CONTENTS

Preface ... xix
Acknowledgments .. xxv

PART I BASIC DIGITAL CIRCUITS

1 Gate-level combinational circuit 1
 1.1 Introduction .. 1
 1.2 General description 2
 1.2.1 Basic lexical rules 2
 1.2.2 Library and package 3
 1.2.3 Entity declaration 3
 1.2.4 Data type and operators 3
 1.2.5 Architecture body 4
 1.2.6 Code of a 2-bit comparator 5
 1.3 Structural description 6
 1.4 Testbench .. 8
 1.5 Bibliographic notes 9
 1.6 Suggested experiments 10
 1.6.1 Code for gate-level greater-than circuit 10
 1.6.2 Code for gate-level binary decoder 10

2 Overview of FPGA and EDA software 11
CONTENTS

2.1 Introduction 11
2.2 FPGA 11
 2.2.1 Overview of a general FPGA device 11
 2.2.2 Overview of the Xilinx Spartan-3 devices 13
2.3 Overview of the Digilent S3 board 13
2.4 Development flow 15
2.5 Overview of the Xilinx ISE project navigator 17
2.6 Short tutorial on ISE project navigator 19
 2.6.1 Create the design project and HDL codes 21
 2.6.2 Create a testbench and perform the RTL simulation 22
 2.6.3 Add a constraint file and synthesize and implement the code 22
 2.6.4 Generate and download the configuration file to an FPGA device 24
2.7 Short tutorial on the ModelSim HDL simulator 27
2.8 Bibliographic notes 32
2.9 Suggested experiments 33
 2.9.1 Gate-level greater-than circuit 33
 2.9.2 Gate-level binary decoder 33

3 RT-level combinational circuit 35
 3.1 Introduction 35
 3.2 RT-level components 35
 3.2.1 Relational operators 37
 3.2.2 Arithmetic operators 37
 3.2.3 Other synthesis-related VHDL constructs 38
 3.2.4 Summary 40
 3.3 Routing circuit with concurrent assignment statements 41
 3.3.1 Conditional signal assignment statement 41
 3.3.2 Selected signal assignment statement 44
 3.4 Modeling with a process 46
 3.4.1 Process 46
 3.4.2 Sequential signal assignment statement 46
 3.5 Routing circuit with if and case statements 47
 3.5.1 If statement 47
 3.5.2 Case statement 49
 3.5.3 Comparison to concurrent statements 50
 3.5.4 Unintended memory 52
 3.6 Constants and generics 53
 3.6.1 Constants 53
 3.6.2 Generics 54
 3.7 Design examples 56
 3.7.1 Hexadecimal digit to seven-segment LED decoder 56
 3.7.2 Sign-magnitude adder 59
3.7.3 Barrel shifter 62
3.7.4 Simplified floating-point adder 63
3.8 Bibliographic notes 69
3.9 Suggested experiments 69
 3.9.1 Multi-function barrel shifter 69
 3.9.2 Dual-priority encoder 69
 3.9.3 BCD incrementor 69
 3.9.4 Floating-point greater-than circuit 70
 3.9.5 Floating-point and signed integer conversion circuit 70
 3.9.6 Enhanced floating-point adder 70

4 Regular Sequential Circuit 71
 4.1 Introduction 71
 4.1.1 D FF and register 71
 4.1.2 Synchronous system 72
 4.1.3 Code development 73
 4.2 HDL code of the FF and register 74
 4.2.1 D FF 74
 4.2.2 Register 77
 4.2.3 Register file 78
 4.2.4 Storage components in a Spartan-3 deviceXilinx specific 79
 4.3 Simple design examples 79
 4.3.1 Shift register 79
 4.3.2 Binary counter and variant 81
 4.4 Testbench for sequential circuits 84
 4.5 Case study 88
 4.5.1 LED time-multiplexing circuit 88
 4.5.2 Stopwatch 96
 4.5.3 FIFO buffer 100
 4.6 Bibliographic notes 104
 4.7 Suggested experiments 105
 4.7.1 Programmable square wave generator 105
 4.7.2 PWM and LED dimmer 105
 4.7.3 Rotating square circuit 105
 4.7.4 Heartbeat circuit 106
 4.7.5 Rotating LED banner circuit 106
 4.7.6 Enhanced stopwatch 106
 4.7.7 Stack 106

5 FSM 107
 5.1 Introduction 107
5.1 Mealy and Moore outputs 107
5.2 FSM code development 111
5.3 Design examples 114
5.4 Bibliographic notes 124
5.5 Suggested experiments 124

5.1.1 Mealy and Moore outputs 107
5.1.2 FSM representation 108
5.2 FSM code development 111
5.3 Design examples 114
5.3.1 Rising-edge detector 114
5.3.2 Debouncing circuit 118
5.3.3 Testing circuit 122
5.4 Bibliographic notes 124
5.5 Suggested experiments 124
5.5.1 Dual-edge detector 124
5.5.2 Alternative debouncing circuit 124
5.5.3 Parking lot occupancy counter 125

5.3.1 Rising-edge detector 114
5.3.2 Debouncing circuit 118
5.3.3 Testing circuit 122

6 FSMD 127

6.1 Introduction 127
6.1.1 Single RT operation 127
6.1.2 ASMD chart 128
6.1.3 Decision box with a register 129
6.2 Code development of an FSMD 131
6.2.1 Debouncing circuit based on RT methodology 132
6.2.2 Code with explicit data path components 134
6.2.3 Code with implicit data path components 136
6.2.4 Comparison 137
6.2.5 Testing circuit 138
6.3 Design examples 140
6.3.1 Fibonacci number circuit 140
6.3.2 Division circuit 143
6.3.3 Binary-to-BCD conversion circuit 147
6.3.4 Period counter 150
6.3.5 Accurate low-frequency counter 153
6.4 Bibliographic notes 156
6.5 Suggested experiments 157
6.5.1 Alternative debouncing circuit 157
6.5.2 BCD-to-binary conversion circuit 157
6.5.3 Fibonacci circuit with BCD I/O: design approach 1 157
6.5.4 Fibonacci circuit with BCD I/O: design approach 2 157
6.5.5 Auto-scaled low-frequency counter 158
6.5.6 Reaction timer 158
6.5.7 Babbage difference engine emulation circuit 159

PART II I/O MODULES
CONTENTS

9.1 Introduction 199
9.2 PS2 mouse protocol 200
 9.2.1 Basic operation 200
 9.2.2 Basic initialization procedure 200
9.3 PS2 transmitting subsystem 201
 9.3.1 Host-to-PS2-device communication protocol 201
 9.3.2 Design and code 202
9.4 Bidirectional PS2 interface 206
 9.4.1 Basic design and code 206
 9.4.2 Verification circuit 208
9.5 PS2 mouse interface 210
 9.5.1 Basic design 210
 9.5.2 Testing circuit 212
9.6 Bibliographic notes 214
9.7 Suggested experiments 214
 9.7.1 Keyboard control circuit 214
 9.7.2 Enhanced mouse interface 214
 9.7.3 Mouse-controlled seven-segment LED display 214

10 External SRAM 215
10.1 Introduction 215
10.2 Specification of the IS61LV25616AL SRAM 216
 10.2.1 Block diagram and I/O signals 216
 10.2.2 Timing parameters 216
10.3 Basic memory controller 220
 10.3.1 Block diagram 220
 10.3.2 Timing requirement 221
 10.3.3 Register file versus SRAM 222
10.4 A safe design 222
 10.4.1 ASMD chart 222
 10.4.2 Timing analysis 223
 10.4.3 HDL implementation 224
 10.4.4 Basic testing circuit 226
 10.4.5 Comprehensive SRAM testing circuit 228
10.5 More aggressive design 233
 10.5.1 Timing issues 233
 10.5.2 Alternative design I 234
 10.5.3 Alternative design II 236
 10.5.4 Alternative design III 237
 10.5.5 Advanced FPGA features 237
10.6 Bibliographic notes 240
10.7 Suggested experiments 240
10.7.1 Memory with a 512K-by-16 configuration 240
10.7.2 Memory with a 1M-by-8 configuration 240
10.7.3 Memory with an 8M-by-1 configuration 240
10.7.4 Expanded memory testing circuit 241
10.7.5 Memory controller and testing circuit for alternative design I 241
10.7.6 Memory controller and testing circuit for alternative design II 241
10.7.7 Memory controller and testing circuit for alternative design III 241
10.7.8 Memory controller with DCM 241
10.7.9 High-performance memory controller 241

11 Xilinx Spartan-3 Specific Memory 243
11.1 Introduction 243
11.2 Embedded memory of Spartan-3 device 243
 11.2.1 Overview 243
 11.2.2 Comparison 244
11.3 Method to incorporate memory modules 244
 11.3.1 Memory module via HDL component instantiation 245
 11.3.2 Memory module via Core Generator 245
 11.3.3 Memory module via HDL inference 246
11.4 HDL templates for memory inference 246
 11.4.1 Single-port RAM 246
 11.4.2 Dual-port RAM 249
 11.4.3 ROM 251
11.5 Bibliographic notes 254
11.6 Suggested experiments 254
 11.6.1 Block-RAM-based FIFO 254
 11.6.2 Block-RAM-based stack 254
 11.6.3 ROM-based sign-magnitude adder 255
 11.6.4 ROM based \(\sin(x) \) function 255
 11.6.5 ROM-based \(\sin(x) \) and \(\cos(x) \) functions 255

12 VGA controller I: graphic 257
12.1 Introduction 257
 12.1.1 Basic operation of a CRT 257
 12.1.2 VGA port of the S3 board 259
 12.1.3 Video controller 259
12.2 VGA synchronization 260
 12.2.1 Horizontal synchronization 260
 12.2.2 Vertical synchronization 262
 12.2.3 Timing calculation of VGA synchronization signals 263
 12.2.4 HDL implementation 263
CONTENTS

12.2.5 Testing circuit 266
12.3 Overview of the pixel generation circuit 267
12.4 Graphic generation with an object-mapped scheme 268
 12.4.1 Rectangular objects 269
 12.4.2 Non-rectangular object 273
 12.4.3 Animated object 275
12.5 Graphic generation with a bit-mapped scheme 282
 12.5.1 Dual-port RAM implementation 282
 12.5.2 Single-port RAM implementation 287
12.6 Bibliographic notes 287
12.7 Suggested experiments 287
 12.7.1 VGA test pattern generator 287
 12.7.2 SVGA mode synchronization circuit 288
 12.7.3 Visible screen adjustment circuit 288
 12.7.4 Ball-in-a-box circuit 288
 12.7.5 Two-balls-in-a-box circuit 289
 12.7.6 Two-player pong game 289
 12.7.7 Breakout game 289
 12.7.8 Full-screen dot trace 289
 12.7.9 Mouse pointer circuit 290
 12.7.10 Small-screen mouse scribble circuit 290
 12.7.11 Full-screen mouse scribble circuit 290

13 VGA controller II: text 291

13.1 Introduction 291
13.2 Text generation 291
 13.2.1 Character as a tile 291
 13.2.2 Font ROM 292
 13.2.3 Basic text generation circuit 294
 13.2.4 Font display circuit 295
 13.2.5 Font scaling 297
13.3 Full-screen text display 298
13.4 The complete pong game 302
 13.4.1 Text subsystem 302
 13.4.2 Modified graphic subsystem 309
 13.4.3 Auxiliary counters 310
 13.4.4 Top-level system 312
13.5 Bibliographic notes 317
13.6 Suggested experiments 317
 13.6.1 Rotating banner 317
 13.6.2 Underline for the cursor 317
 13.6.3 Dual-mode text display 317
13.6.4 Keyboard text entry 317
13.6.5 UART terminal 317
13.6.6 Square wave display 318
13.6.7 Simple four-trace logic analyzer 318
13.6.8 Complete two-player pong game 319
13.6.9 Complete breakout game 319

PART III PICOBLAZE MICROCONTROLLER

14 PicoBlaze Overview 323
14.1 Introduction 323
14.2 Customized hardware and customized software 324
14.2.1 From special-purpose FSMD to general-purpose microcontroller 324
14.2.2 Application of microcontroller 326
14.3 Overview of PicoBlaze 326
14.3.1 Basic organization 326
14.3.2 Top-level HDL modules 328
14.4 Development flow 329
14.5 Instruction set 329
14.5.1 Programming model 331
14.5.2 Instruction format 332
14.5.3 Logical instructions 332
14.5.4 Arithmetic instructions 333
14.5.5 Compare and test instructions 334
14.5.6 Shift and rotate instructions 335
14.5.7 Data movement instructions 336
14.5.8 Program flow control instructions 338
14.5.9 Interrupt related instructions 341
14.6 Assembler directives 342
14.6.1 The KCPSM3 directives 342
14.6.2 The PBlazeIDE directives 342
14.7 Bibliographic notes 343

15 PicoBlaze Assembly Code Development 345
15.1 Introduction 345
15.2 Useful code segments 345
15.2.1 KCPSM3 conventions 345
15.2.2 Bit manipulation 346
15.2.3 Multiple-byte manipulation 347
15.2.4 Control structure 348
15.3 Subroutine development 350
15.4 Program development 351
16 PicoBlaze I/O Interface

16.1 Introduction 367
16.2 Output port 368
 16.2.1 Output instruction and timing 368
 16.2.2 Output interface 369
16.3 Input port 371
 16.3.1 Input instruction and timing 371
 16.3.2 Input interface 371
16.4 Square program with a switch and seven-segment LED display interface 373
 16.4.1 Output interface 374
 16.4.2 Input interface 375
 16.4.3 Assembly code development 376
 16.4.4 VHDL code development 384
16.5 Square program with a combinational multiplier and UART console 386
 16.5.1 Multiplier interface 387
 16.5.2 UART interface 387
 16.5.3 Assembly code development 389
 16.5.4 VHDL code development 398
16.6 Bibliographic notes 402
16.7 Suggested experiments 402
 16.7.1 Low-frequency counter I 402
 16.7.2 Low-frequency counter II 402
16.7.3 Auto-scaled low-frequency counter 402
16.7.4 Basic reaction timer with a software timer 403
16.7.5 Basic reaction timer with a hardware timer 403
16.7.6 Enhanced reaction timer 403
16.7.7 Small-screen mouse scribble circuit 403
16.7.8 Full-screen mouse scribble circuit 403
16.7.9 Enhanced rotating banner 403
16.7.10 Pong game 404
16.7.11 Text editor 404

17 PicoBlaze Interrupt Interface 405

17.1 Introduction 405
17.2 Interrupt handling in PicoBlaze 405
 17.2.1 Software processing 406
 17.2.2 Timing 407
17.3 External interface 408
 17.3.1 Single interrupt request 408
 17.3.2 Multiple interrupt requests 408
17.4 Software development considerations 409
 17.4.1 Interrupt as an alternative scheduling scheme 409
 17.4.2 Development of an interrupt service routine 410
17.5 Design example 410
 17.5.1 Interrupt interface 410
 17.5.2 Interrupt service routine development 411
 17.5.3 Assembly code development 411
 17.5.4 VHDL code development 413
17.6 Bibliographic notes 417
17.7 Suggested experiments 417
 17.7.1 Alternative timer interrupt service routine 417
 17.7.2 Programmable timer 417
 17.7.3 Set-button interrupt service routine 417
 17.7.4 Interrupt interface with two requests 417
 17.7.5 Four-request interrupt controller 418

Appendix A: Sample VHDL templates 419

A.1 General VHDL constructs 419
 A.1.1 Overall code structure 419
 A.1.2 Component instantiation 420
A.2 Combinational circuits 421
 A.2.1 Arithmetic operations 421
 A.2.2 Fixed-amount shift operations 422
CONTENTS

A.2.3 Routing with concurrent statements 422
A.2.4 Routing with if and case statements 423
A.2.5 Combinational circuit using process 424
A.3 Memory Components 425
 A.3.1 Register template 425
 A.3.2 Register file 426
A.4 Regular sequential circuits 427
A.5 FSM 428
A.6 FSMD 430
A.7 S3 board constraint file (s3.ucf) 433

References 437

Topic Index 439