips complex

\[X_4 \]

\[X_1 \]

\[X_3 \]

\[r_4 \]

\[r_2 \]

\[r_3 \]

\[r_1 \]

\[0 \]

\[r_1 \]

\[r_2 \]

\[r_3 \]

\[r_4 \]

\[r_1 + r_3 \pi \]

\[r_2 + r_3 \]
The Rips complex

An introduction to the geometry and topology of point cloud data – p. 4/13
The Rips complex

\[X_1 \quad X_2 \quad X_3 \quad X_4 \]

\[r_1 + r_3 \pi \]

\[r_2 + r_3 \]

\[r_1 \quad r_2 \quad r_3 \quad r_4 \]
The Rips complex

\[X_4 \rightarrow X_1 \rightarrow X_3 \rightarrow X_2 \rightarrow X_4 \]

\[r_1 + r_3 \pi \]
The Rips complex

An introduction to the geometry and topology of point cloud data – p. 4/13
The Rips complex

An introduction to the geometry and topology of point cloud data – p. 4/13
3. Homology of Simplices

Consider the following simplicial complex Δ:

It consists of

- four 0-simplices: X_1, X_2, X_3, X_4,
- five 1-simplices: $\{X_1, X_2\}, \{X_1, X_3\}, \{X_2, X_3\}, \{X_1, X_4\}, \{X_3, X_4\}$,
- and one 2-simplex: $\{X_1, X_2, X_3\}$.
Homology of Simplicies

Sums of n-simplicies are called n-chains.

- the boundary of $\{X_1, X_2, X_3\}$ is $\{X_1, X_2\} + \{X_2, X_3\} + \{X_3, X_1\}$
- the boundary of $\{X_i, X_j\}$ is $X_j - X_i$.
- the boundary of $\{X_i\}$ is 0.
By linearity this defines the boundary on all n-chains.

Cycles are n-chains with boundary equal to zero.

For example \(\{X_1, X_2\} + \{X_2, X_3\} + \{X_3, X_1\} \) is a cycle and so is \(X_1 \).

One can check that boundaries are always cycles.
Homology of Simplicies

The homology $H_n(\Delta)$ is the quotient of the cycles modulo the boundaries.

The Betti number $B_n(\Delta)$ is the dimension of $H_n(\Delta)$.

$B_0(\Delta)$ is the number of connected components of Δ.
$B_1(\Delta)$ is the number of holes in Δ.
$B_2(\Delta)$ is the number of voids in Δ.
In our example $B_0(\Delta) = 1$, $B_1(\Delta) = 1$, and all higher Betti numbers are zero.
4. Persistent homology

Assume we have a simplicial complex that changes as we vary some parameter r.

The homology that persists as r changes is called persistent homology.

We can record how the Betti numbers change as r changes using Betti barcodes.

We illustrate this using the Rips complex on our earlier example.
The Rips complex

The Rips complex is a construction in geometric topology that allows for the study of the topological structure of point cloud data. It is defined as the nerve of the balls of radius r around each point in the data set. In the diagram, we see a 4-point data set $X = \{X_1, X_2, X_3, X_4\}$ with radii r_1, r_2, r_3, r_4.
The Rips complex

\[\begin{align*}
X_1 & \quad r_2 \\
X_2 & \quad r_4 \\
X_3 & \quad r_1 \\
X_4 & \quad r_3
\end{align*} \]

\[r_2 + r_3 \]

An introduction to the geometry and topology of point cloud data – p. 11/13
The Rips complex
The Rips complex
The Rips complex

An introduction to the geometry and topology of point cloud data – p. 11/13
The Rips complex

An introduction to the geometry and topology of point cloud data – p. 11/1
The Rips complex
The Rips complex

$X_1 \quad X_2 \quad X_3 \quad X_4$

$r_1 \quad r_2 \quad r_3 \quad r_4$

$r_2 + r_3$

$x \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_1 + r_3 \pi$
The Rips complex

\[X_4 \]

\[X_3 \]

\[X_2 \]

\[X_1 \]

\[r_1 \]

\[r_2 \]

\[r_3 \]

\[r_4 \]

\[r_2 + r_3 \]

\[r_1 + r_3 \pi \]
Betti 0-barcode

\[0 \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_1 + r_3 \]
Betti 1-barcode