Output Feedback Control

■ Basic state-space control methods assume that all states are available for measurement, so that the control law can be calculated.

■ In practice, this rarely happens. Only a set of outputs, assumed linear functions of the states, are measured and controlled. The output equation has the form

\[y = Cx \]

■ Since \(C \) is generally not an invertible matrix, \(x \) cannot be obtained from \(y \).

■ Output feedback refers to a control law calculation based on \(y \) only. Output feedback stabilization is possible when the plant is at least detectable.

■ That is, the unobservable states decay naturally, while \(y \) contains enough information on the remaining states.
Observers

- A state estimator or observer is an artificial dynamic system that evolves simultaneously with the plant. Its function is to estimate the state of the plant using input and output information.

- The observer has two inputs: \(u \) and \(y \) from the plant, and its output is the estimate of the plant state vector \(\hat{x} \).

- How are observers built? Why not just
 \[
 \dot{\hat{x}} = A\hat{x} + Bu
 \]

- The Luenberger observer solves the initial condition mismatch problem by introducing feedback.

- Add an error-correcting term \(H(y - \hat{y}) = H(y - C\hat{x}) \) to obtain
 \[
 \dot{\hat{x}} = (A - HC)\hat{x} + Bu + Hy
 \]

- Matrix \(H \) is the observer gain. It must be chosen so that \(A - HC \) has eigenvalues on the left half of the complex plane for \(\hat{x} \) to converge to \(x \).

Separation Principle and Dynamic Compensator

- What happens when the state estimates \(\hat{x} \) are used in the computation of the state feedback law \((u = -K\hat{x}) \)?

- The closed-loop system can be reduced to
 \[
 \dot{x} = (A - BK)x + BK\bar{x}
 \]
 \[
 \dot{\bar{x}} = (A - HC)x
 \]
 where \(\bar{x} = x - \hat{x} \) is the estimation error.

- Note that the convergence of the estimator and the stability of the plant can be enforced separately, by placing the poles of \((A - BK) \) and \((A - HC) \) on the left half of the complex plane.

- It is good practice to tune the observer to converge faster than the plant, by choosing faster poles in the observer.

- The transfer function of the observer-controller combination can be shown to be
 \[
 K(s) = \frac{U(s)}{Y(s)} = -K[(sI - A + BK + HC)^{-1}]H
 \]
Design an observer-based state feedback controller to stabilize the double integrator plant. Use LQR tuning for both the observer and the controller. Simulate.