Multiple Regression—Beginnings

Multiple regression investigates the prediction of one DV by 2 or more IVs, all assumed to be measured at the I/R level. As we will see, there are two main statistical assessments done by multiple regression. They are: (1) the proportion of the DV's variance that is explained by a set of IVs (an F tests the sig. of R^2), and (2) the unique contribution of each IV (an F tests the sig. of each β).

Let's suppose that we have collected data on five different variables, and have hypothesized the following model:

\[
\begin{align*}
X_1 & \rightarrow b_1 \\
X_2 & \rightarrow b_2 \\
X_3 & \rightarrow b_3 \\
X_4 & \rightarrow b_4 \\
\end{align*}
\]

In the original units (as the variables were measured), the equation for the full model with all 4 IVs is:

\[
Y' = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4
\]

With the four variables each standardized, the model would be:

\[
\begin{align*}
X_{z1} & \rightarrow 3_1 \\
X_{z2} & \rightarrow 3_2 \\
X_{z3} & \rightarrow 3_3 \\
X_{z4} & \rightarrow 3_4 \\
\end{align*}
\]

The standardized form of the equation is:

\[
Y_{z'} = \beta_1X_{z1} + \beta_2X_{z2} + \beta_3X_{z3} + \beta_4X_{z4}
\]

Each partial regression coefficient (unstandardized b or standardized β) is an indicator of the unique contribution of that X to the DV (Y). For example, β_1's statistical significance (tested with an F) indicates whether X_1 has a significant linear relationship with Y when controlling for X_2, X_3, and X_4.

We also look at the total variance explained by the IVs. This R^2 (also tested with an F) indicates what proportion of Y's variance is explained by/shared with the 4 IVs.
This may be shown via Ballantines/Venn diagrams:

Unique Contribution
- a corresponds to β_1
- c corresponds to β_2
- d corresponds to β_3
- f corresponds to β_4

* - corresponds to, but does not equal. . . β is not expressed as a proportion; rather, it is a standardized partial slope (the amount and direction of change in Y for a unit change in an X, controlling for the other Xs in the equation, assuming all variables are standardized)

Total Contribution

$$a + b + c + d + e + f = R^2$$

While it's unlikely you would find many significant βs with a non-significant R^2, you sometimes do find a significant R^2 without any individually significant βs. What set of relationships among the variables would result in this?

Draw it: