CONTENTS

Preface xix
Acknowledgments xxiii

1 Introduction to Digital System Design 1

1.1 Introduction 1
1.2 Device technologies 2
 1.2.1 Fabrication of an IC 2
 1.2.2 Classification of device technologies 2
 1.2.3 Comparison of technologies 5
1.3 System representation 8
1.4 Levels of Abstraction 9
 1.4.1 Transistor-level abstraction 10
 1.4.2 Gate-level abstraction 10
 1.4.3 Register-transfer-level (RT-level) abstraction 11
 1.4.4 Processor-level abstraction 12
1.5 Development tasks and EDA software 12
 1.5.1 Synthesis 13
 1.5.2 Physical design 14
 1.5.3 Verification 14
 1.5.4 Testing 16
 1.5.5 EDA software and its limitations 16
CONTENTS

1.6 Development flow
1.6.1 Flow of a medium-sized design targeting FPGA 17
1.6.2 Flow of a large design targeting FPGA 19
1.6.3 Flow of a large design targeting ASIC 19
1.7 Overview of the book
1.7.1 Scope 20
1.7.2 Goal 20
1.8 Bibliographic notes
Problems 21

2 Overview of Hardware Description Languages 23
2.1 Hardware description languages 23
2.1.1 Limitations of traditional programming languages 23
2.1.2 Use of an HDL program 24
2.1.3 Design of a modern HDL 25
2.1.4 VHDL 25
2.2 Basic VHDL concept via an example 26
2.2.1 General description 27
2.2.2 Structural description 30
2.2.3 Abstract behavioral description 33
2.2.4 Testbench 35
2.2.5 Configuration 37
2.3 VHDL in development flow 38
2.3.1 Scope of VHDL 38
2.3.2 Coding for synthesis 40
2.4 Bibliographic notes
Problems 40

3 Basic Language Constructs of VHDL 43
3.1 Introduction 43
3.2 Skeleton of a basic VHDL program 44
3.2.1 Example of a VHDL program 44
3.2.2 Entity declaration 44
3.2.3 Architecture body 46
3.2.4 Design unit and library 46
3.2.5 Processing of VHDL code 47
3.3 Lexical elements and program format 47
3.3.1 Lexical elements 47
3.3.2 VHDL program format 49
3.4 Objects 51
3.5 Data types and operators 53
3.5.1 Predefined data types in VHDL 53
3.5.2 Data types in the IEEE std_logic_1164 package 56
3.5.3 Operators over an array data type 58
3.5.4 Data types in the IEEE numeric_std package 60
3.5.5 The std_logic_arith and related packages 64
3.6 Synthesis guidelines 65
3.6.1 Guidelines for general VHDL 65
3.6.2 Guidelines for VHDL formatting 66
3.7 Bibliographic notes 66
Problems 66

4 Concurrent Signal Assignment Statements of VHDL 69
4.1 Combinational versus sequential circuits 69
4.2 Simple signal assignment statement 70
4.2.1 Syntax and examples 70
4.2.2 Conceptual implementation 70
4.2.3 Signal assignment statement with a closed feedback loop 71
4.3 Conditional signal assignment statement 72
4.3.1 Syntax and examples 72
4.3.2 Conceptual implementation 76
4.3.3 Detailed implementation examples 78
4.4 Selected signal assignment statement 85
4.4.1 Syntax and examples 85
4.4.2 Conceptual implementation 88
4.4.3 Detailed implementation examples 90
4.5 Conditional signal assignment statement versus selected signal assignment statement 93
4.5.1 Conversion between conditional signal assignment and selected signal assignment statements 93
4.5.2 Comparison between conditional signal assignment and selected signal assignment statements 94
4.6 Synthesis guidelines 95
4.7 Bibliographic notes 95
Problems 95

5 Sequential Statements of VHDL 97
5.1 VHDL process 97
5.1.1 Introduction 97
5.1.2 Process with a sensitivity list 98
5.1.3 Process with a wait statement 99
5.2 Sequential signal assignment statement 100
CONTENTS

5.3 Variable assignment statement 101
5.4 If statement 103
 - 5.4.1 Syntax and examples 103
 - 5.4.2 Comparison to a conditional signal assignment statement 105
 - 5.4.3 Incomplete branch and incomplete signal assignment 107
 - 5.4.4 Conceptual implementation 109
 - 5.4.5 Cascading single-branched if statements 110
5.5 Case statement 112
 - 5.5.1 Syntax and examples 112
 - 5.5.2 Comparison to a selected signal assignment statement 114
 - 5.5.3 Incomplete signal assignment 115
 - 5.5.4 Conceptual implementation 116
5.6 Simple for loop statement 118
 - 5.6.1 Syntax 118
 - 5.6.2 Examples 118
 - 5.6.3 Conceptual implementation 119
5.7 Synthesis of sequential statements 120
5.8 Synthesis guidelines 120
 - 5.8.1 Guidelines for using sequential statements 120
 - 5.8.2 Guidelines for combinational circuits 121
5.9 Bibliographic notes 121
 - Problems 121

6 Synthesis Of VHDL Code 125

6.1 Fundamental limitations of EDA software 125
 - 6.1.1 Computability 126
 - 6.1.2 Computation complexity 126
 - 6.1.3 Limitations of EDA software 128
6.2 Realization of VHDL operators 129
 - 6.2.1 Realization of logical operators 129
 - 6.2.2 Realization of relational operators 129
 - 6.2.3 Realization of addition operators 130
 - 6.2.4 Synthesis support for other operators 130
 - 6.2.5 Realization of an operator with constant operands 130
 - 6.2.6 An example implementation 131
6.3 Realization of VHDL data types 133
 - 6.3.1 Use of the std_logic data type 133
 - 6.3.2 Use and realization of the 'Z' value 133
 - 6.3.3 Use of the '-' value 137
6.4 VHDL synthesis flow 139
 - 6.4.1 RT-level synthesis 139
 - 6.4.2 Module generator 141
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>Logic synthesis</td>
<td>142</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Technology mapping</td>
<td>143</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Effective use of synthesis software</td>
<td>148</td>
</tr>
<tr>
<td>6.5</td>
<td>Timing considerations</td>
<td>149</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Propagation delay</td>
<td>150</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Synthesis with timing constraints</td>
<td>154</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Timing hazards</td>
<td>156</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Delay-sensitive design and its dangers</td>
<td>158</td>
</tr>
<tr>
<td>6.6</td>
<td>Synthesis guidelines</td>
<td>160</td>
</tr>
<tr>
<td>6.7</td>
<td>Bibliographic notes</td>
<td>160</td>
</tr>
</tbody>
</table>

Problems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Combinational Circuit Design: Practice</td>
<td>163</td>
</tr>
<tr>
<td>7.1</td>
<td>Derivation of efficient HDL description</td>
<td>163</td>
</tr>
<tr>
<td>7.2</td>
<td>Operator sharing</td>
<td>164</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Sharing example 1</td>
<td>165</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Sharing example 2</td>
<td>166</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Sharing example 3</td>
<td>168</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Sharing example 4</td>
<td>169</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Summary</td>
<td>170</td>
</tr>
<tr>
<td>7.3</td>
<td>Functionality sharing</td>
<td>170</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Addition–subtraction circuit</td>
<td>171</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Signed–unsigned dual-mode comparator</td>
<td>173</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Difference circuit</td>
<td>175</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Full comparator</td>
<td>177</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Three-function barrel shifter</td>
<td>178</td>
</tr>
<tr>
<td>7.4</td>
<td>Layout-related circuits</td>
<td>180</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Reduced-xor circuit</td>
<td>181</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Reduced-xor-vector circuit</td>
<td>183</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Tree priority encoder</td>
<td>187</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Barrel shifter revisited</td>
<td>192</td>
</tr>
<tr>
<td>7.5</td>
<td>General circuits</td>
<td>196</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Gray code incrementor</td>
<td>196</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Programmable priority encoder</td>
<td>199</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Signed addition with status</td>
<td>201</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Combinational adder-based multiplier</td>
<td>203</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Hamming distance circuit</td>
<td>206</td>
</tr>
<tr>
<td>7.6</td>
<td>Synthesis guidelines</td>
<td>208</td>
</tr>
<tr>
<td>7.7</td>
<td>Bibliographic notes</td>
<td>208</td>
</tr>
</tbody>
</table>

Problems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Sequential Circuit Design: Principle</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

8.1 Overview of sequential circuits
 8.1.1 Sequential versus combinational circuits
 8.1.2 Basic memory elements
 8.1.3 Synchronous versus asynchronous circuits

8.2 Synchronous circuits
 8.2.1 Basic model of a synchronous circuit
 8.2.2 Synchronous circuits and design automation
 8.2.3 Types of synchronous circuits

8.3 Danger of synthesis that uses primitive gates

8.4 Inference of basic memory elements
 8.4.1 D latch
 8.4.2 D FF
 8.4.3 Register
 8.4.4 RAM

8.5 Simple design examples
 8.5.1 Other types of FFs
 8.5.2 Shift register
 8.5.3 Arbitrary-sequence counter
 8.5.4 Binary counter
 8.5.5 Decade counter
 8.5.6 Programmable mod-m counter

8.6 Timing analysis of a synchronous sequential circuit
 8.6.1 Synchronized versus unsynchronized input
 8.6.2 Setup time violation and maximal clock rate
 8.6.3 Hold time violation
 8.6.4 Output-related timing considerations
 8.6.5 Input-related timing considerations

8.7 Alternative one-segment coding style
 8.7.1 Examples of one-segment code
 8.7.2 Summary

8.8 Use of variables in sequential circuit description

8.9 Synthesis of sequential circuits

8.10 Synthesis guidelines

8.11 Bibliographic notes

Problems

9 Sequential Circuit Design: Practice

9.1 Poor design practices and their remedies
 9.1.1 Misuse of asynchronous signals
 9.1.2 Misuse of gated clocks
 9.1.3 Misuse of derived clocks

9.2 Counters
9.2.1 Gray counter 265
9.2.2 Ring counter 266
9.2.3 LFSR (linear feedback shift register) 269
9.2.4 Decimal counter 272
9.2.5 Pulse width modulation circuit 275

9.3 Registers as temporary storage 276
9.3.1 Register file 276
9.3.2 Register-based synchronous FIFO buffer 279
9.3.3 Register-based content addressable memory 287

9.4 Pipelined design 293
9.4.1 Delay versus throughput 294
9.4.2 Overview on pipelined design 294
9.4.3 Adding pipeline to a combinational circuit 297
9.4.4 Synthesis of pipelined circuits and retiming 307

9.5 Synthesis guidelines 308
9.6 Bibliographic notes 309
Problems 309

10 Finite State Machine: Principle and Practice 313
10.1 Overview of FSMs 313
10.2 FSM representation 314
10.2.1 State diagram 315
10.2.2 ASM chart 317
10.3 Timing and performance of an FSM 321
10.3.1 Operation of a synchronous FSM 321
10.3.2 Performance of an FSM 324
10.3.3 Representative timing diagram 325
10.4 Moore machine versus Mealy machine 325
10.4.1 Edge detection circuit 326
10.4.2 Comparison of Moore output and Mealy output 328
10.5 VHDL description of an FSM 329
10.5.1 Multi-segment coding style 330
10.5.2 Two-segment coding style 333
10.5.3 Synchronous FSM initialization 335
10.5.4 One-segment coding style and its problem 336
10.5.5 Synthesis and optimization of FSM 337
10.6 State assignment 338
10.6.1 Overview of state assignment 338
10.6.2 State assignment in VHDL 339
10.6.3 Handling the unused states 341
10.7 Moore output buffering 342
10.7.1 Buffering by clever state assignment 342
10.7.2 Look-ahead output circuit for Moore output

10.8 FSM design examples
10.8.1 Edge detection circuit
10.8.2 Arbiter
10.8.3 DRAM strobe generation circuit
10.8.4 Manchester encoding circuit
10.8.5 FSM-based binary counter

10.9 Bibliographic notes
Problems

11 Register Transfer Methodology: Principle

11.1 Introduction
11.1.1 Algorithm
11.1.2 Structural data flow implementation
11.1.3 Register transfer methodology

11.2 Overview of FSMD
11.2.1 Basic RT operation
11.2.2 Multiple RT operations and data path
11.2.3 FSM as the control path
11.2.4 ASMD chart
11.2.5 Basic FSMD block diagram

11.3 FSMD design of a repetitive-addition multiplier
11.3.1 Converting an algorithm to an ASMD chart
11.3.2 Construction of the FSMD
11.3.3 Multi-segment VHDL description of an FSMD
11.3.4 Use of a register value in a decision box
11.3.5 Four- and two-segment VHDL descriptions of FSMD
11.3.6 One-segment coding style and its deficiency

11.4 Alternative design of a repetitive-addition multiplier
11.4.1 Resource sharing via FSMD
11.4.2 Mealy-controlled RT operations

11.5 Timing and performance analysis of FSMD
11.5.1 Maximal clock rate
11.5.2 Performance analysis

11.6 Sequential add-and-shift multiplier
11.6.1 Initial design
11.6.2 Refined design
11.6.3 Comparison of three ASMD designs

11.7 Synthesis of FSMD

11.8 Synthesis guidelines

11.9 Bibliographic notes
Problems
12 Register Transfer Methodology: Practice 421

12.1 Introduction 421
12.2 One-shot pulse generator 422
 12.2.1 FSM implementation 422
 12.2.2 Regular sequential circuit implementation 424
 12.2.3 Implementation using RT methodology 425
 12.2.4 Comparison 427
12.3 SRAM controller 430
 12.3.1 Overview of SRAM 430
 12.3.2 Block diagram of an SRAM controller 434
 12.3.3 Control path of an SRAM controller 436
12.4 GCD circuit 445
12.5 UART receiver 455
12.6 Square-root approximation circuit 460
12.7 High-level synthesis 469
12.8 Bibliographic notes 470

Problems 470

13 Hierarchical Design in VHDL 473

13.1 Introduction 473
 13.1.1 Benefits of hierarchical design 474
 13.1.2 VHDL constructs for hierarchical design 474
13.2 Components 475
 13.2.1 Component declaration 475
 13.2.2 Component instantiation 477
 13.2.3 Caveats in component instantiation 480
13.3 Generics 481
13.4 Configuration 485
 13.4.1 Introduction 485
 13.4.2 Configuration declaration 486
 13.4.3 Configuration specification 488
 13.4.4 Component instantiation and configuration in VHDL 93 488
13.5 Other supporting constructs for a large system 489
 13.5.1 Library 489
 13.5.2 Subprogram 491
 13.5.3 Package 492
13.6 Partition 495
 13.6.1 Physical partition 495
 13.6.2 Logical partition 496
13.7 Synthesis guidelines 497
13.8 Bibliographic notes 497
CONTENTS

Problems

14 Parameterized Design: Principle

14.1 Introduction

14.2 Types of parameters
 14.2.1 Width parameters
 14.2.2 Feature parameters

14.3 Specifying parameters
 14.3.1 Generics
 14.3.2 Array attribute
 14.3.3 Unconstrained array
 14.3.4 Comparison between a generic and an unconstrained array

14.4 Clever use of an array
 14.4.1 Description without fixed-size references
 14.4.2 Examples

14.5 For generate statement
 14.5.1 Syntax
 14.5.2 Examples

14.6 Conditional generate statement
 14.6.1 Syntax
 14.6.2 Examples
 14.6.3 Comparisons with other feature-selection methods

14.7 For loop statement
 14.7.1 Introduction
 14.7.2 Examples of a simple for loop statement
 14.7.3 Examples of a loop body with multiple signal assignment statements
 14.7.4 Examples of a loop body with variables
 14.7.5 Comparison of the for generate and for loop statements

14.8 Exit and next statements
 14.8.1 Syntax of the exit statement
 14.8.2 Examples of the exit statement
 14.8.3 Conceptual implementation of the exit statement
 14.8.4 Next statement

14.9 Synthesis of iterative structure

14.10 Synthesis guidelines

14.11 Bibliographic notes

Problems

15 Parameterized Design: Practice

15.1 Introduction
15.2 Data types for two-dimensional signals
 15.2.1 Genuine two-dimensional data type 546
 15.2.2 Array-of-arrays data type 548
 15.2.3 Emulated two-dimensional array 550
 15.2.4 Example 552
 15.2.5 Summary 554
15.3 Commonly used intermediate-sized RT-level components 555
 15.3.1 Reduced-xor circuit 555
 15.3.2 Binary decoder 558
 15.3.3 Multiplexer 560
 15.3.4 Binary encoder 564
 15.3.5 Barrel shifter 566
15.4 More sophisticated examples 569
 15.4.1 Reduced-xor-vector circuit 570
 15.4.2 Multiplier 572
 15.4.3 Parameterized LFSR 586
 15.4.4 Priority encoder 588
 15.4.5 FIFO buffer 591
15.5 Synthesis of parameterized modules 599
15.6 Synthesis guidelines 599
15.7 Bibliographic notes 600
Problems 600

16 Clock and Synchronization: Principle and Practice 603

16.1 Overview of a clock distribution network 603
 16.1.1 Physical implementation of a clock distribution network 603
 16.1.2 Clock skew and its impact on synchronous design 605
16.2 Timing analysis with clock skew 606
 16.2.1 Effect on setup time and maximal clock rate 606
 16.2.2 Effect on hold time constraint 609
16.3 Overview of a multiple-clock system 610
 16.3.1 System with derived clock signals 611
 16.3.2 GALS system 612
16.4 Metastability and synchronization failure 612
 16.4.1 Nature of metastability 613
 16.4.2 Analysis of MTBF(T_r) 614
 16.4.3 Unique characteristics of MTBF(T_r) 616
16.5 Basic synchronizer 617
 16.5.1 The danger of no synchronizer 617
 16.5.2 One-FF synchronizer and its deficiency 617
 16.5.3 Two-FF synchronizer 619
 16.5.4 Three-FF synchronizer 620