Models and van Kampen theorems for directed homotopy theory

Peter Bubenik

Cleveland State University
http://academic.csuohio.edu/bubenik-p/

University of Oregon
November 11, 2008
Directed spaces

Definition

A **directed space** is a topological space X together with a set dX of continuous maps $[0, 1] \to X$ called **directed paths** satisfying the following:

1. all constant paths are directed paths;
2. directed paths are closed under concatenation; and
3. if γ is a directed path and $f : [0, 1] \to [0, 1]$ is a non-decreasing continuous map then $\gamma \circ f$ is a directed path.

A **directed map** $f : (X, dX) \to (Y, dY)$ is a continuous map $f : X \to Y$ such that $dX \subseteq dY$.

Peter Bubenik

Directed homotopy theory
Examples of directed spaces

- Any topological space X is a directed space with dX equal to the set of all paths in X.
Examples of directed spaces

- Any topological space X is a directed space with dX equal to the set of all paths in X.

- Let \vec{I} be $[0, 1]$ together with all non-decreasing continuous maps $f : [0, 1] \rightarrow [0, 1]$. So directed paths in a directed space X are exactly the directed maps $\vec{I} \rightarrow X$.
Examples of directed spaces

- Any topological space X is a directed space with dX equal to the set of all paths in X.

- Let \vec{I} be $[0, 1]$ together with all non-decreasing continuous maps $f : [0, 1] \to [0, 1]$. So directed paths in a directed space X are exactly the directed maps $\vec{I} \to X$.

- Let \vec{S}^1 be the unit circle together with all counterclockwise paths.
Constructions on directed spaces

- Given two directed spaces X and Y, then
 - $X \sqcup Y$ is a directed space with $d(X \sqcup Y) = dX \sqcup dY$.
 - $X \times Y$ is a directed space with $d(X \times Y) = dX \times dY$ where $(f, g)(t) = (f(t), g(t))$.

- If X is a directed space and $A \subseteq X$, then
 - A is a directed space with dA equal to the subset of paths in dX whose image is in A.
 - X/A is a directed space.

- In fact, directed spaces have all limits and colimits.
Concurrent parallel computing

Several processes with shared resources
A concurrent system

Example

2 processes using 2 shared resources \(a\) and \(b\) which can only be used by one process at a time

Notation

\[P_x - \text{a process locks resource } x \]
\[V_x - \text{a process releases resource } x \]

Program

The first process: \(Pa \quad Pb \quad Vb \quad Va\)
The second process: \(Pb \quad Pa \quad Va \quad Vb\)
The Swiss flag
The Swiss flag

Example
Problem: Uncountably many states and execution paths.
Directed homotopies

Definition

A homotopy between directed maps $f, g : B \to C$ is a directed map $H : B \times \vec{I} \to C$ restricting to f and g. Write $H : f \rightsquigarrow g$.

Definition

Directed maps f, g are homotopic if there is a chain of homotopies

$$f \rightsquigarrow f_1 \xleftarrow{\sim} f_2 \rightsquigarrow \ldots \xleftarrow{\sim} f_n \rightsquigarrow g.$$
Equivalence classes of directed paths

Definition

Directed paths are *homotopy equivalent* if they are so relative to their endpoints.

Remark

Directed paths up to homotopy are significantly different from paths up to homotopy!
There are paths which are not homotopic to directed paths.
A room with two barriers

Two directed paths which are homotopic as paths, but not as directed paths.
The fundamental group, and the fundamental groupoid

Definition

- For $x \in X$, the fundamental group $\pi_1(X, x)$ is the set of homotopy classes of paths beginning and ending at x.
- The fundamental groupoid $\pi_1(X)$, is a category with
 - objects: points in X
 - morphisms: homotopy classes of paths

Remark

The existence of composition with associativity and identity is built into the definition of a category.
The fundamental group, and the fundamental groupoid

Definition

For $x \in X$, the fundamental group $\pi_1(X, x)$ is the set of homotopy classes of paths beginning and ending at x.

The fundamental groupoid $\pi_1(X)$, is a category with

- objects: points in X
- morphisms: homotopy classes of paths

Remark

The existence of composition with associativity and identity is built into the definition of a category.
The fundamental category

Definition

The fundamental category $\vec{\pi}_1(X)$ has
- objects: the points in X
- morphisms: homotopy classes of directed paths
Definition

The fundamental category $\vec{\pi}_1(X)$ has
- objects: the points in X
- morphisms: homotopy classes of directed paths

Problem

The fundamental category is enormous.
Full subcategories of the fundamental category

Plan
We would like to derive a “small” category from the fundamental category that still contains useful information.

Definition
Given $A \subseteq X$, let $\pi_1(X, A)$ have
- objects: points in A
- morphisms: homotopy classes of paths in X
The fundamental bipartite graph

Definition

For \((X, dX)\) write \(x \leq y\) if there exists a dipath \(\gamma\) with \(\gamma(0) = 1\) and \(\gamma(1) = y\). This gives \(X\) a preorder.
The fundamental bipartite graph

Definition
For \((X, dX)\) write \(x \leq y\) if there exists a dipath \(\gamma\) with \(\gamma(0) = 1\) and \(\gamma(1) = y\). This gives \(X\) a preorder.

Definition
Let \(\text{Min}(X) = \{a \in X \mid a' \leq a \implies a' = a\}\).
Let \(\text{Max}(X) = \{b \in X \mid b \leq b' \implies b = b'\}\).

Definition (B)
The fundamental bipartite graph of \(X\) is \(\vec{\pi}_1(X, \text{Min}(X) \cup \text{Max}(X))\).
Example of the fundamental bipartite graph
Definition

A *future retract* of $\pi_1(X)$ moves each $x \in X$ along a directed path in X to a point x^+ which “has the same future”.

\[P^+ : \pi_1(X) \to \pi_1(X, A) \]
Definition

A past retract of $\vec{\pi}_1(X)$ moves each $x \in X$ backwards along a directed path in X to a point x^- which “has the same past”.

$$P^- : \vec{\pi}_1(X) \to \vec{\pi}_1(X, A)$$
Retracts for triples

For $A \subseteq B \subseteq X$, one can similarly define future retracts

$$P^+ : \bar{\pi}_1(X, B) \to \bar{\pi}_1(X, A).$$

This functor is a left adjoint to the inclusion functor.

Dually, one has past retracts.
Definition (B)

An extremal model is a chain of future retracts and past retracts

\[\tilde{\pi}_1(X) \xrightarrow{P_1^+} \tilde{\pi}_1(X, X_1) \xrightarrow{P_2^-} \tilde{\pi}_1(X, X_2) \xrightarrow{P_3^+} \ldots \xrightarrow{P_n^±} \tilde{\pi}_1(X, A), \]

such that \(\text{Min}(X) \cup \text{Max}(X) \subseteq A \).
Extremal models

Definition (B)

An **extremal model** is a chain of future retracts and past retracts

\[\bar{\pi}_1(X) \xrightarrow{P_1^+} \bar{\pi}_1(X, X_1) \xrightarrow{P_2^-} \bar{\pi}_1(X, X_2) \xrightarrow{P_3^+} \ldots \xrightarrow{P_n^\pm} \bar{\pi}_1(X, A),\]

such that \(\text{Min}(X) \cup \text{Max}(X) \subseteq A\).

Proposition (B)

An extremal model induces an injection of fundamental bipartite graphs.

Theorem (B)

If \(X\) is a compact and \(\leq\) is a partial order, then extremal models induce an isomorphism of fundamental bipartite graphs.
Let X be a path–connected space with dX all paths. Choose $x \in X$.

There is a unique functor $\vec{\pi}_1(X) \to \vec{\pi}_1(X, x)$.

This functor is a future retract, a past retract, and a minimal extremal model.

It coincides with the functor from the fundamental groupoid to the fundamental group.
Examples of extremal models
An extremal model for the Swiss flag

Peter Bubenik
Directed homotopy theory
Examples of extremal models
Let $x \in \tilde{S}^1$.

There is a future retract

$$P^+ : \tilde{\pi}_1(\tilde{S}^1) \to \tilde{\pi}_1(\tilde{S}^1, x) \cong (\mathbb{N}, +).$$

It is a minimal extremal model.
Van Kampen Theorem for the fundamental category

Theorem (Grandis 2003, Goubault 2003)

Assume $X = \text{Int}(X_1) \cup \text{Int}(X_2)$ and let $X_0 = X_1 \cap X_2$. Then the pushout of directed spaces:

$$
\begin{array}{ccc}
X_0 & \longrightarrow & X_1 \\
\downarrow & & \downarrow \\
X_2 & \longrightarrow & X
\end{array}
$$

induces a pushout of fundamental categories:

$$
\begin{array}{ccc}
\vec{\pi}_1(X_0) & \longrightarrow & \vec{\pi}_1(X_1) \\
\downarrow & & \downarrow \\
\vec{\pi}_1(X_2) & \longrightarrow & \vec{\pi}_1(X)
\end{array}
$$
Compatible subspaces

\[X = \text{Int}(X_1) \cup \text{Int}(X_2) \] and \[A = \text{Int}(A_1) \cup \text{Int}(A_2). \]

\[X_0 = X_1 \cap X_2 \] and \[A_0 = A_1 \cap A_2. \]

\[A_k \subseteq X_k, \quad k = 0, 1, 2. \]

We have the following pushout in the arrow category of pospaces.

![Diagram of pushout](attachment:pushout_diagram.png)
Furthermore, assume that we have compatible retracts:

\[\tilde{\pi}_1(X_1, A_1) \leftarrow \tilde{\pi}_1(X_0, A_0) \rightarrow \tilde{\pi}_1(X_2, A_2) \]

\[\tilde{\pi}_1(X_1) \leftarrow \tilde{\pi}_1(X_0) \leftarrow \tilde{\pi}_1(X_2) \]

\[P_1^+ \]

\[P_0^+ \]

\[P_2^+ \]
Van Kampen theorem for full subcategories

Theorem (B)

The above inclusions induce the following pushout in \mathbf{Cat}.

$$
\begin{array}{ccc}
\vec{\pi}_1(X_0, A_0) & \longrightarrow & \vec{\pi}_1(X_2, A_2) \\
\downarrow & & \downarrow \\
\vec{\pi}_1(X_1, A_1) & \longrightarrow & \vec{\pi}_1(X, A)
\end{array}
$$
Van Kampen theorem for full subcategories

Theorem (B)

Furthermore, they induce the following pushout in the arrow category on \mathbf{Cat}.

$$
\begin{array}{ccc}
\tilde{\pi}_1(X_0, A_0) & \to & \tilde{\pi}_1(X_2, A_2) \\
\downarrow & & \downarrow \\
\tilde{\pi}_1(X_1, A_1) & \to & \tilde{\pi}_1(X, A) \\
\downarrow & & \downarrow \\
\tilde{\pi}_1(X_0) & \to & \tilde{\pi}_1(X_2) \\
\tilde{\pi}_1(X_1) & \to & \tilde{\pi}_1(X) \\
\end{array}
$$
Theorem (B)

Finally, there is an induced retraction P^+, which is a pushout.

\[
\begin{align*}
\vec{\pi}_1(X_0, A_0) & \xrightarrow{P_0^+} \vec{\pi}_1(X_1, A_1) & \xrightarrow{P_1^+} \vec{\pi}_1(X_0) & \xrightarrow{P^+} \vec{\pi}_1(X_1) \\
& \xrightarrow{P_2^+} \vec{\pi}_1(X_2, A_2) & \xrightarrow{} \vec{\pi}_1(X, A) & \xrightarrow{} \vec{\pi}_1(X)
\end{align*}
\]
Compatible triples
Compatible retracts

\[\vec{\pi}_1(X_0, A_0) \xrightarrow{P_0^+} \vec{\pi}_1(X_2, A_2) \]

\[\vec{\pi}_1(X_0, B_0) \xrightarrow{P_2^+} \vec{\pi}_1(X_2, B_2) \]

\[\vec{\pi}_1(X_1, A_1) \xrightarrow{P_1^+} \vec{\pi}_1(X_1, B_1) \]
Theorem (B)

The inclusions above induce the following pushout in the arrow category on Cat.

\[
\begin{array}{ccc}
\pi_1(X_0, A_0) & \longrightarrow & \pi_1(X_2, A_2) \\
\pi_1(X_1, A_1) & \longrightarrow & \pi_1(X, A) \\
\pi_1(X_0, B_0) & \longrightarrow & \pi_1(X_2, B_2) \\
\pi_1(X_1, B_1) & \longrightarrow & \pi_1(X, B)
\end{array}
\]
A van Kampen theorem for future (past) retracts

Theorem (B)

There is an induced retraction P^+, which is a pushout.

\[
\begin{align*}
\pi_1(X_0, A_0) & \xrightarrow{P_0^+} \pi_1(X, A) & \xrightarrow{P_2^+} \pi_1(X_2, A_2) \\
\pi_1(X_0, B_0) & \xrightarrow{P_1^+} \pi_1(X, B) & \xrightarrow{P^+} \pi_1(X_2, B_2)
\end{align*}
\]
A van Kampen theorem for extremal models

Theorem (B)

The pushout of compatible extremal models is an extremal model.
Van Kampen for extremal models example.
Van Kampen for extremal models example
Van Kampen for extremal models example
Summary

- Directed spaces provide a good mathematical model for concurrent parallel computing.
- Directed paths up to homotopy are different from paths up to homotopy.
- The homotopy classes of directed paths assemble into the fundamental category.
- Minimal extremal models provide a way to generalize the fundamental group to directed spaces.
- There is a van Kampen theorem for extremal models.
Applications

- L. Fajstrup, E. Goubault, and M. Raussen (1998) used geometry and directed topology to give an algorithm for detecting deadlocks, unsafe regions and inaccessible regions for po-spaces such as the Swiss flag, in any dimension.

- E. Goubault and E. Haucourt (2005) reduced the fundamental category to “components” to develop a static analyzer (ALCOOL) of concurrent parallel programs.
The fundamental bipartite graphs detects deadlocks and captures the essential schedules. Is this part of a homology theory?

What can we do with higher directed homotopy?