Persistent homology of functions

Peter Bubenik

Cleveland State University

August 4, 2009
sub-talk for CBMS
Persistent homology describes the homological features which persist as a single parameter changes.

Here, we take this parameter to be a threshold on the values of a function.

We consider the homology of the lower excursion sets (sublevel sets) of this function.
For example:

\[y = f(x) \]
For example:

\[y = f(x) \]

\[f^{-1}(-\infty, 1] \]
For example:

\[y = f(x) \]

\[f^{-1}(-\infty, 2] \]
For example:

\[y = f(x) \]

\[f^{-1}(-\infty, 3] \]
For example:

\[y = f(x) \]

\[f^{-1}(-\infty, 4] \]
Persistent homology of functions

On \mathbb{R}

Bottleneck Distance

Persistence Diagram

For example:

$$y = f(x)$$

birth

dead
Let \mathcal{M} be a manifold and let $f : \mathcal{M} \rightarrow \mathbb{R}$.

This function gives an increasing filtration of \mathcal{M} by sublevel sets

$$\mathcal{M}_{f \leq r} = \{x \in \mathcal{M} \mid f(x) \leq r\}.$$

[This induces an increasing filtration on $C_*(\mathcal{M})$.]
Let \(M \) be a manifold and let \(f : M \to \mathbb{R} \).

This function gives an increasing filtration of \(M \) by sublevel sets

\[
M_{f \leq r} = \{ x \in M \mid f(x) \leq r \}.
\]

[This induces an increasing filtration on \(C_*(M) \).]

For \(s \leq t \), the inclusion \(i^t_s : M_{f \leq s} \to M_{f \leq t} \) induces

\[
H_*(i^b_a) : H_k(M_{f \leq s}) \to H_k(M_{f \leq t}),
\]

whose image is the **persistent homology** from \(s \) to \(t \) of \(f \).
Let \(f : \mathcal{M} \rightarrow \mathbb{R} \) be a smooth function.
The points at which the differential vanishes are called critical points. The value of \(f \) at a critical point is a critical value.
We assume that the matrix of second partial derivatives (the Hessian) is non-singular at each critical point.
Let $f : M \to \mathbb{R}$ be a smooth function. The points at which the differential vanishes are called critical points. The value of f at a critical point is a critical value. We assume that the matrix of second partial derivatives (the Hessian) is non-singular at each critical point.

For convenience, assume distinct critical values: $t_0 < t_1 < \cdots < t_k$. The index p associated to t_j is the number of negative eigenvalues of the Hessian.
A brief introduction to Morse theory

Let $f : \mathcal{M} \to \mathbb{R}$ be a smooth function. The points at which the differential vanishes are called critical points. The value of f at a critical point is a critical value. We assume that the matrix of second partial derivatives (the Hessian) is non-singular at each critical point.

For convenience, assume distinct critical values: $t_0 < t_1 < \cdots < t_k$. The index p associated to t_j is the number of negative eigenvalues of the Hessian.

Morse theory \Rightarrow Varying t, $\mathcal{M}_{f \leq t}$ only changes (up to homotopy) if t is a critical value. $\mathcal{M}_{f \leq t_j} \simeq \mathcal{M}_{f \leq t_{j-1}} + \text{a } p\text{-dimensional cell}$. So $\dim H_p$ increases by 1 (birth) or $\dim H_{p-1}$ decreases by 1 (death).
A brief introduction to Morse theory

Let $f : M \to \mathbb{R}$ be a smooth function. The points at which the differential vanishes are called critical points. The value of f at a critical point is a critical value. We assume that the matrix of second partial derivatives (the Hessian) is non-singular at each critical point.

For convenience, assume distinct critical values: $t_0 < t_1 < \cdots < t_k$. The index p associated to t_j is the number of negative eigenvalues of the Hessian.

Morse theory \Rightarrow Varying t, $M_{f \leq t}$ only changes (up to homotopy) if t is a critical value. $M_{f \leq t_j} \simeq M_{f \leq t_{j-1}} + \text{a } p \text{-dimensional cell}$. So $\dim H_p$ increases by 1 (birth) or $\dim H_{p-1}$ decreases by 1 (death).

Persistent homology \Rightarrow pair the index p birth critical values and the index $p + 1$ death critical values \Rightarrow Persistence Diagram.
A Function

For example
Sublevel sets and H_1
Persistence Diagram of the function
The Bottleneck Distance

There is a useful metric on the space of Persistence Diagrams:

\[d_B(D_p(f), D_p(g)) = \inf_{\eta} \sup_{x} \|x - \eta(x)\|_\infty, \]

where

- \(D_p(f) \) and \(D_p(g) \) are Persistence Diagrams of functions \(f \) and \(g \), respectively.
- The infimum is taken over all \(\eta \) that are upper semi-continuous and \(\eta(0) = 0 \).
- The supremum is taken over all \(x \) in the domain of \(f \) and \(g \).

This metric measures the closest correspondence between the persistence features of two functions, with smaller values indicating a closer match.
The following fundamental result bounds the bottleneck distance for persistence diagrams with the supremum norm.

Theorem (Cohen-Steiner, Edelsbrunner, Harer)

\[d_B(D_p(f), D_p(g)) \leq \|f - g\|_\infty \]