二阶扩张状态观测器的误差分析

黄开清 张立

(中国科学院系统科学研究所 北京 100080)

编者：本文利用分片光滑的 Lyapunov 函数来进行扩张状态观测器的误差分析。提出了非线性扩张状态观测器的稳定性分析方法，给出了为非均匀性扩展状态观测器的参数所满足的条件。

关键词：扩张抑制，稳定性，扩张状态观测器

1 引言

2 问题的提出

没有受控对象

\[\dot{x} = f(x, u(t)) - bu(t), \]

其中，\(f(x, u(t)), u(t) \) 为未知函数和未知扰动，\(u(t) \) 为控制输入。对此对象有如下扩张状态观测器：

\[\begin{cases} \dot{z}_1 = z_2 - \beta_1 (z_1 - x) + bu(t), \\ \dot{z}_2 = -\beta_2 |z_2 - \sigma|^{\alpha}\text{sign}(z_2 - x), \end{cases} \]

其中，\(\beta_1 > 0, \beta_2 > 0, 0 \leq \alpha \leq 1 \)。若在 (1) 中，令

\[z_1 = x, z_2 = f(x, u(t)) - f(x, u(t)) + \frac{\partial f(x, u(t))}{\partial x} z - \frac{\partial f(x, u(t))}{\partial u} \epsilon, \]
因此系统 (2) 实际上是对此系统所建立的状态观测器，不过由于函数 $f(x, v(t))$ 和外扰 $w(t)$ 均未知，从而 $w(t)$ 也未知，不可能把它们放到观测器方程中。大量的仿真研究表面，在一定范围内的变化的未知 $f(x(t), v(t))$ 来看，适当选择参数 α, β_1, β_2, 就能使系统 (2) 的解使系统（1）的状态 $x(t)$ 及模型和外扰的实时监测作用 $f(x(t), v(t))$。今记 $s_1 = x_1 - x_2, s_2 = z_2 - x_2$ 从 （2）式或（3）式，得

$$
\begin{align*}
\dot{e}_1 &= e_2 - \beta_1 e_1, \\
\dot{e}_2 &= w(t) - \beta_2 |e_1|^p \text{sgn}(e_1).
\end{align*}
$$

本文所要讨论的问题是，当 $w(t)$ 有界范围内变化的不确定函数时，如何选择参数 α, β_1, β_2 使系统 (4) 的解 $e_1(t), e_2(t)$ 尽快地进入尽可能小的范围。

我们将用构造分片光滑 Lyapunov 函数来探讨这个问题。

3 分片光滑 Lyapunov 函数

下面，为了方便把系统 (4) 中的变量 e_1, e_2 改写为 x_1, x_2, 于是 (4) 变成

$$
\begin{align*}
\dot{x}_1 &= x_2 - \beta_1 x_1, \\
\dot{x}_2 &= w(t) - \beta_2 |x_1|^p \text{sgn}(x_1),
\end{align*}
$$

这里假定 $|w(t)| < w_0$。

现在把 (x_1, x_2) 平面分三个区域（见图 (1))。
\[G_1 = \{(x_1, x_2) | x_1 > 0, 0 \leq x_2 \leq \beta x_1\}, \]
\[G_2 = \{(x_1, x_2) | x_2 > 0, x_2 \geq \frac{\beta}{2} (x_1 + \tau_0), x_2 \geq \beta x_1\}, \]
\[G_3 = \{(x_1, x_2) | x_1 < -\tau_0, 0 \geq x_2 \geq \beta x_1\}, \]
\[G_4 = \{(x_1, x_2) | x_2 < 0, x_2 \leq \frac{\beta}{2} (x_1 - \tau_0), x_2 \leq \beta x_1\}, \]
\[G_0 = \{(x_1, x_2) | |x_1| < \tau_0, \frac{\beta}{2} (x_1 - \tau_0) < x_2 \leq \frac{\beta}{2} (x_1 + \tau_0)\}, \]

并且构造分片光滑的正定函数：

\[
v(x_1, x_2) = \begin{cases}
\frac{\beta}{2} (x_1 - \tau_0), & (x_1, x_2) \in G_1, \\
\frac{\beta}{2} (x_1 + \tau_0), & (x_1, x_2) \in G_2, \\
\frac{\beta}{2} (x_1 + \tau_0), & (x_1, x_2) \in G_3, \\
-x_2 + \frac{\beta}{2} (x_1 - \tau_0), & (x_1, x_2) \in G_4, \\
0, & (x_1, x_2) \in G_0.
\end{cases}
\]

（6）

容易验证函数 \(v(x_1, x_2)\) 在 \(G_0\) 之外正定且令平面闭合。

如果对固定的 \(\alpha\) 可以选择参数 \(\tau_0, \beta_1, \beta_0, 2\beta_0\) 和 \(\beta\) 使得函数 \(v(x_1, x_2)\) 在系统 (5) 的轨迹的导数

\[
\frac{dv(x_1, x_2)}{dt} = \frac{\partial v(x_1, x_2)}{\partial x_1} \dot{x}_1 + \frac{\partial v(x_1, x_2)}{\partial x_2} \dot{x}_2 \\
- \frac{\partial v(x_1, x_2)}{\partial x_1} (x_2 - \beta x_1) + \frac{\partial v(x_1, x_2)}{\partial x_2} (w(t) - \beta_0 |x_1| \text{sign}(x_1))
\]

在区域 \(G_0\) 之外，均 < 0，那么系统 (5) 的轨迹均被区域 \(G_0\) 所吸引，从而系统 (5) 误差最终就由区域 \(G_0\) 所限定，而且区域的大小是由参数 \(\tau_0\) 和 \(\beta\) 所决定。显然，\(\tau_0\) 越小，区域 \(G_0\) 就越小。

4 区域 \(G_0\) 成为吸引区域的条件

显然函数 \(v(x_1, x_2)\) 的梯度为

\[
\left(\frac{\partial v}{\partial x_1}, \frac{\partial v}{\partial x_2} \right) = \begin{cases}
\left(\frac{\beta}{2}, 0 \right), & (x_1, x_2) \in G_1, \\
\left(-\frac{\beta}{2}, 1 \right), & (x_1, x_2) \in G_2, \\
\left(-\frac{\beta}{2}, 0 \right), & (x_1, x_2) \in G_3, \\
\left(\frac{\beta}{2}, -1 \right), & (x_1, x_2) \in G_4.
\end{cases}
\]
因此沿系统 (5) 的轨线上有

$$
\frac{dv}{dt} = \begin{cases}
\frac{\beta}{2} (x_2 - \alpha_1 x_1), & (x_1, x_2) \in G_1, \\
-\frac{\beta}{2} (x_2 - \alpha_1 x_1) + w(t) - \beta_2 |x_1| \text{sign}(x_1), & (x_2, x_2) \in G_2, \\
-\frac{\beta}{2} (x_2 - \alpha_1 x_1), & (x_1, x_2) \in G_3, \\
-\frac{\beta}{2} (x_2 - \alpha_1 x_1) - w(t) + \beta_2 |x_1| \text{sign}(x_1), & (x_1, x_2) \in G_4.
\end{cases}
$$

(7)

在区间 G_1 中，由于 $x_2 \leq \beta x_1$, $x_1 > 0$.

$$
\frac{du}{dt} = \frac{\beta}{2} (x_2 - \alpha_1 x_1) = \frac{\beta}{2} [x_2 - \beta x_1 + (\beta - \alpha_1) x_1] \leq \frac{\beta}{2} (\beta - \alpha_1) w_1.
$$

因此对充分小的 $\varepsilon > 0$, 只要取 $\beta = \beta_0 - \varepsilon$, 有

$$
\frac{dv}{dt} \leq \varepsilon \beta_0 - \varepsilon < 0.
$$

由此得 (8)

在区域 G_2 中，对任意 $r \geq r_0$, $v(x_1, x_2) = \frac{\beta}{2} (r - r_0)$ 的等高线方程为

$$
x_2 \leq \frac{\beta}{2} (x_1 + r_0) - \frac{\beta}{2} (r - r_0) - \frac{\beta}{2} (x_1 + r).
$$

在区域 G_3 中还有 $x_2 \leq \beta x_1$，因此这个直线上只有 $|x_1| < r$ 的部分才属于 $v(x_1, x_2) = \frac{\beta}{2} (r - r_0)$ 的等高线。在这个线段上

$$
\frac{du}{dt} = -\frac{\beta}{2} (x_2 - \alpha_1 x_1) + w(t) - \beta_2 |x_1| \text{sign}(x_1)
= -\frac{\beta}{2} \left[(\frac{\beta}{2} x_1 + r) - \beta_0 x_1 \right] + w(t) - \beta_2 |x_1| \text{sign}(x_1)
= \frac{\beta}{2} (\beta_0 - \frac{\beta}{2}) x_1 - \frac{3\beta^2}{4} r + w_0 - \beta_2 |x_1| \text{sign}(x_1).
$$

在条件

$$
\beta = \beta_0 - \varepsilon, \quad r_0 < r, \quad |x_1| \leq r
$$

之下，故使上式为负，只需满足如下不等式

$$
\frac{\beta^2}{4} (\beta_0 - \frac{\beta}{2}) x_1 - \frac{3\beta^2}{4} r < \beta_2 |x_1| \text{sign}(x_1) - w_0.
$$

把 $\beta = \beta_0 - \varepsilon$ 代到上式，得

$$
\frac{\beta^2}{4} (\beta_0 - \frac{\beta}{2}) x_1 - \frac{3\beta^2}{4} r < \beta_2 \left[|x_1| \text{sign}(x_1) - w_0 \right],
$$

(10)
由于 $c > 0$ 可充分小，此不等式的极值情形是

$$\left(\frac{\sqrt{\beta_0}}{r} \right) (x_1 - r) < \beta_0 \left(|x_1| \text{sign}(x_1) - \frac{w_0}{\beta_0} \right). \tag{11}$$

不等式 (10) 的左边是 $L : \frac{\sqrt{\beta_0}}{r} = \frac{\beta_0}{4} (x_1 - r)$ (见图 (2) 点 (3)) 及 $(\frac{\beta_0}{\sqrt{\beta_0}} - \frac{\beta_0}{r}, 0)$ (见图 (2) 点 (4)) 的直线。此直线与 $C : \beta_0 (x_1 - r); \beta_0 (x_1 - r)$ 的二点 $(0, -w_0)$ (见图 (2) 点 (2)) 和 $\frac{\sqrt{\beta_0}}{r}$ (见图 (2) 点 (1)) 的一直线上的点，在左边近于过点 $0, -w_0$ 为对称点的曲线。此直线与 $C : \beta_0 (x_1 - r); \beta_0 (x_1 - r)$ 内部成立，即在此范围内曲线 C 必须位于直线 L 的下方。这需要点 $(0, -w_0)$ 在 $(0, -\frac{\beta_0}{r} r)$ 之左。(见图 (2)). 由此得两个不等式

$$-w_0 > -\frac{\sqrt{\beta_0}}{r} r, \quad r > \frac{4w_0}{\beta_0}. \tag{12}$$

$$r > \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}}. \tag{13}$$

当这两个不等式都得到满足时，不等式 (10) 在 $0 < x_1 < r$ 范围和接近 0 的负 x_1 成立，对远离 0 的负 x_1 不一定成立。直线 L 与直线 C 之差 (即式 (10) 的左边与右边之差) 在 x_1 的负半轴上有极大点，而当此极大点在的极大值性质时，不等式 (10) 将在该极端点上成立，从而不等式 (10) 在 $|x_1| < r$ 上都成立。由于这个极大点为

$$-\left(\frac{4w_0}{\beta_0} \right) \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}}.$$

因此 (10) 式成立的条件变成

$$\frac{\beta_0}{4} (\frac{w_0}{\beta_0} \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} + \frac{\sqrt{\beta_0}}{r} > \beta_0 \left(\frac{4w_0}{\beta_0} \right) \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} + \frac{w_0}{\beta_0}. \tag{14}$$

取 $\varepsilon = 0$ 并简化此式得

$$r > \alpha^{-\frac{\alpha}{1 - \alpha}} \left(1 - \alpha \right) \left(\frac{4w_0}{\beta_0} \right) \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} + \frac{w_0}{\beta_0}. \tag{15}$$

从以上分析知，对充分小的 $c > 0$，只要 r 满足不等式 (12), (13), (15)，不等式 (10) 在 $|x_1| < r$ 的范围内都得到满足，从而在所有区域 G_2 的等高线 $\phi(x_1, x_2) = \frac{\sqrt{\beta_0}}{r}$ 上都有 $\phi < 0$. 然而，由于 $a < 1$, 不等式 (15) 已含有不等式 (12)，因此只要 r 同时满足不等式 (13), (15) 就可以了，即

$$r > \max \left\{ \frac{w_0}{\beta_0} \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} + \frac{4w_0}{\beta_0} \left(\frac{4w_0}{\beta_0} \right) \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} a^{-\frac{\alpha}{1 - \alpha}} \left(1 - \alpha \right) \right\}. \tag{16}$$

在这里，最小可能的 r_0 即

$$r_0 = \max \left\{ \frac{w_0}{\beta_0} \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} + \frac{4w_0}{\beta_0} \left(\frac{4w_0}{\beta_0} \right) \left(\frac{w_0}{\beta_0} \right)^{\frac{1}{\alpha}} a^{-\frac{\alpha}{1 - \alpha}} \left(1 - \alpha \right) \right\}. \tag{17}$$
前面已指出，定义限制范围 G_0 的参数是 τ_0 和 β_{01}，且 τ_0 越小，G_0 越小。

对于区域 G_0 内的情况，用对数于前述的讨论方法可得不同的结果。

下面，我们对 (17) 式再作进一步分析，以便更清楚地指示 τ_0 与 $\nu_0, \alpha, \beta_{01}, \beta_{02}$ 之间的关系。以下不妨假定 $\beta_{02} > \nu_0$，则

$$g_1(\alpha) = \left(\frac{\nu_0}{\beta_{02}} \right)^{1/\alpha},$$

$$g_2(\alpha) = \frac{4\nu_0}{\beta_{02}^2} + \left(\frac{4\beta_{02}}{\beta_{01}} \right)^{2/\alpha} \alpha^{\frac{2}{\alpha}} (1 - \alpha).$$

易见，当 β_{02}, β_{01} 固定时，$g_1(\alpha) = \left(\frac{\nu_0}{\beta_{02}} \right)^{1/\alpha}$ 在 $(0, 1)$ 上是 α 的单调递增函数，是随 α 增大而增大的；而 $g_2(\alpha) = \frac{4\nu_0}{\beta_{02}^2} + \left(\frac{4\beta_{02}}{\beta_{01}} \right)^{2/\alpha} \alpha^{\frac{2}{\alpha}} (1 - \alpha)$ 在 $(0, 1)$ 上是 α 的单调递减函数。由此图(3)，是 $
u_0 > \beta_{02}$ 递减至 β_{02}^2，这样，当 $\alpha = 1$ 时 (即扩张状态观察器为线性时)，$\tau_0 = \max\{\nu_0, \beta_{02}, \nu_0^{1/\alpha}\}$，

$$\nu_0 > \frac{4\nu_0}{\beta_{02}^2},$$

即 $\beta_{02}^0 > 4\beta_{02}$，那么自然 $g_1(\alpha)$ 与 $g_2(\alpha)$ 必在某一 $\alpha_0 < 1$ 处相交。这时，最小的

$$\mu = \min_{\alpha} \max\{g_1(\alpha), g_2(\alpha)\} = g_1(\alpha_0) = g_2(\alpha_0) = \left(\frac{\nu_0}{\beta_{02}} \right)^{1/\alpha}.$$

(20)

因此，当不等式 (19) 成立时，只要

$$\nu_0 < \beta_{02}.$$

(21)

就存在 $\alpha_0 < 1$，使扩张状态观测器 (2) 的估计精度优于 $\alpha = 1$ 的线性情况估计 $\frac{\nu_0}{\beta_{02}}$.

另一方面，从 (20) 式看，要进一步降低 τ_0，就得降低 $\frac{\nu_0}{\beta_{02}}$ 和 α_0。但是要降低 α_0，则由 $g_1(\alpha)$ 和 $g_2(\alpha)$ 的性质，就得降低 $\frac{\nu_0}{\beta_{02}}$ 和 $\frac{\nu_0}{\beta_{01}}$。这样最后可以得出，为了提高扩张状态观测器 (2) 的估计精度，就得扩大下面不等式

$$\frac{1}{4} \beta_{02}^0 > \beta_{02} > \mu_0.$$

(22)
选择扩张状态观测器参数的一种规律。

5 小 结

本文利用分片光滑的 Lyapunov 函数分析了二阶扩张状态观测器的估计误差问题，指出
了非线性扩张状态观测器优于线性观测器的原因，同时给出了选取扩张状态观测器参数的
原则。本文的分析结果也有助于进一步展示高阶扩张状态观测器估计误差分析

参考文献

ERROR ANALYSIS OF THE SECOND ORDER ESO

Han Jingqing Zhang Rong

(Institute of Systems Science, Chinese Academy of Science, Beijing 100080)

Abstract The piece-wise smooth Lyapunov function is used for the error analysis of the
second order ESO. It is indicated that the nonlinear ESO has ability to get better estimation
precision. For the better estimation precision the conditions that should be satisfied by the
parameters of ESO are obtained.

Key words Disturbance rejecting, stability, ESO.