Closed-Range Composition Operators on A^2 and the Bloch space

John R. Akeroyd, Pratibha G. Ghatage and Maria Tjani

Abstract. For any analytic self-map φ of $\{z : |z| < 1\}$ we give four separate conditions, each of which is necessary and sufficient for the composition operator C_φ to be closed-range on the Bloch space B. Among these conditions are some that appear in the literature, where we provide new proofs. We further show that if C_φ is closed-range on the Bergman space A^2, then it is closed-range on B, but that the converse of this fails with a vengeance. Our analysis involves an extension of the Julia-Carathéodory Theorem.

Mathematics Subject Classification (2010). Primary 47B33, 47B38; Secondary 30D55.

1. Preliminaries

Let \mathbb{D} denote the unit disk $\{z : |z| < 1\}$ and let \mathbb{T} denote the unit circle $\{z : |z| = 1\}$. We let A denote two-dimensional Lebesgue measure on \mathbb{D}. The Bergman space A^2 is the collection of functions f that are analytic in \mathbb{D} such that

$$||f||_{A^2}^2 := \int_{\mathbb{D}} |f|^2 \, dA < \infty.$$

As a closed subspace of $L^2(A)$, A^2 forms a Hilbert space with respect to the inner product $< f, g > := \int_{\mathbb{D}} fg \, dA$. The Bloch space B is the collection of functions f that are analytic in \mathbb{D} such that

$$||f||_{B} := |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

Now $|| \cdot ||_B$ defines a norm on B, and under this norm B forms a Banach space. Moreover, $||f||_{A^2} \leq 3||f||_B$ for any function f that is analytic in \mathbb{D}, and hence $B \subseteq A^2$. A function φ that is analytic in \mathbb{D} and that satisfies $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ is called an analytic self-map of \mathbb{D}. Analytic automorphisms of \mathbb{D} are Möbius transformations of the form $z \mapsto c \frac{\alpha - z}{1 - \alpha z}$, where c is some unimodular constant and α is some point in \mathbb{D}; we let $\varphi_\alpha(z) = \frac{\alpha - z}{1 - \alpha z}$. The so-called pseudohyperbolic
metric on \mathbb{D} is given by $\rho(z,w) = |\varphi_w(z)|$; and is indeed a metric. For any z in \mathbb{D} and any r, $0 < r < 1$, we let $D(z,r)$ denote the pseudohyperbolic disk of radius r about z, namely, $\{w \in \mathbb{D} : \rho(z,w) < r\}$. Now if φ is an analytic self-map of \mathbb{D}, then the composition operator C_{φ}, given by $C_{\varphi}(f) := f \circ \varphi$, is a bounded operator on both A^2 and B. This result for the Bloch space is a simple consequence of the Schwarz-Pick Lemma (cf., [7], page 2), and for the Bergman space case one may consult [13], page 17. Moreover, if φ is not constant, then C_{φ} is one-to-one on these spaces and hence, by the Open Mapping Theorem, is closed-range if and only if it is bounded below. For any analytic self-map φ of \mathbb{D}, define τ_{φ} on \mathbb{D} by

$$\tau_{\varphi}(z) := \frac{(1-|z|^2)\varphi'(z)}{1-|\varphi(z)|^2}.$$

For $\varepsilon > 0$, let $\Lambda_\varepsilon = \{z \in \mathbb{D} : |\tau_{\varphi}(z)| > \varepsilon\}$ and let $F_\varepsilon = \varphi(\Lambda_\varepsilon)$. We say that F_ε satisfies the reverse Carleson condition if there exist s and c, $0 < s$, $c < 1$, such that

$$A(F_\varepsilon \cap D(z,s)) \geq cA(D(z,s)),$$

for all z in \mathbb{D}; cf., [10] for seminal work regarding this condition. It has been shown that C_{φ} is closed-range on B if and only if there exists $\varepsilon > 0$ such that F_ε satisfies the reverse Carleson condition; cf., [9] and [3]. In fact, in [3] it is shown that, what appears to be a weaker condition than the one stated above, is indeed equivalent. To be specific, if there exists $\varepsilon > 0$ and s, $0 < s < 1$, such that $F_\varepsilon \cap D(z,s) \neq \emptyset$ for all z in \mathbb{D}, then C_{φ} is closed-range on B. One of the first results of this paper adds one more equivalent condition to this list, and we give a brief and rather novel proof that each of the three conditions are equivalent to C_{φ} being closed-range on B; see Theorem 2.2. We then turn to connections between the Bloch and Bergman space settings. In the Bergman space setting there is an analogue of Λ_ε that takes center stage. Indeed, if φ is an analytic self-map of \mathbb{D} and $\varepsilon > 0$, then we let $\Omega_\varepsilon = \{z \in \mathbb{D} : \frac{1-|z|^2}{1-|\varphi(z)|^2} > \varepsilon\}$ and let $G_\varepsilon = \varphi(\Omega_\varepsilon)$. In [1] it is shown that C_{φ} is closed-range on A^2 if and only if there exists $\varepsilon > 0$ such that G_ε satisfies the reverse Carleson condition; that is, there exist s and c, $0 < s$, $c < 1$, such that

$$A(G_\varepsilon \cap D(z,s)) \geq cA(D(z,s)),$$

for all z in \mathbb{D}. Here, we establish an extension of the Julia-Carathéodory Theorem (see Theorem 3.4) and use it to show that if C_{φ} is closed-range on A^2, then there exist ε and s, $0 < \varepsilon$, $s < 1$, such that $\{z : s \leq |z| < 1\} \subseteq F_\varepsilon$; see Theorem 3.5. From this we easily have the implication that if C_{φ} is closed-range on A^2, then it is also closed-range on B; see Corollary 3.6. We also (by examples) show that the converse of Corollary 3.6 fails, without remedy. Indeed, we construct a thin Blaschke product that fixes zero and that has no angular derivative anywhere on \mathbb{T}, whence C_B is norm preserving on B and yet is compact on A^2; see Example 3.8. And we also construct a univalent analytic self-map h of \mathbb{D} that has no unimodular nontangential boundary values on \mathbb{T}, and thus has no angular derivative anywhere on \mathbb{T} (whence, C_h
is compact on $\mathbb{A}^2)$, such that C_κ is closed-range on B; see Example 3.10. We close the paper with a result that follows easily from work done in [1] and a remark concerning Fredholm operators; see Section 4.

2. Regarding the Bloch space

Recall that, for any analytic self-map φ of \mathbb{D} and any $\varepsilon > 0$,

$$\tau_\varphi(z) := \frac{(1-|z|^2)^2}{1-|\varphi(z)|^2},$$

and

$$\Lambda_\varepsilon := \{z \in \mathbb{D} : |\tau_\varphi(z)| > \varepsilon\}.$$

Lemma 2.1. For any $\varepsilon > 0$ there exist r and s, $0 < r, s < 1$, such that if $z \in \Lambda_\varepsilon$, then

\begin{enumerate}[(i)]
 \item $D(z, r) \subseteq \Lambda_{\frac{\varepsilon}{2}}$,
 \item φ is univalent in $D(z, r)$ and
 \item $D(\varphi(z), s) \subseteq \varphi(D(z, r))$.
\end{enumerate}

Proof. (i) By [8], τ_φ is Lipschitz with respect to the pseudohyperbolic metric. Indeed, there is a positive constant c, independent of φ and of z and w in \mathbb{D}, such that

$$|\tau_\varphi(z) - \tau_\varphi(w)| \leq c|z - w|.$$

Let $r = \frac{\varepsilon}{2c}$ and suppose that $|\tau_\varphi(w)| \leq \frac{\varepsilon}{2}$. Then, for z in Λ_ε,

$$\frac{\varepsilon}{2} < |\tau_\varphi(z)| - |\tau_\varphi(w)| \leq |\tau_\varphi(z) - \tau_\varphi(w)| \leq c|z - w|.$$

Therefore, if $z \in \Lambda_\varepsilon$ and $\rho(z, w) < \frac{\varepsilon}{2c}$, then $w \in \Lambda_{\frac{\varepsilon}{2}}$.

(ii) Suppose that $a \in \Lambda_\varepsilon$ and $\alpha := \varphi(a)$. Notice that $\varphi_\alpha \circ \varphi \circ \varphi_a$ is an analytic self-map of the unit disk that maps 0 to 0 and that

$$|(\varphi_\alpha \circ \varphi \circ \varphi_a)'(0)| = |\tau_{\varphi_\alpha \circ \varphi \circ \varphi_a}(0)| = |\tau_{\varphi \circ \varphi_a}(0)| = |\tau_\varphi(a)| > \varepsilon.$$

We argue that $\varphi_\alpha \circ \varphi \circ \varphi_a$ is univalent in $\{z : |z| < r\}$; where, as in (i), $r := \frac{\varepsilon}{2c}$. Multiplying $\varphi_\alpha \circ \varphi \circ \varphi_a$ by an appropriate unimodular constant we may assume that $(\varphi_\alpha \circ \varphi \circ \varphi_a)'(0)$ is a positive real number (greater than ε). And using the facts that $\tau_{\varphi_\alpha \circ \varphi \circ \varphi_a}$ is Lipschitz with respect to the pseudohyperbolic metric, with the same Lipschitz constant c, and that $\varphi_\alpha \circ \varphi \circ \varphi_a$ maps 0 to 0, we find that

$$(2.1.1) \quad \Re((\varphi_\alpha \circ \varphi \circ \varphi_a)'(z)) > \frac{\varepsilon}{2},$$

whenever $|z| < r$. Now let z and w be distinct points both of which have modulus less than r, and define γ on $[0, 1]$ by $\gamma(t) = (1 - t)z + tw$. Then, by (2.1.1),

$$0 \neq (w - z) \cdot \int_0^1 (\varphi_\alpha \circ \varphi \circ \varphi_a)'(\gamma(t))dt = (\varphi_\alpha \circ \varphi \circ \varphi_a)(w) - (\varphi_\alpha \circ \varphi \circ \varphi_a)(z),$$

and hence $\varphi_\alpha \circ \varphi \circ \varphi_a$ is univalent in $\{z : |z| < r\}$. It now follows that φ is univalent in $D(a, r)$.

(iii) Given the terminology of part (ii), \(h(z) := \frac{1}{r_\varepsilon} (\varphi_\alpha \circ \varphi \circ \varphi_\alpha)(rz)\) is analytic and univalent in \(D\), \(h(0) = 0\) and \(|h'(0)| > 1\). Therefore, by the Koebe One-Quarter Theorem (cf., [13], page 154),

\[\{z : |z| < \frac{1}{4}\} \subseteq h(D). \]

From this it follows that

\[\{z : |z| < \frac{r_\varepsilon}{4}\} \subseteq (\varphi_\alpha \circ \varphi \circ \varphi_\alpha)(\{z : |z| < r\}). \]

With \(s := \frac{r_\varepsilon}{4}\) we then find that \(D(\varphi(a), s) \subseteq \varphi(D(a, r))\). \(\square\)

As before, let \(\varphi\) be an analytic self-map of \(\mathbb{D}\), let \(\tau_\varphi(z) = \frac{(1-|z|^2)\varphi'(z)}{1-|\varphi(z)|^2}\) and for \(\varepsilon > 0\), let \(\Lambda_\varepsilon = \{z \in \mathbb{D} : |\tau_\varphi(z)| > \varepsilon\}\) and let \(F_\varepsilon = \varphi(\Lambda_\varepsilon)\). We now give two conditions, each of which is equivalent to \(C_\varphi\) being closed-range on \(B\); cf., [9] and [3], or Theorem 2.2 below.

(*\#) There exist \(\varepsilon > 0\) and constants \(c\) and \(s\), \(0 < c, s < 1\), such that \(A(F_\varepsilon \cap D(z, s)) \geq cA(D(z, s))\) for all \(z\) in \(\mathbb{D}\).

(*\#) There exist \(\varepsilon > 0\) and \(s\), \(0 < s < 1\), such that \(F_\varepsilon \cap D(z, s) \neq \emptyset\) for all \(z\) in \(\mathbb{D}\).

Theorem 2.2. Let \(\varphi\) be an analytic self-map of \(\mathbb{D}\). Then the following are equivalent.

i) \(C_\varphi\) is closed-range on \(B\).

ii) Condition (*) holds.

iii) Condition (#) holds.

iv) There are constants \(r\), \(s\) and \(c\), \(0 < r, s, c < 1\), such that, for any \(w\) in \(\mathbb{D}\), there exists \(z_w\) in \(\mathbb{D}\) with the property: \(\varphi\) is univalent on \(D(z_w, w)\), \(\varphi(D(z_w, s)) \subseteq D(w, r)\) and \(A(\varphi(D(z_w, s))) \geq c(1-|w|^2)^2\).

Proof. (i) \(\implies\) (iii). Since any Frostman shift of \(\varphi\) (i.e., \(\varphi_\alpha \circ \varphi\), where \(\alpha \in \mathbb{D}\)) gives rise to a closed-range composition operator on \(B\) if and only if \(\varphi\) does, we may assume that \(\varphi(0) = 0\). Now suppose that (iii) does not hold. Then we can find sequences \(\{r_n\}_{n=1}^\infty\), where \(0 < r_n < 1\) and \(\lim_{n \to \infty} r_n = 1\), and \(\{w_n\}_{n=1}^\infty\) in \(\mathbb{D}\), where \(\lim_{n \to \infty} |w_n| = 1\), such that

\[\sup \{|\tau_\varphi(z)| : z \in \varphi^{-1}(D(w_n, r_n))\} \to 0, \]

as \(n \to \infty\). Let \(\Delta_n = \varphi^{-1}(D(w_n, r_n))\) and let \(D_n = \mathbb{D} \setminus \Delta_n\); for \(n = 1, 2, 3, \ldots\).

Now

\[||\varphi_{w_n} \circ \varphi||_{B/C} = \sup \{(1-|z|^2)|\varphi_{w_n} \circ \varphi'(z)| : z \in \mathbb{D}\} \]

\[\leq \sup \{(1-\rho^2(w_n, \varphi(z)))|\tau_\varphi(z)| : z \in \mathbb{D}\} \]

\[\leq \sup \{(1-\rho^2(w_n, \varphi(z)))|\tau_\varphi(z)| : z \in \Delta_n\} \]

\[+ \sup \{(1-\rho^2(w_n, \varphi(z)))|\tau_\varphi(z)| : z \in D_n\} \to 0, \]

as \(n \to \infty\). Yet \(||\varphi_{w_n}||_{B/C} = 1\), for all \(n\). By Theorem 0 of [9] it now
follows that C_φ is not closed-range on B.

$(iii) \implies (ii)$. We assume (iii), that $(\#)$ holds. Then, by Lemma 2.1, (\ast) holds for $\frac{\varepsilon}{2}$.

$(ii) \implies (i)$. This follows immediately from Proposition 1 and Theorem 1 of [9].

At this point we have established the equivalence of (i), (ii) and (iii).

$(iii) \implies (iv)$. This follows immediately from Lemma 2.1.

$(iv) \implies (iii)$. Assuming (iv),

$$
\int_{D(z_w, s)} |\varphi'(z)|^2 dA(z) \geq c(1 - |w|^2)^2,
$$

and hence

$$
\int_{D(z_w, s)} \frac{|\varphi'(z)|^2}{(1 - |w|^2)^2} dA(z) \geq c.
$$

Thus we can find a positive constant ε, dependent only on r and s, such that

$$
\int_{D(z_w, s)} |\tau_\varphi(z)|^2 dA(z) \geq \varepsilon^2 A(D(z_w, s)).
$$

Therefore, $|\tau_\varphi(z)| \geq \varepsilon$ for some z in $D(z_w, s)$, and hence $F_\varepsilon \cap D(w, r) \neq \emptyset$ for each w in \mathbb{D}; which gives us (iii). The proof is now complete. \qed

A special case of our next result is given by Theorem 2 of [9]; namely, the case that φ is a univalent self-map of \mathbb{D}. As is indicated in the proof of Theorem 2.2, if $f \in B$, then $||f||_{B/C} := \sup_{z \in \mathbb{D}} \frac{1}{1 - |z|^2} (1 - |w|^2)|f'(z)|$.

Corollary 2.3. Let φ be an analytic self-map of \mathbb{D}. Then C_φ is closed-range on B if and only if there exists $\delta > 0$ such that, for all α in \mathbb{D}, $||\varphi_\alpha \circ \varphi||_{B/C} \geq \delta$.

Proof. We may assume that $\varphi(0) = 0$ here since any Frostman shift of φ gives rise to a closed-range composition operator on B if and only if φ does, and since the collection of analytic automorphisms of \mathbb{D} forms a group under the operation of composition. Moreover, notice that $||\varphi_\alpha||_{B/C} = 1$ for all α in \mathbb{D}.

So, if C_φ is closed-range on B, then, by Theorem 0 of [9], there exists $\delta > 0$ such that $||\varphi_\alpha \circ \varphi||_{B/C} \geq \delta$ for all α in \mathbb{D}. Conversely, suppose that there exists $\delta > 0$ such that $||\varphi_\alpha \circ \varphi||_{B/C} \geq \delta$ for all α in \mathbb{D}. Then, by Proposition 2 of [9], (iii) of Theorem 2.2 holds and hence C_φ is closed-range on B. \qed

3. The context of A^2 versus that of B

Let φ be an analytic self-map of \mathbb{D} and, for $\varepsilon > 0$, let $\Omega_\varepsilon := \{z \in \mathbb{D} : \frac{1 - |z|^2}{1 - |\varphi(z)|^2} > \varepsilon\}$, let $G_\varepsilon = \varphi(\Omega_\varepsilon)$ and let $K = \{z \in \mathbb{D} : |z| > 1\}$. By the Julia-Carathéodory Theorem (cf., [13], page 57), φ has an angular derivative at each point ξ in
K, which we denote by $\varphi'(\xi)$. Indeed, $\varphi'(\xi) = \zeta \bar{\xi} d$, where $\zeta := \varphi(\xi) := \angle \lim_{z \to \xi} \varphi(z)$ and d is given by

$$d := \liminf_{z \to \xi} \frac{1 - |\varphi(z)|}{1 - |z|} = \liminf_{z \to \xi} \frac{1 - |\varphi(z)|^2}{1 - |z|^2}.$$

The Julia-Caratheodory Theorem tells us that $d > 0$. And since $\xi \in K$, $d \leq \frac{1}{\varepsilon}$.

Proposition 3.1. Given the terminology of the above discussion, φ is continuous on $\overline{\Omega}_\varepsilon$ and φ' is continuous on K.

Proof. The continuity of φ on $\overline{\Omega}_\varepsilon$ was established in [1]; see Remark 2.6 in this reference. Now let $\{\xi_n\}_{n=1}^\infty$ be a sequence in K that converges to ξ_0 in K, and let $d_n = |\varphi'(\xi_n)|$, for $n = 0, 1, 2, \ldots$. Since φ is continuous on K, the continuity of φ' on K will follow if we show that $d_n \to d_0$, as $n \to \infty$. Now by the discussion just prior to this proposition, $\{d_n\}_{n=1}^\infty$ is bounded. And so, passing to a subsequence if necessary, we may assume that $d_n \to d$, as $n \to \infty$. Thus our goal here is to show that $d = d_0$. To this end, by the Julia-Caratheodory Theorem we can find a sequence $\{r_n\}_{n=1}^\infty$ in $(0, 1)$, such that $\lim_{n \to \infty} r_n = 1$ and $|d_n - \frac{1 - |\varphi(r_n \xi_n)|}{1 - r_n}| < \frac{1}{n}$, for $n = 1, 2, 3, \ldots$. Hence, $\{r_n \xi_n\}_{n=1}^\infty$ is a sequence in \mathbb{D} that converges to ξ_0 and $\{\frac{1 - |\varphi(r_n \xi_n)|}{1 - r_n}\}_{n=1}^\infty$ converges to d. Julia’s Theorem (cf., [13], page 63) now tells us that $d = d_0$. \qed

We now set the stage for two subsequent results.

Discussion 3.2. For any point ξ in \mathbb{T} and any θ, $0 < \theta < \pi$, we let $S(\xi, \theta)$ denote the interior of closed convex hull of $\{\xi\} \cup \{z : |z| \leq \sin(\theta/2)\}$. We call $S(\xi, \theta)$ the *Stolz region* based at ξ with vertex angle θ. For our purposes here it is sufficient that we keep the vertex angles of our Stolz regions fixed at $\frac{\pi}{2}$, though our arguments carry through for any fixed θ in the aforementioned range. Let φ be an analytic self-map of \mathbb{D} and, for $\varepsilon > 0$, let $\Omega_\varepsilon = \{z \in \mathbb{D} : \frac{1 - |z|^2}{1 - |\varphi(z)|^2} > \varepsilon\}$ and let $K = \mathbb{T} \cap \overline{\Omega}_\varepsilon$. Define W_ε by

$$W_\varepsilon = \bigcup_{\xi \in K} S(\xi, \frac{\pi}{2}).$$

Suppose that $\{z_n\}_{n=1}^\infty$ is a sequence in W_ε that converges to a point ξ_0 in K. So, we can find a sequence $\{\xi_n\}_{n=1}^\infty$ in K such that $z_n \in S(\xi_n, \frac{\pi}{2})$ (for $n = 1, 2, 3, \ldots$) and $\lim_{n \to \infty} \xi_n = \xi_0$. Now

- $\zeta_n := \varphi(\xi_n) := \angle \lim_{z \to \xi_n} \varphi(z)$, and
- $\angle \lim_{z \to \xi_n} \varphi'(z) := \varphi'(\xi_n) = \zeta_n \bar{\xi}_n d_n$ - the angular derivative of φ at ξ_n, where $d_n := |\varphi'(\xi_n)|$.

By Proposition 3.1, $\varphi'(\xi_n) \to \varphi'(\xi_0) = \zeta_0 \bar{\xi}_0 d_0$, as $n \to \infty$, where $\zeta_0 := \varphi(\xi_0) := \angle \lim_{z \to \xi_0} \varphi(z)$ and $d_0 := |\varphi'(\xi_0)|$. Since $0 < d_0 < \infty$, we can find $M > 1$ such that $\frac{1}{M} \leq d_n \leq M$ for all n.

Lemma 3.3. Assuming the terminology of Discussion 3.2, for any $\varepsilon > 0$, there exist s, $0 < s < 1$, and N (in \mathbb{N}) such that

$$\left| d_n - \frac{1-|\varphi(z)|}{1-|z|} \right| < \varepsilon,$$

whenever $z \in S(\xi_n, \frac{\pi}{2})$, $|z| > s$ and $n \geq N$.

Proof. If not, then we can find $d \neq d_0$, a subsequence $\{\xi_{n_k}\}_{k=1}^{\infty}$ of $\{\xi_n\}_{n=1}^{\infty}$ and a sequence $\{z_k\}_{k=1}^{\infty}$ such that

- $z_k' \in S(\xi_{n_k}, \frac{\pi}{2})$ for all k,
- $|z_k' - \xi_{n_k}| \rightarrow 0$ and hence $|z_k' - \xi_0| \rightarrow 0$ (as $k \rightarrow \infty$), and
- $(1 - |\varphi(z_k')|)/(1 - |z_k'|) \rightarrow d$, as $k \rightarrow \infty$.

By Julia’s Theorem this would then tell us that

$$d = |\varphi'(\xi_0)| = d_0;$$
a contradiction. \qed

Theorem 3.4. Assuming the terminology of Discussion 3.2, φ' is continuous on \overline{W}_ε.

Proof. Our proof here is based on Lemma 3.3 and some observations concerning the proof of the Julia-Carathéodory theorem in [13]. By Proposition 3.1, all we need to show is that, given the hypothesis of Discussion 3.2, $\varphi'(z_n) \rightarrow \varphi'(\xi_0)$, as $n \rightarrow \infty$.

Claim A. For any $\varepsilon > 0$ there exist s, $0 < s < 1$, and N (in \mathbb{N}) such that

$$\left| \zeta_n \xi_n d_n - \frac{\xi_n \varphi(z)}{\xi_n - z} \right| < \varepsilon,$$

whenever $z \in S(\xi_n, \frac{\pi}{2})$, $|z| > s$ and $n \geq N$.

To justify this claim we first observe that, by Lemma 3.3, for any $\eta > 0$, there exist σ, $0 < \sigma < 1$, and ν (in \mathbb{N}) such that

$$(3.4.1) \quad \left| d_n - \frac{1-|\varphi(z_n)|}{1-r} \right| < \eta \quad \text{and} \quad \left| d_n - \frac{1-|\varphi(z_n)|^2}{1-r^2} \right| < \eta$$

provided $\sigma \leq r < 1$ and $n \geq \nu$. Mimicking the proof of JC (1) \Longrightarrow JC (2) (in Section 4.5 of [13]), for $n \geq \nu$ we carry the discussion to the right half-plane \{ $w : \text{Re}(w) > 0$\}. Let φ_n and ψ_n be the Möbius transformations given by $\varphi_n(z) := \frac{z + \xi_n}{\xi_n - z}$ and $\psi_n(z) := \frac{z + \xi_n}{\xi_n - z}$. Define Φ_n and γ_n on \{ $w : \text{Re}(w) > 0$\} by $\Phi_n(w) := (\psi_n \circ \varphi \circ \varphi^{-1})(w)$ and $\gamma_n(w) := \Phi_n(w) - c_n w$, where $c_n := \frac{1}{d_n}$.

Now by (3.4.1), if $n \geq \nu$ and $\sigma \leq r < 1$, then

$$d_n - \eta < \frac{1-|\varphi(z_n)|}{1-r}, \quad \frac{1-|\varphi(z_n)|^2}{1-r^2} < d_n + \eta$$

and hence, by Julia’s Theorem and with $w_{n,r} := \varphi_n(r\xi_n)$ ($= \frac{1+r}{r}$),

$$\frac{1}{d_n} \leq \frac{\text{Re}(\Phi_n(w_{n,r}))}{\text{Re}(w_{n,r})} = \left(\frac{1-|\varphi(z_n)|^2}{1-r^2} \right) \frac{1-|r\xi_n|^2}{|\xi_n - \varphi(z_n)|^2} < \frac{d_n + \eta}{(d_n - \eta)^2},$$
Therefore, if n is sufficiently large (allowing η to be sufficiently small), one can force
\[
\frac{\text{Re}(\gamma_n(w_n, \sigma))}{\text{Re}(w_n, \sigma)}
\]
to be less than any prescribed positive real number; and $w_{n, \sigma} = \frac{1 + \sigma}{1 - \sigma}$, which clearly does not vary with n. We let $w_{n, \sigma}$ play the role of w_0 in the proof of JC (1) \implies JC (2) (in Section 4.5 of [13]). And since the image under φ of any compact subset of \mathbb{D} is a compact subset of \mathbb{D}, $\{|\gamma_n(w_n, \sigma)|\}_{n=1}^{\infty}$ is bounded. Thus, following through with the argument in [13], we find that, for any $\tau > 0$, there is a positive real number R such that if $w \in \varphi_n(S(\xi_n, \frac{\pi}{2}))$ and $|w| > R$, then
\[
(3.4.2) \quad \left| \frac{\gamma_n(w)}{w} \right| < \tau,
\]
provided n is sufficiently large. Now, via the correspondence $w = \varphi_n(z)$, routine calculations give that
\[
\frac{w + 1}{\Phi_n(w) + 1} = \xi_n \bar{\xi}_n \left(\frac{\xi_n - \varphi(z)}{\xi_n - z} \right),
\]
and hence,
\[
\left| \frac{\gamma_n(w) + 1}{w + 1} \right| = \left| \frac{\xi_n - z}{\xi_n - \varphi(z)} - \frac{\xi_n \bar{\xi}_n w}{w + 1} \right|.
\]
We now find that Claim (A) follows from (3.4.2).

Claim B. For any $\varepsilon > 0$ there exist s, $0 < s < 1$, and N (in \mathbb{N}) such that
\[
|\xi_n \xi_n d_n - \varphi'(z)| < \varepsilon,
\]
whenever $z \in S(\xi_n, \frac{\pi}{2})$, $|z| > s$ and $n \geq N$.

Now Claim (B) follows directly from Claim (A) and the proof of JC (2) \implies JC (3) (in Section 4.6 of [13]). And by Claim (B) and the fact that $\varphi'(\xi_n) \to \varphi'(\xi_0)$, as $n \to \infty$, we find that
\[
\varphi'(z_n) \to \varphi'(\xi_0),
\]
as $n \to \infty$; which completes our proof. \hfill \Box

Theorem 3.5. Let φ be an analytic self-map of \mathbb{D}. If C_φ is closed-range on \mathbb{A}^2, then there exist ε and s, $0 < \varepsilon$, $s < 1$, such that $\{z : s \leq |z| < 1\} \subseteq F_\varepsilon$.

Proof. Suppose that C_φ is closed-range on \mathbb{A}^2. Then there exists $\varepsilon > 0$ such that $G_\varepsilon := \varphi(\Omega_\varepsilon)$ satisfies the reverse Carleson condition; cf., [1]. In particular, $\mathbb{T} \subseteq G_\varepsilon$. So, for each point v_0 in \mathbb{T}, we can find a sequence $\{w_n\}_{n=1}^{\infty}$ in Ω_ε such that $\{\varphi(w_n)\}_{n=1}^{\infty}$ converges to v_0. Passing to a subsequence if necessary, we may assume that $\{w_n\}_{n=1}^{\infty}$ converges to some point ω_0 in $K := \mathbb{T} \cap \overline{\Omega}_\varepsilon$. Therefore, by Julia’s Theorem, $v_0 = \varphi(\omega_0) := \angle \lim_{w \to \omega_0} \varphi(w)$. Thus, $\varphi(K) = \mathbb{T}$. We proceed indirectly and suppose that the conclusion of this theorem fails. Then we can find a sequence $\{z_n\}_{n=1}^{\infty}$ in $\mathbb{D} \setminus \{0\}$, such that $\{|z_n|\}_{n=1}^{\infty}$ converges to 1 and
\[
(3.5.1) \quad \sup\{|\tau_\varphi(w) : \varphi(w) = z_n\} \to 0,
\]
as \(n \to \infty \). Since \(\varphi(K) = \mathbb{T} \), there exists \(\{\xi_n\}_{n=1}^{\infty} \) in \(K \) such that \(\varphi(\xi_n) = \zeta_n := \frac{z_n}{|z_n|} \), for \(n = 1, 2, 3, \ldots \). Passing to a subsequence if need be, we may assume that \(\{\xi_n\}_{n=1}^{\infty} \) converges to some point \(\xi_0 \) in \(K \). Since, by Proposition 3.1, \(\varphi \) is continuous on \(K \), indeed, continuous on \(\overline{\Omega}_\varepsilon \), we find that \(\{\zeta_n\}_{n=1}^{\infty} \) converges to \(\zeta_0 := \varphi(\xi_0) \). Now, by Theorem 3.4 and its proof, there exist \(\delta \) and \(s \), \(0 < \delta, s < 1 \), and \(N \) in \(\mathbb{N} \) such that

\[|\tau_{\varphi}(z)| \geq \delta, \]

whenever \(z \in S(\xi_n, \frac{\pi}{2}) \), \(|z| > s \) and \(n \geq N \). Moreover, by Claim (A) in the proof of Theorem 3.4 (that speaks to the conformality of \(\varphi \) at \(\xi_n \)), we can find \(\sigma, 0 < \sigma < 1 \), and \(\nu \) in \(\mathbb{N} \) such that

\[\{r\zeta_n : \sigma \leq r < 1\} \subseteq \varphi(\{z \in S(\xi_n, \frac{\pi}{2}) : |z| > s\}), \]

whenever \(n \geq \nu \). Since \(z_n \in \{r\zeta_n : \sigma \leq r < 1\} \), if \(n \) is sufficiently large, we find that (3.5.1) above cannot occur; and our proof is complete. \(\square \)

Our next result is an immediate consequence of Theorem 3.5 and Theorem 2.2; and so we state it without proof.

Corollary 3.6. Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \). If \(C_\varphi \) is closed-range on \(\mathbb{A}^2 \), then it is also closed-range on \(\mathbb{B} \).

A slight modification of the proof of Theorem 3.5 gives us the following rather surprising result. It also can be viewed as a byproduct of the nice behavior of \(\varphi \) on \(\overline{W}_\varepsilon \), as indicated by Theorem 3.4.

Theorem 3.7. Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \). Then the following are equivalent.

i) \(C_\varphi \) is closed-range on \(\mathbb{A}^2 \).

ii) There exist \(\varepsilon, s \) and \(c, 0 < \varepsilon, s, c < 1 \), such that

\[A(G_\varepsilon \cap D(z, s)) \geq cA(D(z, s)), \]

for all \(z \) in \(\mathbb{D} \).

iii) There exist \(\varepsilon \) and \(s \), \(0 < \varepsilon, s < 1 \), such that \(\{z : s \leq |z| < 1\} \subseteq G_\varepsilon \).

Proof. The equivalence between (i) and (ii) was established in [1]. And clearly (iii) implies (ii). So we need only establish that (i) implies (iii). To this end, assume that \(C_\varphi \) is closed-range on \(\mathbb{A}^2 \) and mimic the proof of Theorem 3.5, replacing \(|\tau_{\varphi}(z)| \) by \(\frac{1-|z|^2}{1-|\varphi(z)|^2} \), throughout. The argument carries over with this modification to gives us (iii). \(\square \)

By Theorem 2.5 of [1], the only univalent analytic self-maps of \(\mathbb{D} \) that give rise to closed-range composition operators on \(\mathbb{A}^2 \) are the analytic automorphisms of \(\mathbb{D} \). This is in contrast with the Bloch space setting. Indeed, if \(\psi \) is any
conformal mapping from \mathbb{D} one-to-one and onto $\mathbb{D} \setminus [0, 1)$, then C_ψ is closed-range on B; cf., Example 2 of [9]. So, the converse of Corollary 3.6 fails. Our next two examples show that the converse fails with a vengeance. Our first is an example of a thin Blaschke product B that fixes zero and has no angular derivative at any point of the unit circle \mathbb{T}; and by thin we mean that $(1 - |a_n|^2)|B'(a_n)| \to 1$, as $n \to \infty$, where $\{a_n\}_{n=1}^\infty$ are the zeros of B. Therefore, C_B is norm preserving on B (cf., [5], or [11]) and yet is compact on A^2 (cf., [13], pages 52 and 195). And since C_B is compact and not of finite rank on A^2, it is not closed-range on A^2. This first example is a factor of the one produced by J. Shapiro on page 185 of [13].

Example 3.8. Let B^* be the Blaschke product constructed by J. Shapiro on page 185 of [13] and let $\{a_n\}_{n=1}^\infty$ be the zeros of B^*. Associated with each a_n is an arc I_n of length $1/n$ of the form $I_n = \{e^{i\theta} : \theta_n \leq \theta \leq \theta_{n+1}\}$. The zeros a_n are given by: $a_n := r_ne^{i\omega_n}$, where $r_n := 1 - \frac{1}{n^2}$ and $\omega_n := \frac{1}{2}(\theta_n + \theta_{n+1})$. A theorem of O. Frostman (cf., [13], page 183) is then used to show that B^* has no angular derivative anywhere on \mathbb{T}. For each positive integer ν, we define the ν^th “layer” of zeros of B^* as $[a_{\nu}] := \{a_\nu, a_{\nu+1}, ..., a_{N_\nu}\}$, where N_ν is the unique positive integer that satisfies:

$$\mathbb{T} \subseteq \bigcup_{n=\nu}^{N_\nu} I_n, \text{ yet } \mathbb{T} \not\subseteq \bigcup_{n=\nu}^{N_\nu-1} I_n.$$

Since $\sum_{n=\nu}^{N_\nu-1} \frac{1}{n} < 2\pi$, it follows that $N_\nu < 540\nu$. For any positive integer ν, let B_ν be the Blaschke product with (simple) zeros $[a_\nu]$. For any a_k in $[a_\nu]$, let B_ν^k denote B_ν with the Blaschke factor involving a_k deleted. And choose a_k in $[a_\nu] \setminus \{a_k\}$ such that $\rho(a_k, a_{k^*}) \leq \rho(a_k, a_l)$, whenever $a_l \in [a_\nu] \setminus \{a_k\}$. Then, for such l,

$$\left| \frac{a_k - a_l}{1 - a_la_k} \right|^2 - 1 \geq -\frac{(1 - r_k^2)(1 - r_{k^*}^2)}{1 - 2r_kr_{k^*} \cos(\theta_k - \theta_{k^*}) + r_{k^*}^2r_k^2}.$$

Now, $|\theta_k - \theta_{k^*}| \geq \frac{1}{4k}$ and so, for ν sufficiently large,

$$1 - 2r_kr_{k^*} \cos(\theta_k - \theta_{k^*}) + r_{k^*}^2r_k^2 \geq \frac{1}{20k^2}.$$

Hence,

$$\left| \frac{a_k - a_l}{1 - a_la_k} \right|^2 - 1 \geq -\frac{80}{(k^*)^2} \geq -\frac{80}{\nu^2},$$

independent of k and l in our range here. Therefore,

$$0 > \sum_{k \neq l = \nu}^{N_\nu} \left(\left| \frac{a_k - a_l}{1 - a_la_k} \right|^2 - 1 \right) \geq (540\nu)(-\frac{80}{\nu^2}) = -\frac{43,200}{\nu} \to 0,$$

as $\nu \to \infty$; uniformly in $k, \nu \leq k \leq N_\nu$. From this it follows that

$$(3.7.1) \quad |B_\nu^k(a_k)| \to 1,$$
as \(\nu \to \infty \); uniformly in \(k, \nu \leq k \leq N_\nu \). Now since \(B^* \) is a Blaschke product,

\[
(3.7.2) \quad |B_\nu| \to 1
\]

uniformly on compact subsets of \(\mathbb{D} \), as \(\nu \to \infty \). And since, for any fixed \(\nu \), \(B_\nu \) is a finite Blaschke product,

\[
(3.7.3) \quad |B_\nu(z)| \to 1
\]

uniformly in \(z \), as \(|z| \to 1^- \). Using (3.7.1) – (3.7.3), one can find a (rapidly) increasing sequence \(\{\nu_j\}_{j=1}^{\infty} \) of positive integers such that \([a_{\nu_k}] \cap [a_{\nu_l}] = \emptyset\) if \(k \neq l \), and such that

\[
B := \prod_{j=1}^{\infty} B_{\nu_j},
\]

whose (simple) zeros we enumerate as \(\{\alpha_n\}_{n=1}^{\infty} \), satisfies

\[
|B^n(\alpha_n)| \to 1,
\]

as \(n \to \infty \); where \(B^n \) denotes \(B \) with the Blaschke factor involving \(\alpha_n \) deleted. And we may assume that \(\nu_1 = 1 \). Hence, \(B \) is a thin Blaschke product that fixes zero. Since the zeros of \(B \) consist of infinitely many disjoint layers of the zeros of \(B^* \), one can argue as in [13], page 185, and find that

\[
\sum_{n=1}^{\infty} \frac{1 - |\alpha_n|}{|\zeta - \alpha_n|^2} = \infty,
\]

for each \(\zeta \) in \(\mathbb{T} \). Thus, by a theorem of O. Frostman (cf., [13], page 183), we conclude that \(B \) has no angular derivative at any point in \(\mathbb{T} \).

Remark 3.9. The converse of Theorem 3.5 does not hold. Indeed, by Theorem 2.7 of [4], if \(B \) is the Blaschke product that we produced in Example 3.8, then

\[
\mathbb{D} \subseteq F_{1/2}^*;
\]

and yet \(C_B \) is far from closed-range on \(\mathbb{A}^2 \).

We now produce a univalent analytic self-map \(h \) of \(\mathbb{D} \) that has no angular derivative at any point of \(\mathbb{T} \) (whence, \(C_h \) is compact on \(\mathbb{A}^2 \)) such that \(C_h \) is closed-range on \(\mathcal{B} \). This dramatically improves upon our understanding of what is possible in the univalent case; cf., Example 2 of [9]. And since \(h(\mathbb{D}) \) contains no annulus with outer boundary equal to \(\mathbb{T} \) (and similarly for Example 2 of [9]), there is no analogue of Theorem 3.7 in the context of the Bloch space.

Example 3.10. Here we construct a conformal mapping \(h \) from \(\mathbb{D} \) one-to-one and onto an infinite ribbon \(G \) that spirals out to \(\mathbb{T} \) such that \(C_h \) is closed-range on \(\mathcal{B} \). So \(h \) will have no unimodular nontangential boundary values on \(\mathbb{T} \), and thus no angular derivative anywhere on \(\mathbb{T} \). We write \(h \) as the composition of three conformal mappings:
Thus, \(\zeta = i \left(\frac{1+i}{1-i} + e \right) \), which maps \(\mathbb{D} \) univalently onto \(G_1 := \{ \zeta : \text{Im}(\zeta) > e \} \),

\(\xi = \log(\zeta) \), which maps \(G_1 \) univalently onto a smoothly bounded subregion \(G_2 \) of the swath \(\{ \xi : \text{Re}(\xi) > 1 \) and \(0 < \text{Im}(\xi) < \pi \} \) that asymptotically approximates this swath, and

\(w = \xi^i \), which maps \(G_2 \) univalently onto an infinite ribbon \(G \) that spirals out to \(T \).

Thus, \(h(z) = \left[\log \left(i \left(\frac{1+i}{1-i} + e \right) \right) \right]^i \). Clearly \(h \) has no unimodular nontangential boundary values on \(\mathbb{T} \) and thus has no angular derivative anywhere on \(\mathbb{T} \). As we noted just prior to Example 3.8, this tells us that \(C_h \) is compact and hence not closed-range on \(\mathbb{A}^2 \). One may also refer to Theorem 2.5 of [1] to obtain that \(C_h \) is not closed-range on \(\mathbb{A}^2 \). Now let \(\Gamma = h([0,1]) \), which is an arc of infinite length that spirals out to \(T \). Our strategy in showing that \(C_h \) is closed-range on \(B \) is to first establish that there exists \(\varepsilon > 0 \) such that \(\Gamma \subseteq F_\varepsilon \) and then establish that there exists \(s, 0 < s < 1 \), such that \(\Gamma \cap D(z,s) \neq \emptyset \) for all \(z \) in \(\mathbb{D} \). Theorem 2.2 then gives us the conclusion. In what follows we use the symbol \(\sim \) between real-valued functions \(f \) and \(g \) defined on \([0,1]\) (viz., \(f \sim g \)) to indicate that there is a constant \(M > 1 \) such that \(\frac{1}{M} f(x) \leq g(x) \leq M f(x) \) for all \(x \) in \([0,1]\). Now, for \(x \) in \([0,1]\),

\[
\begin{align*}
h(x) &= \left[\log \left(i \left(\frac{1+x}{1-x} + e \right) \right) \right]^i \\
&= \left[\log \left(\frac{1+x}{1-x} + e \right) + \frac{i\pi}{2} \right]^i.
\end{align*}
\]

Denoting \(\log \left(\frac{1+x}{1-x} + e \right) + \frac{i\pi}{2} \) by \(\xi_x \), we have:

\[
h(x) = e^{i\log(\xi_x)} = e^{-\arg(\xi_x)} \cdot e^{i\log|\xi_x|}.
\]

Hence,

\[
1 - |h(x)| \sim \arg(\xi_x) \sim \frac{1}{\log \left(\frac{1+x}{1-x} + e \right)}.
\]

Thus, for \(x \) in \([0,1]\),

\[
\frac{1-x}{1-|h(x)|} \sim (1-x) \log \left(\frac{1+x}{1-x} + e \right).
\]

And, for such \(x \), \(h'(x) = \frac{e^{i\log(\xi_x)}}{\log \left(\frac{1+x}{1-x} + e \right) + \frac{i\pi}{2}} \cdot \frac{2}{(1-x^2) + e(1-x)^2} \); whence

\[
|h'(x)| \sim \frac{1}{(1-x) \log \left(\frac{1+x}{1-x} + e \right)}.
\]

Evidently, \(|\tau_h(x)| \sim 1 \), and so there exists \(\varepsilon > 0 \) such that \(\Gamma \subseteq F_\varepsilon \). Now, as \(x \) increases to 1 in \([0,1]\), \(h(x) \) traverses \(\Gamma \) through infinitely many counterclockwise rotations about 0 as it works its way toward \(T \). To complete our argument here it is important that we obtain a good estimate on the ratio between \(1 - |h(x')| \) and \(1 - |h(x)| \), if \([x, x']\) is a subinterval of \([0,1]\) over which \(h \) makes...
Closed-Range Composition Operators on A^2 and the Bloch space

precisely one rotation about 0. Recalling that $h(x) = e^{-\arg(x) \cdot e^i \log |x|}$, we find that this reduces to an examination of

$$h^*(y) := e^{-\frac{1}{y} \cdot e^i \log(y)},$$

as y in $[1, \infty)$ increases to ∞. Notice that h^* winds through 2π radians on any subinterval of $[1, \infty)$ of the form $[y, e^{2\pi}y]$. And, independent of y, $1 - \frac{|h^*(y)|}{1 - |h^*(e^{2\pi}y)|}$ is boundedly equivalent to $\frac{1}{e^{2\pi}}$. This then tells us that $\mathbb{D} \setminus \Gamma$ does not contain pseudohyperbolic disks of radius arbitrarily near 1. Hence, there exists s, $0 < s < 1$, such that $\Gamma \cap D(z, s) \neq \emptyset$, for all z in \mathbb{D}. Since, as we have shown, $\Gamma \subset F_{\varepsilon}$, for some $\varepsilon > 0$, we can now refer to Theorem 2.2 and conclude that C_h is closed-range on B.

4. Closing Remarks

In this final section we give a result in the context of A^2 for singular inner functions and we point out some implications of our work here to the theory of Fredholm operators. In our discussion we let m denote normalized Lebesgue measure on \mathbb{T}. Recall that a compact subset E of \mathbb{T} is said to be porous if there exists ε, $0 < \varepsilon < 1$, such that whenever I is a arc of \mathbb{T} with $I \cap E \neq \emptyset$, then there is a subarc J of I where $m(J) > \varepsilon m(I)$ and $J \cap E = \emptyset$. In [12] it is shown that E is a porous subset of \mathbb{T} if and only if E has the property: For any singular measure μ supported on E, every nontrivial Frostman shift of the singular inner function S_μ is a Carleson-Newman Blaschke product; that is, a finite product of interpolating Blaschke products. The proof of Corollary 3.11 in [1] also establishes our next result.

Proposition 4.1. Let E be a porous subset of \mathbb{T}. If μ is any singular measure with support in E, then C_{S_μ} is closed-range on A^2.

Remark 4.2. We close the paper with some thoughts concerning Fredholm operators. We first recall that the little Bloch space B_0 is the collection of functions f in B for which

$$\lim_{r \to 1^-} \sup_{r < |z| < 1} (1 - |z|^2)|f'(z)| = 0.$$

And the Dirichlet space D is the collection of functions $f(z) = \sum_{n=0}^\infty a_n z^n$, analytic in \mathbb{D}, such that

$$||f||_D^2 := \sum_{n=0}^\infty (n + 1) |a_n|^2 < \infty.$$

An operator between two Banach spaces is called a Fredholm operator if its range is closed and both the operator and its adjoint have finite dimensional kernel. If φ is an analytic self-map of \mathbb{D} and C_φ is a Fredholm operator on a
Hilbert space of analytic functions that contains \mathcal{D}, then φ is a disk automorphism; cf., [6], page 153. Now $\mathcal{D} \subseteq \mathcal{B}_0$, but we will show that the situation is different for \mathcal{B}_0. Indeed, there exists Fredholm composition operators on \mathcal{B}_0 whose symbols are not disk automorphisms. The \textit{minimal Besov space} \mathcal{B}_1 is the collection of all functions f that are analytic in \mathbb{D} of the form

$$f(z) = a_0 + \sum_{n=1}^{\infty} a_n \varphi w_n(z),$$

where $\{w_n\}_{n=1}^{\infty} \subseteq \mathbb{D}$, and $\{a_n\}_{n=1}^{\infty} \in l^1$. The norm on \mathcal{B}_1 is given by

$$||f||_{\mathcal{B}_1} := \inf \{ \sum_{n=0}^{\infty} |a_n| : (4.2.1) \text{ holds} \}.$$

Now \mathcal{B}_1 is a Banach space with respect to this norm and is invariant under disk automorphisms. Under the pairing $(f,g) = \int_{\mathbb{D}} f'(z) \overline{g'(z)} dA(z)$, the dual of \mathcal{B}_0 is \mathcal{B}_1 and the dual of \mathcal{B}_1 is \mathcal{B}; cf., [2]. Notice that, for g in \mathcal{B}_0 and w in \mathbb{D},

$$(g, \varphi_w) = - \int_{\mathbb{D}} g'(z) \frac{1-|w|^2}{(1-wz)^2} dA(z) = -(1-|w|^2)g'(w),$$

and therefore,

$$(g, C_{\varphi}^*(\varphi_w)) = <C_{\varphi}(g), \varphi_w> = -(1-|w|^2) (g \circ \varphi)'(w) = -\tau_\varphi(w)(g, \varphi_{\varphi(w)}).$$

If $w \in \mathbb{D}$, then

$$C_{\varphi}^*(\varphi_w) = -\tau_\varphi(w) \varphi_{\varphi(w)},$$

and if $|w| = 1$, then $\varphi_w = w$ and

$$C_{\varphi}^* \varphi_w = 0.$$

By (4.2.2) and (4.2.3) it is easy to see that the kernel of $C_{\varphi}^*: B_1 \to B_1$ consists of the constant functions. Also, a non-constant composition operator is always one-to-one, and therefore $C_{\varphi}: \mathcal{B}_0 \to \mathcal{B}_0$ will be a Fredholm operator if it is closed-range. It is shown in [9] that if ψ is a conformal mapping from \mathbb{D} onto $\mathbb{D} \setminus [0,1)$, then C_ψ is bounded below on \mathcal{B}. Any univalent self-map of \mathbb{D} is in \mathcal{B}_0, and thus $\psi \in \mathcal{B}_0$ and C_ψ is a Fredholm operator on \mathcal{B}_0.

\textbf{Acknowledgement.} The second author wishes to express gratitude to Wayne Smith and the University of Hawaii for the kind hospitality that was shown during a recent visit. And we thank the referee for comments that have led to an improvement of the exposition of this paper.

\textbf{References}

John R. Akeroyd
Department of Mathematics
University of Arkansas
Fayetteville, AR 72701
U. S. A.
e-mail: akeroyd@uark.edu

Pratibha G. Ghatage
Department of Mathematics
Cleveland State University
Cleveland, OH 44115
U. S. A.
e-mail: p.ghatage@csuohio.edu

Maria Tjani
Department of Mathematics
University of Arkansas
Fayetteville, AR 72701
U. S. A.
e-mail: mtjani@uark.edu