ADVANCED CONTROL TECHNIQUES FOR
MOTION CONTROL PROBLEM

SHAHID PARVEZ

Bachelor of Engineering in Electronics and Communications
Osmania University, India
June, 1995

Master of Science in Systems Engineering
King Fahd University of Petroleum and Minerals
Saudi Arabia
June, 1998

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

December, 2003
This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Zhiqiang Gao

Department/Date

Dr. Dan Simon

Department/Date

Dr. Ana Stankovich

Department/Date

Dr. Sridhar Ungarala

Department/Date

Dr. Sally Shao

Department/Date
To my Mother, Wife and Daughter
ACKNOWLEDGMENT

I would like to express my sincere most appreciation and thanks to Dr. Zhiqiang Gao, my principal advisor, for his continuous support, direction, help and encouragement. He was available for guidance at all times. I learned a lot from his problem solving methodology and new ideas.

Thanks to my committee members Dr. Simon, Dr. Stankovic, Dr. Ungarala and Dr. Shao, for their support and help during the dissertation.

I would also like to thank my mother, wife, daughter and all my family members for all their continuous moral support, encouragement, inspiration and immense sacrifices. Finally, I would like to thank all my friends and colleagues at CACT for their help and making this period a memorable one.
ADVANCED CONTROL TECHNIQUES FOR MOTION CONTROL PROBLEM

SHAHID PARVEZ

ABSTRACT

Common methods used for solving low-frequency mechanical resonance in industrial servo systems are often inadequate. Linear and non-linear algorithms to cure low frequency mechanical resonance are proposed. A novel controller based on the multi-resolution decomposition property of wavelets, called the Multiresolution Wavelet Controller is developed. The controller is similar to a Proportional-Integral-Derivative controller in principle and application. The output from a motion control system represents the cumulative effect of uncertainties such as measurement noise, frictional variation and external torque disturbances, which manifest at different scales. The wavelet is used to decompose the error signal into signals at different scales. These signals are then used to compensate for the uncertainties in the plant. This controller is further applied to other industrial applications to validate the control scheme. A scheme to generate low noise differential signal using wavelets is also developed. Wavelet transforms are investigated for their ability to solve industrial control issues such as noise, disturbance, and improving loop bandwidth.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. BACKGROUND AND LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Low-Frequency Resonance Model</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Review of Existing Techniques</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Low-pass and notch filters</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2 Acceleration Feedback</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Motivation</td>
<td>17</td>
</tr>
<tr>
<td>III. WAVELETS AND MULTiresOLUTION ANALYSIS</td>
<td>19</td>
</tr>
<tr>
<td>3.1 From Fourier to Wavelets</td>
<td>20</td>
</tr>
<tr>
<td>3.1.1 Essence of Wavelet</td>
<td>23</td>
</tr>
<tr>
<td>3.2 Multiresolution Analysis</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1 Scaling and Wavelet Functions and Filters</td>
<td>27</td>
</tr>
<tr>
<td>3.3 Signal Decomposition Process</td>
<td>29</td>
</tr>
</tbody>
</table>
3.3.1 Multiresolution Wavelet Controller .. 31

3.4 Implementation Issues ... 37

3.4.1 Signal Pipeline Architecture .. 37

3.4.2 Number of Decomposition Levels 38

3.4.3 Selection of Wavelet ... 39

3.4.4 Error Signal Analysis ... 40

3.4.5 Best Basis Selection ... 40

3.5 Tuning the Gains of the Controller 42

3.5.1 Observations and framework of a Multiresolution Wavelet Controller .. 43

3.6 Generalized Multiresolution Controller 45

IV. APPLICATIONS OF MULTIRESOLUTION WAVELET CONTROLLER 47

4.1 Temperature Regulation Problem .. 47

4.2 Position Control System ... 49

4.2.1 Experimental Results ... 51

4.3 Wavelet Differentiator ... 54

4.3.1 Differentiation Procedure .. 55

4.3.2 Comparison of Differentiators ... 56

4.4 Improving the PID performance using wavelets 58

4.4.1 PID using wavelet differentiator 58

4.4.2 PID using denoised error .. 59

4.4.3 PID using denoised error and wavelet differentiator 59

V. TECHNIQUES FOR LOW-FREQUENCY RESONANCE CONTROL 62
5.1 Baseline System .. 64
5.2 Profile Modification .. 66
5.3 Nonlinear PI Control ... 68
5.4 Acceleration Feed-forward with Nonlinear Servo gains 71
5.5 Discrete Time Optimal Control 73
5.6 Active Disturbance Rejection Control 75
 5.6.1 Extended State Observer 76
5.7 Single Parameter Tuning ... 79
 5.7.1 Linear Extended State Observer 80
 5.7.2 Parameterization of Linear Extended State Observer 81
 5.7.3 Controller Parameterization 83
 5.7.4 Linear Active Disturbance Rejection Control 84
5.8 Multiresolution Wavelet Controller 86
5.9 Summary of Results .. 89
VI. CONCLUSIONS AND FUTURE WORK 93
 6.1 Future Work .. 94
BIBLIOGRAPHY .. 96
APPENDIX ... 99
 A. Wavelet Multiresolution Controller Code 99
 B. Wavelet Filter Coefficients 118
INDEX ... 120
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coefficients of Daubechies (8) filters</td>
</tr>
<tr>
<td>2</td>
<td>Experimental results using a MWC and a PID</td>
</tr>
<tr>
<td>3</td>
<td>Test Unit Parameters</td>
</tr>
<tr>
<td>4</td>
<td>Parameters and comparison of results of different techniques</td>
</tr>
<tr>
<td>5</td>
<td>Coefficients of Daubechies wavelet filters</td>
</tr>
<tr>
<td>6</td>
<td>Coefficients of Coiflet wavelet filters</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple compliantly-coupled motor and load</td>
</tr>
<tr>
<td>2</td>
<td>Block diagram of a compliantly-coupled load</td>
</tr>
<tr>
<td>3</td>
<td>Plot of motor/load plant gain vs. frequency</td>
</tr>
<tr>
<td>4</td>
<td>Velocity control system</td>
</tr>
<tr>
<td>5</td>
<td>Open loop Bode plot of rigid and compliant plant</td>
</tr>
<tr>
<td>6</td>
<td>Effect of low frequency resonance in time response of the plant</td>
</tr>
<tr>
<td>7</td>
<td>Open loop gain of compliant system with and without low-pass filter</td>
</tr>
<tr>
<td>8</td>
<td>Acceleration feedback</td>
</tr>
<tr>
<td>9</td>
<td>Wavelet Functions</td>
</tr>
<tr>
<td>10</td>
<td>Decomposition Analysis</td>
</tr>
<tr>
<td>11</td>
<td>Decomposition Synthesis</td>
</tr>
<tr>
<td>12</td>
<td>Block diagram of a plant using a PID</td>
</tr>
<tr>
<td>13</td>
<td>Block diagram of a plant using a Multiresolution Wavelet Controller</td>
</tr>
<tr>
<td>14</td>
<td>Comparison of PID and multiresolution decomposed signals</td>
</tr>
<tr>
<td>15</td>
<td>Signal pipeline architecture</td>
</tr>
<tr>
<td>16</td>
<td>Dictionary of Error Signals</td>
</tr>
<tr>
<td>17</td>
<td>Block diagram of a plant using a Generalized Multiresolution Controller</td>
</tr>
<tr>
<td>18</td>
<td>Block diagram of a temperature regulation problem</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>19</td>
<td>Simulation response of a temperature regulation plant under different time delays</td>
</tr>
<tr>
<td>20</td>
<td>Block diagram of a DC brush-less servo system</td>
</tr>
<tr>
<td>21</td>
<td>MWC and PID responses to torque disturbance</td>
</tr>
<tr>
<td>22</td>
<td>Block diagram of differentiators</td>
</tr>
<tr>
<td>23</td>
<td>Comparison of differentiators</td>
</tr>
<tr>
<td>24</td>
<td>Block diagram of a plant using a PID controller with wavelet differentiated error</td>
</tr>
<tr>
<td>25</td>
<td>Block diagram of a plant using a wavelet denoised error signal</td>
</tr>
<tr>
<td>26</td>
<td>Block diagram of a plant using a denoised error and wavelet differentiated error signal</td>
</tr>
<tr>
<td>27</td>
<td>Simulation results on a plant using wavelets in different PID configurations</td>
</tr>
<tr>
<td>28</td>
<td>Test-unit mechanism</td>
</tr>
<tr>
<td>29</td>
<td>Implementation block diagram of motor</td>
</tr>
<tr>
<td>30</td>
<td>Step response of the baseline system</td>
</tr>
<tr>
<td>31</td>
<td>A profile generator</td>
</tr>
<tr>
<td>32</td>
<td>Response of the system using a profile</td>
</tr>
<tr>
<td>33</td>
<td>Plot of nonlinear function vs. error</td>
</tr>
<tr>
<td>34</td>
<td>Block diagram of the plant using an NPI Controller</td>
</tr>
<tr>
<td>35</td>
<td>Command response using a NPI controller</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>36</td>
<td>Block diagram of motor with Acceleration Feed-forward and Nonlinear gains</td>
</tr>
<tr>
<td>37</td>
<td>Command response using Acceleration Feed-forward and NPI</td>
</tr>
<tr>
<td>38</td>
<td>DTOC based implementation of the plant</td>
</tr>
<tr>
<td>39</td>
<td>Command response using a DTOC</td>
</tr>
<tr>
<td>40</td>
<td>Block diagram for ADRC structure</td>
</tr>
<tr>
<td>41</td>
<td>Simulation result using ADRC</td>
</tr>
<tr>
<td>42</td>
<td>Observed velocity using LESO</td>
</tr>
<tr>
<td>43</td>
<td>Simulation block diagram using LADRC</td>
</tr>
<tr>
<td>44</td>
<td>Response of the plant using Single Parameter Tuning</td>
</tr>
<tr>
<td>45</td>
<td>Simulation response using a Multiresolution Wavelet Controller</td>
</tr>
<tr>
<td>46</td>
<td>Effect of noise during steady state response</td>
</tr>
<tr>
<td>47</td>
<td>Comparison of results</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Servo system inertia mismatch, between load and motor, has long been a concern for the motion system designer. Most problems of resonance are caused by compliance created by transmission components and the inertia mismatch between motor and load. The resonance problem has seen a recent surge on account of two sources: the need for ever increasing levels of servo performance and the use of synchronous permanent magnets which reduced the size (inertia) of the motor. These motors allow more torque to be produced with smaller motors. This usually increases the inertia mismatch, which exacerbates the problem of low frequency resonance.

For a servo system to operate effectively, servo amplifiers need to be tuned to optimize the response of the system, which includes command response and disturbance rejection. Standard servo control laws are structured for rigidly-coupled loads. However, in practical machines some compliance is always present; this compliance
in addition to the inertia mismatch reduces control-loop stability margins, forcing servo gains down, which reduces machine performance. Stiffening the components can increase the machined cost significantly. Stiffer components not only cost more, they require tighter mechanical tolerance in the machine structure.

Mechanical resonance falls into two broad categories: low-frequency and high-frequency. High-frequency resonance causes control-system instability at the natural frequency of the mechanical system, typically between 500Hz and 1200 Hz. Low-frequency resonance causes instability well below the natural frequency of the mechanical system, at a frequency that coincides with the first phase crossover of the servo loop (the frequency where the open loop phase first falls to -180°), typically between 100 to 400Hz. Low-frequency resonance occurs much more often in general industrial machines. The distinction between these resonance types is rarely made in the literature, although it is crucial to be aware of it when finding a remedy to resonance problems.

The problem of load resonance is well studied and numerous active and passive solutions have been developed. However, the literature on active cures deals almost entirely with the less common, high-frequency resonance. Active solutions that are effective for high-frequency resonance, such as low-pass filters, often do not help and even can exacerbate problems with low-frequency resonance.

It is broadly accepted that physical phenomenon occur at different time scales. However, it is not clear how to incorporate this knowledge systematically into providing basic process problems such as control, resonance, noise, disturbance etc. There is a need to provide explicit representation of the control action with localization in both
time and frequency. This is where the wavelet theory comes into play. The wavelet theory, developed earlier as a mathematical tool, has in recent years been used in various industrial applications. Wavelets are known for their extensive applications in the field of signal processing. They are effective in estimating trends, breakdown points and discontinuities in higher derivatives. Wavelets possess two properties that make them especially valuable for data analysis: they reveal local properties of the data and they allow multi-scale analysis. Their locality is useful for applications that require online response to changes, such as controlling a process. Recently some work has been reported on use of time-frequency localization of wavelet transforms in process control industry \cite{3,4,22}. Based on the multiresolution decomposition property of wavelets, a Multiresolution Wavelet Controller (MWC) analogous to a Proportional-Integral-Derivative (PID) controller is proposed.

A PID controller is widely used across the industry. It is easy to implement and relatively simple to tune. In general, a PID controller takes as its input the error \(e \), acts on the error to generate a control output \(u \). Similarly a MWC decomposes the error signal into its high, low and intermediate frequency components, using the multiresolution decomposition property of the wavelets. Each of these components are scaled by their respective gains, and then added together to generate the control signal \(u \). The output from a system represents the cumulative effect of many underlying phenomena such as process dynamics, measurement noise, effects of external disturbances etc., which manifest on different scales. The wavelet decomposition, which represents the error signal at different scales, enables us to compensate for these uncertainties dynamically in the controller. Based on the results obtained using
wavelet transforms on the motion control problem, this scheme is further investigated for its applicability on other industrial problems.

In industry the primary issue with differentiation has been noise corruption. It is known that a pure differentiation is not physically realizable due to its noise amplification property. Finding an approximate differentiation with good noise immunity is paramount in achieving high control performance. A novel signal processing scheme using Daubechies wavelets is used to generate an almost noise free differential signal. This scheme can be greatly utilized to improve performance of control systems in different fields.

Background of the low frequency mechanical resonance problem, review of existing techniques and literature review are given in chapter 2. Background of wavelets, computational aspects of wavelet transforms and selection of wavelets are detailed in chapter 3. Application of the wavelet controller in other fields of controls and wavelet based differentiation scheme are discussed in chapter 4. Several new concepts and methods, such as the use of nonlinear servo gains, profile modification, parameterization and multiresolution analysis are discussed and applied for low frequency mechanical resonance reduction in chapter 5. Conclusions and future work on the related field are given in chapter 6.
CHAPTER II

BACKGROUND AND LITERATURE

REVIEW

It is well known that servo performance, such as command response and disturbance rejection, is enhanced when control-law gains are high. Newtonian physics teaches that $F(\text{force}) = M(\text{mass}) \times A(\text{acceleration})$, or in rotary terms, $T(\text{torque}) = J(\text{inertia}) \times A(\text{acceleration})$. This fundamental equation shows that the lesser inertia a system has, the lesser torque it will take to meet a desired acceleration rate. For this reason it is advantageous to minimize inertia to the greatest possible extent in order to maximize acceleration. For a fixed amount of load inertia this means minimizing motor inertia. Stated another way, minimizing motor inertia would allow most of the motor’s torque being used to accelerate the load, not wasting much of the motor’s torque accelerating its own inertia. In conclusion, minimizing motor inertia for a given rating of torque will theoretically maximize acceleration, increase system
bandwidth, but at the same time, increase load to motor inertia mismatch.

For a servo system to operate effectively, servo amplifiers need to be tuned to optimize the response of the system. Improving the response of the system often involves increasing controller gains. Control-loop instability results when a high-gain control law is applied to a compliantly-coupled motor and load and at times it also leads to uncontrollable oscillations. The goal is to tune the system for maximum responsiveness with the minimum of instability. Instability begins with overshoot with respect to the speed for which the motor has been given a command. A good compromise between responsiveness and stability is for the system to have critical damping and phase shift not exceeding 90°. Slightly higher phase shift has been suggested possible, based on variations in system requirements, mechanics and controller. Critical damping defines an overshoot of less than 5%. The particular gains to achieve this response are based on factors such as system inertia and friction, to mention just two. Inertia is a key variable that may change in a system as a result of various factors. If inertia changes to too great an extent, the amplifier tuning may become unacceptable.

Machine designers normally specify transmission components, such as couplings and gearboxes, to be rigid in an effort to minimize mechanical compliance. However, some compliance in transmission components is unavoidable. In addition, marketplace limitations, such as machine cost, size, and weight, frequently force designers to choose lighter-weight components than would otherwise be desirable. Often, the resulting rigidity of the transmission is so low that instability results when control-law gains are raised to levels needed to achieve the desired servo performance. The
A well-known lumped-parameter model [3] for a compliant coupling is shown in Figure 1. The motor with inertia J_M produces a torque T_M which is used to drive a load of inertia J_L. The equivalent spring constant of the entire transmission is represented by K_S.

![Figure 1: Simple compliantly-coupled motor and load](image)

2.1 Low-Frequency Resonance Model

A schematic diagram of the compliantly coupled mechanism of Figure 1 is shown in Figure 2. Here, the equivalent spring constant of the entire transmission is K_S; also, to represent loss-producing properties, a mechanical damping term is shown producing torque proportional to the velocity difference via cross-coupled viscous damping, b_S. Note that this model assumes the inertia of each of the transmission components is small and that the load can be characterized as a single, rigid inertia. This model does not include Coulomb friction or stiction as these effects are secondary in the study of resonant behavior.

The transfer function from electromechanical torque T_E, to motor velocity, V_M, is

$$\frac{V_M}{T_E} = \frac{1}{J_M + J_L} \frac{1}{s} \frac{J_L s^2 + b_S s + K_S}{J_L J_M s^2 + b_S s + K_S}$$ \(2.1\)
which is a single, lumped inertia, $1/[(J_M + J_L)]$, modified by a bi-linear quadratic or bi-quad function. Eq. 2.1 represents the plant in the case where the position feedback sensor is on the motor (as opposed to the load), as is common in industry. The ideal plant for traditional control laws, such as PI and PID, is a scaled integrator. As shown in Eq. 2.1 the bi-quad term corrupts the integrator. The bi-quad term has its minimum gain at F_{AR} and its maximum gain at F_R as shown in Eq. 2.2 and in Figure 3 which is a Bode plot of Eq. 2.1

$$F_{AR} = \frac{1}{2\pi} \sqrt{\frac{K_S}{J_L}}$$
$$F_R = \frac{1}{2\pi} \sqrt{\frac{K_S}{\frac{J_L}{J_M} + \frac{J_M}{J_L} + 1}}$$

(2.2)

The effect of the bi-quad term can be seen in Figure 3. Where the load rigidly coupled to the motor, the model would be a single inertia equal to the sum of the motor and load inertias. This transfer function is shown as the lower dashed line in Figure 3. However, the bi-quad corrupts the plant at and above the anti-resonant frequency, F_{AR}. The effect seen in the gain is attenuation at and around F_{AR} and amplification at, around, and above F_R.

The key problem presented by a compliant coupling for low-frequency reso-
Figure 3: Plot of motor/load plant gain vs. frequency

Resonance \(F_R \) is the net increase in gain above the resonant frequency, \(F_R \). As shown in Figure 3 below \(F_R \), the plant behaves like a simple integrator, \(\frac{K_T}{s(J_M + J_L)} \).

Also, above \(F_R \), the transfer function behaves like a simple integrator. However, the gain of the plant is substantially increased compared to the gain well below \(F_{AR} \). Above \(F_R \), the load is effectively disconnected from the motor so that the gain of the plant is a function of inertia of the motor only, \(\frac{K_T}{sJ_M} \). Figure 4 shows a velocity control system. The velocity error \(V_E \), formed by the difference of the command \(V_C \) and feedback \(V_F \), is processed by a control law and an optional set of filters. The torque command, \(T_C \), is connected to the current controller, which produces \(T_E \), electromagnetic torque, via current in the motor. The motor/load plant is connected to an encoder/resolver. The tendency towards instability caused by the corrupting
The bi-quad term in Eq. 2.2 is most easily seen in the open-loop Bode plot of the velocity controller of Figure 5. The open-loop transfer function describes the effect of traversing the loop from V_E to V_F. The open-loop Bode plot is well-known to predict stability problems using two measures: phase margin (PM) and gain margin (GM) [2]. This is based on the principle that if there is unity gain (0 dB) and -180° phase lag at the same frequency, complete instability will result. For a stable system, PM is the difference of -180° and the phase of the open loop at the gain crossover, the frequency where the gain of the open loop is 0 dB. GM is the negative of the gain of the open loop at the phase crossover, the frequency where the open-loop phase crosses through -180°. The open-loop plots for a rigidly-coupled and a compliantly-coupled load demonstrate the cause of low-frequency resonance as shown in Figure 5. The harmful effects of the compliantly coupled load are most easily seen in the gain margin. As marked in Figure 5 when the resonant frequency is well below the first phase
crossover, the effect of the compliant load is to reduce the GM; the amount of reduction will be approximately \((J_M + J_L)/J_M\) (the distance between the two dashed lines in Figure 5). If \(J_L/J_M\) (the so-called inertia mismatch) is 5, the reduction of GM will be 6 or a factor of about 15 dB. Assuming no other remedy were available, the gain of the compliantly-coupled system would have to be reduced by 15 dB, compared to the rigidly-coupled system, assuming both systems would have to maintain the same GM. Such a large reduction in gain would translate to a system with a greatly reduced command response and a similarly reduced disturbance rejection. Figure 6 shows the effect of increasing gains of a compliantly-coupled plant. Gains have to be increased to improve plant robustness, disturbance rejection and reduce the transient time of
the plant. However, by doing so, the plant is driven close to instability as can be seen from Figure 6(a) and (b). The only alternative under the present circumstance is to cut down on the gains to improve the margin of stability or to use a resonance reduction technique which is the focus of this research.

It should be pointed out that an alternative form of resonance, high-frequency resonance [2], occurs under different conditions. High-frequency resonance is the condition where the natural frequency of the mechanical system (F_R), is well above the first phase crossover. In this case, the plant is lightly damped and the gain near F_R forms a strong peak reaching well above the gain of $K_T/[J_Ms]$, the approximate maximum of the system shown in Figure 5. With high-frequency resonance, this peak reaches well up, usually at the 2nd or 3rd phase crossover, where the base gain is typically less than -30dB. However, the gain caused by a lightly damped bi-quad term in Eq. 2.1 can be greater than 60dB. While both types of resonance are caused by compliance, the relationship of the F_R and the first phase crossover changes the remedy substantially; infact, reliable cures of high-frequency resonance, especially low-pass filters, exacerbate problems with low-frequency resonance. The mechanical structures that cause high-frequency resonance, especially stiff transmission components and low mechanical damping, are typical of high-end servo machines such as machine tools. However, the smaller and often more cost sensitive general-purpose servo machines used in industries such as packaging, assembly, textiles, plotting, and medical, typically have less rigid transmissions and higher mechanical damping so that low-frequency resonance is more common in those industries.
2.2 Review of Existing Techniques

Low-frequency resonance has become a prevalent problem in industry over the last 15 years. This change has resulted from two sources: the need for ever increasing levels of servo performance and the use of synchronous permanent magnet or "brushless DC" motors based on rare-earth magnets. These motors allow more torque to be produced with a smaller motor. This usually increases the inertia mismatch, which exacerbates the problem of low-frequency resonance as demonstrated in Figure 5.

The two most common cures for low-frequency resonance are passive: stiffening the transmission and increasing the motor inertia. Stiffening the transmission can be an effective cure for low-frequency resonance. This method increases the mechanical stiffness, K_s, raising the resonant and anti-resonant frequency, according to Eq. 2.2. If the F_R can be increased to a frequency well beyond the first phase crossover, resonance problems are greatly reduced. However, stiffening the transmission can significantly increase machine cost. Stiffer components cost more and require tighter mechanical tolerances in the machine structure. Also, stiffer transmission components can reduce key performance measures such as when a lead screw is used to replace a belt-driven mechanism; of these two alternatives to convert rotary motion to linear, the stiffer lead screw cannot match the acceleration rates of the more compliant belt drive. Another common passive cure is to increase the motor inertia. Assuming the load inertia, J_L, is fixed, increasing the motor inertia, J_M, reduces the inertia mismatch J_L/J_M. This solution is so common, that at least one servo manufacturer, Kollmorgen, provides an option for its highest-accelerating motors where a customer
can specify that an inertial flywheel be added to the motor. Unfortunately, increasing motor inertia has several negative effects. First, it reduces the maximum acceleration of the system. This effect can be mitigated by using a larger motor and drive, although this increases the cost and size of the machine. Second, it increases the losses associated with regular cycling of speed such as is common in the manufacture of discrete parts. This problem is difficult to cure with a larger motor, as larger motors typically have larger rotors, which further increase the losses associated with acceleration and deceleration.

2.2.1 Low-pass and notch filters

Two passive methods are commonly provided in general servo drives used in industry: low-pass filters [2, 3] and notch filters [11, 15]. Neither method works well for low-frequency resonance. Low-pass filters, such as the two-pole filter in Eq. 2.3, are effective only when the filter’s bandwidth is set well below F_R. In the case of low-frequency resonance, such a bandwidth is usually far too low to allow reasonable servo performance. The phase lag generated by the filter is so large that servo gains have to be reduced greatly to maintain loop stability; the end result is that servo performance is reduced dramatically below what it could be.

$$T_{LP}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2} \quad (2.3)$$

The problem with using a low-pass filter on low-frequency resonance is that low-pass filters generate significant phase lag before they provide attenuation. Returning to Figure 3 if a low-pass filter with a bandwidth above F_R is used, it will introduce
phase lag that will reduce the PM, without significantly attenuating the gain near the first phase crossover; the net effect is that the PM is reduced and the system becomes less stable. As long as the open-loop gain near F_R remains above 0dB, low-pass filters destabilize the system. Given that the gain of the open loop near F_R in Figure 5 is about 10 dB, the bandwidth of a low-pass filter that could attenuate that gain to well below 0 dB (say, -10 dB) would have to have a bandwidth well below F_R; unfortunately, the resulting filter severely reduces servo performance because of the additional phase lag in the control loop. As discussed in [3] the example in Figure 7 required a low-pass filter with a bandwidth of 80 Hz, severely limiting the control loop, which had a bandwidth of about 25 Hz before the filter was added. After the filter was added, the stability margins were so small that the servo gains had to be reduced significantly to avoid excessive overshoot.

![Figure 7: Open loop gain of compliant system with and without low-pass filter](image)

Notch filters, such as the two-pole notch in Eq. 2.4 are generally ineffective on low-frequency resonance. The function of a notch filter in high-frequency resonance is to attenuate the relatively narrow gain peak induced by the lightly damped
mechanisms that are subject to that problem. However, with low-frequency resonance, the gain peak is much broader; for example, in Figure 7 the frequency range where the compliant-system open-loop gain exceeds 0 dB is about 150 Hz to 400 Hz, far too broad for a notch. Thus, notch filters often do not improve performance of systems with low-frequency resonance.

\[T_{\text{NOTCH}}(s) = \frac{s^2 + \omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2} \quad (2.4) \]

2.2.2 Acceleration Feedback

Acceleration feedback (using both directly measured and observed acceleration) has been documented in several papers \[3, 6, 9, 12, 13, 20\]. Ideal acceleration feedback has the same effect on stability as increasing \(J_M \), but it does so without the drawbacks of increased motor inertia such as increased size and weight, or the requirement of a larger drive to maintain acceleration rates \[3, 12\]. In practice, directly measured acceleration feedback is noisy, especially in the case where acceleration is formed by taking the second difference of position. Resolution limitations in the position signal create severe noise spikes on the acceleration signal.

An alternative method of computing acceleration is to use an observer \[3\] as shown in Figure 8. Observers are well known for improving the quality of feedback signals. As discussed in \[3\], \(K_A \) was limited to a maximum of about 2.5 before the observer-based acceleration term induced instability. In \[3\], acceleration feedback was shown by experimentation to be the most effective of several linear methods in reducing resonance. Acceleration feedback allowed a substantial increase in the servo
Figure 8: Acceleration feedback

gains and the corresponding bandwidth of the servo loop. Other alternative methods have been used to remedy resonance [25]. In addition to the low-pass and notch filters, the use of a bi-quad filter has been suggested [3].

2.3 Motivation

Low frequency mechanical resonance is a pervasive problem in industry. Most solutions to solve resonance were developed to solve high frequency resonance. These solutions fall short of providing an effective solution, and often exacerbate the problem. The goal of this research work is to provide active software solutions to the low frequency resonance problem. Recently a new design framework based on nonlinear mechanisms for application to disturbance rejection has been found to be greatly efficient. These schemes include nonlinear differentiator, nonlinear proportional-integral-derivative(NPID) and active disturbance rejection control(ADRC). These techniques are investigated for their ability to solve the resonance problem. Although resonance is a frequency phenomenon, it occurs at a particular time scale. This problem can be effectively addressed by explicitly representing the control action with localization in both time and frequency. This is where the wavelet theory comes into play. The
wavelet theory, developed earlier as a mathematical tool, has in recent years been used in various industrial applications. Wavelets possess two properties that make them especially valuable for data analysis: they reveal local properties of the data and they allow multi-scale analysis. However, noncausal nature of the wavelets introduces delay in the computation of the wavelet transform. This delay has hindered the application of wavelets in controls. Because of the high potential offered by the wavelets and their practical limitations in controls; this research is focused on providing wavelet based solutions to control system issues such as noise, disturbance, system bandwidth and generating a denoised differential signal. Based on the multiresolution decomposition property of wavelet a novel Multiresolution Wavelet Controller (MWC) analogous to a Proportional-Integral-Derivative (PID) controller is proposed. Based on the scope and focus of this research work, a detailed discussion of wavelets and its mathematical aspects are presented in the next chapter.
CHAPTER III

WAVELETS AND MULTiresolution ANALYSIS

The mathematical framework necessary for using wavelets is established in this chapter. First a brief review of Fourier series is given to provide motivation and show its similarity to wavelet series representation of signals. Fourier series, or expansion of periodic functions in terms of harmonic sines and cosines, dates back to the early part of the 19th century when Fourier proposed harmonic trigonometric series. The first wavelet was found by Haar in the twentieth century. But the construction of more general wavelets to form bases for square-integrable functions was investigated in 1980’s along with efficient algorithms to compute the expansion. At the same time, applications of these techniques in signal processing have blossomed. While linear expansions of functions are a classic subject, the recent constructions contain interesting new features. For example, wavelets allow good resolution in time and fre-
quency. This feature is important for non-stationary signal analysis. While Fourier basis is given in closed form, many wavelets can only be obtained through a computational procedure (and even then, only at specific rational points). While this might seem as a drawback, it turns out that if one is interested in implementing a signal expansion on real data, then a computational procedure is better than a closed-form expression.

In Section 3.1, a brief review of Fourier series is given. Section 3.2 gives an introduction to wavelet transforms. Section 3.3 shows relationship between wavelet series representation and multiresolution decomposition. The framework of a MWC and its implementation issues are discussed in Sections 3.4-6.

3.1 From Fourier to Wavelets

Fourier series representation of a periodic signal \(f(t) \) with period \(T \), in terms of sine and cosines as basis functions is given by

\[
 f(t) = \frac{1}{2} a_0 + \sum_{i=1}^{\infty} (a_i \cos 2\pi kt + b_i \sin 2\pi kt)
\]

\[
 a_i = \frac{2}{T} \int f(t) \cos 2\pi kt \, dt
\]

\[
 b_i = \frac{2}{T} \int f(t) \sin 2\pi kt \, dt
\]

Besides its obvious limitation to periodic signals, it has very useful properties, such as convolution, which comes from the fact that basis functions are eigen functions of linear time-invariant systems. The extension of the scheme to nonperiodic signals, by segmentation and piecewise Fourier series expansion of each segment, suf-
fers from artificial boundary effects and poor convergence at boundaries due to Gibbs phenomenon.

An attempt to create local Fourier bases is the Gabor transform or short-time Fourier transform (STFT). A smooth window is applied to the signal and a Fourier expansion is applied to the windowed signal. This leads to a time-frequency representation since we get an approximate information about the frequency content of the signal at the center of the windowed signal. While the STFT has proven useful in signal analysis, there are no good orthonormal bases based on this construction. Also, a logarithmic frequency scale, or a constant relative bandwidth, is often preferable to the linear frequency scale obtained with the STFT.

Let us assume that the signal has a combination of frequencies. If a short window is used, high frequency components can be located (or resolved) very well in time; however, short duration windows are insufficient for analyzing low frequency components. Thus one might conclude that longer windows should be used. If a long window is used, low frequency components can be analyzed: that is, the signal can be resolved in frequency. Now the high frequency components can no longer be located very well in time. We sacrificed time resolution for frequency resolution. This trade-off between localization in time and frequency is referred to as the Heisenberg’s uncertainty principle. Simply put, just as one cannot know the exact momentum and location of the electron simultaneously, one cannot know the exact frequency and location of the signal component simultaneously. However, one can know the time intervals in which certain bands of frequencies exist. For lower frequencies we can choose longer time intervals (or windows). We gain knowledge about the frequency of
the signal component, but we lose knowledge about the time location of the signal component. For higher frequencies, we can choose shorter time intervals. We gain knowledge about the time location of the signal component, but we lose knowledge about the frequency of the signal component. This varying of the time interval or window length is exactly what the wavelet transform accomplishes.

A popular alternative to the STFT is the wavelet transform. Using scales and shifts of a prototype wavelet, a linear expansion of a signal is obtained. Because the scales used are powers of an elementary scale factor (typically 2), the analysis uses a constant relative bandwidth (or, the frequency axis is logarithmic). The sampling of the time-frequency plane is now very different from the rectangular grid used in STFT. Lower frequencies, where the bandwidth is narrow (that is the basis functions are stretched in time) are sampled with a large time step, while high frequencies (which correspond to short basis functions) are sampled more often. Such a wavelet scheme gives a good orthonormal basis whereas the STFT does not. The local Fourier transform retains many of the characteristics of the usual Fourier transform with a localization given by the window function, which is thus constant at all frequencies. The wavelet, on the other hand, acts as a microscope, focusing on smaller time phenomena as the scale becomes small. This behavior permits a local characterization of functions, which STFT does not.
3.1.1 Essence of Wavelet

As the name suggests, a wavelet is a small wave which grows and decays in a limited period. The contrasting notion is a big wave. An example of a big wave is a sine wave, which keeps on oscillating up and down. A Wavelet Transform is computed by correlating the scaled wavelets with the input signal. When the two signals are correlated with each other, we obtain a measure of similarity between the two signals. Thus, when the wavelet transform is computed at a scale such that the wavelet is compressed, we obtain a measure of how similar the input signal is to the high frequency wavelet. Likewise, when the wavelet transform is computed at a scale such that the wavelet is dilated, we obtain a measure of how similar the input signal is to the low frequency wavelet. This kind of analysis is also called multiresolution analysis.

A Continuous Wavelet Transform (CWT) can be defined as an inner product between the shifted and scaled versions of a single function - the mother wavelet $\psi(t)$, and the function $f(t)$ itself. The resultant coefficients of the function $f(t)$ are denoted by $CWT_f(m,n)$ where m stands for scale and n for shift. Because of the high redundancy in $CWT_f(m,n)$ it is possible to discretize the transform parameters and still be able to achieve reconstruction.

Consider the family of functions obtained by shifting and scaling a zero-mean function $\psi(t) \in L_2(R)$ (is the Banach space, where, each element are square integrable
on R),

$$\int_{-\infty}^{\infty} \psi(t) dt = \psi(0) = 0$$ \hspace{1cm} (3.2)

$$\psi_{m,n}(t) = \frac{1}{\sqrt{|m|}} \psi\left(\frac{t-n}{m}\right)$$

Then the continuous wavelet transform is given by

$$f(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \text{CWT}_f(m,n) \psi^*_{m,n}(t) dt$$ \hspace{1cm} (3.3)

$$\text{CWT}_f(m,n) = \int_{R} \psi_{m,n}(t) f(t) dt$$

$\psi^*_{m,n}$ is the complex conjugate of the wavelet $\psi_{m,n}$ and the factor $1/\sqrt{m}$ is used to conserve the norm. For small $m (m < 1)$, $\psi_{m,n}(t)$ will be short and of high frequency, while for large $m (m > 1)$, $\psi_{m,n}(t)$ will be long and of low frequency. Thus a natural discretization will use large time steps for large m, and conversely choose fine time steps for small m. Special choices for $\psi(t)$ and the discretization leads to orthonormal bases or wavelet series. In a similar manner a Discrete Wavelet Transform (DWT) of a sampled signal $f(x)$ is given by

$$f(x) = \sum_{m,n} b_{m,n} \psi^*_{m,n}(x)$$

$$b_{m,n} = \sum_x f(x) \psi_{m,n}(x)$$

where, $\psi_{m,n}$ is the wavelet ψ shifted by m at the nth scale.

3.2 Multiresolution Analysis

Multiresolution analysis is a convenient framework for hierarchical representation of functions or signals on different scales. The basic idea of multiresolution analysis is to represent a function as a limit of successive approximations. Each of these successive approximations is a smoother version of the original function with
more and more of the finer details added. A signal is written as a coarse approximation (typically a lowpass, subsampled version) plus a prediction error which is the difference between the original signal and a prediction based on the coarse version. Reconstruction is immediate: simply add back the prediction to the prediction error. The scheme can be iterated on the coarse version. It has been found that if the low-pass filter meets certain constraints of orthogonality, then this scheme is identical to an oversampled discrete-time wavelet series. Otherwise, the successive approximation approach is still at least conceptually identical to the wavelet decomposition since it performs a multiresolution analysis of the signal. Consider a sampled signal, \(f(x) \), and generate the following sequence of approximations [2],

\[
f^m(x) = \sum_{n=-\infty}^{\infty} f_{m,n} \phi(2^m x - n)_{m=0,1,2,...}
\]

(3.4)

Each approximation is expressed as the weighted sum of the shifted versions of the same function, \(\phi(\tau) \), which is called the scaling function. If the \((m + 1)\)th approximations is required to be a refinement of the \(m\)th approximation, then the function \(\phi(2^m x) \), should be a linear combination of the basis functions spanning the space of the \((m + 1)\)th approximation, i.e.

\[
\phi(2^m x) = \sum_k h(k) \phi(2^{m+1} x - k)
\]

(3.5)

If \(V^{(m+1)} \) represents the space of all functions spanned by the orthogonal set, \(\{ \phi(2^{m+1} x - k); k \in Z, \text{ the set of integers} \} \), and \(V^{(m)} \) the space of the coarser functions spanned by the orthogonal set, \(\{ \phi(2^m x - p); p \in Z \} \) then \(V^{(m)} \subset V^{(m+1)} \). Let

\[
V^{(m+1)} = V^{(m)} \oplus W^{(m)}
\]

(3.6)
then, $W^{(m)}$, is the space that contains the information added upon moving from the coarser, $f^{(m)}(x)$, to the finer, $f^{(m+1)}(x)$, representation of the original signal, $f(x)$. Mallat [2] shows that there are spaces, $W^{(m)}$ that are spanned by the orthogonal translates of a single function, $\psi(2^m x)$, thus leading to the following equation

$$
f^{m+1}(x) = f^m(x) + \sum_{n=-\infty}^{\infty} f_{m,n} \psi(2^m x - n)_{m=0,1,2,\ldots} \tag{3.7}
$$

The function, $\psi(2^m x)$, is called a wavelet and is related to the scaling function $\phi(2^{m+1} x)$, through the following relationship

$$
\psi(2^m x) = \sum_k g(k) \psi(2^{m+1} x - k) \tag{3.8}
$$

$h(k)$ and $g(k)$ from a conjugate mirror filter pair. Summarizing the discussion, a mixed form N-level discrete wavelet series representation of the signal $f(x)$ is given by

$$
f(x) = \sum_k a_{N,k} \phi_{N,k}(x) + \sum_{m=1}^{N} \sum_k b_{m,k} \psi_{m,k}(x)
$$

$$
a_{m,k} = \sum_x f(x) \overline{\phi_{m,k}(x)}
$$

$$
b_{m,k} = \sum_x f(x) \overline{\psi_{m,k}(x)} \tag{3.9}
$$

where $\overline{\phi(x)}$ and $\overline{\psi(x)}$ are conjugate functions corresponding to $\phi(x)$ and $\psi(x)$ respectively. Interestingly, the multiresolution concept, besides being intuitive and useful in practice, forms the basis of a mathematical framework for wavelets. One can decompose a function into a coarse version plus a residual, and then iterate this to infinity. If properly done, this can be used to analyze wavelet schemes and derive wavelet basis. It can be seen from Eq. 3.9 that a wavelet transform decomposes a signal $f(x)$ into trend(a) and detail coefficients(b). An efficient approach in computing the Discrete
Wavelet Transform (DWT) involves using filters \(h(k) \) and \(g(k) \) which are found to be

\[
\begin{align*}
 h(k) &= \sqrt{2} \sum_x \phi(x) \phi(2x - k) \\
 g(k) &= \sqrt{2} \sum_x \psi(x) \psi(2x - k) \\
 g(k) &= (-1)^k h(-k + 1)
\end{align*}
\]

Eqs. 3.9 and 3.10 provide a hierarchical and fast scheme for the computation of the wavelet coefficients of a given function. They form the core part of this research work and are extensively used for signal decomposition.

3.2.1 Scaling and Wavelet Functions and Filters

By definition a wavelet \(\psi(t) \) is a small wave that integrates to zero and is square integrable. Mathematically these two properties can be defined as:

\[
\begin{align*}
 \int_{-\infty}^{\infty} \psi(t) dt &= 0 \\
 \int_{-\infty}^{\infty} \psi^2(t) dt &= 1
\end{align*}
\]

On the other hand the scaling function \(\phi(t) \) integrates to zero and is orthogonal to the wavelet function. These two properties can be defined as:

\[
\begin{align*}
 \int_{-\infty}^{\infty} \phi(t) dt &= 1 \\
 \int_{-\infty}^{\infty} \psi(t) \phi(t) dt &= 0
\end{align*}
\]

The scaling function is often referred to as the *father wavelet* and the wavelet function as the *mother wavelet* or simply *wavelet*. A few examples of the wavelet functions and the scaling functions are plotted in Figure 9.

It was shown earlier in this chapter that an orthonormal discrete wavelet transform can be calculated based on any filter satisfying the properties of a wavelet filter,
Figure 9: Wavelet Functions
namely summation to zero and orthonormality. A table showing the set of coefficients corresponding to wavelet and scaling filter and their conjugates for a Daubechies (8) filter are shown in Table 1. Since the filters are conjugate mirror filter of one another, it is possible to construct the remaining filters from the wavelet filter. Further examples of these filters are given in Appendix B.

Table 1: Coefficients of Daubechies (8) filters

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>-0.0106</td>
<td>0.0329</td>
<td>0.0308</td>
<td>-0.1870</td>
<td>-0.0280</td>
<td>0.6309</td>
<td>0.7148</td>
</tr>
<tr>
<td>g</td>
<td>-0.2304</td>
<td>0.7148</td>
<td>-0.6309</td>
<td>-0.0280</td>
<td>0.1870</td>
<td>0.0308</td>
<td>-0.0329</td>
</tr>
<tr>
<td>h</td>
<td>0.2304</td>
<td>0.7148</td>
<td>0.6309</td>
<td>-0.0280</td>
<td>-0.1870</td>
<td>0.0308</td>
<td>0.0329</td>
</tr>
<tr>
<td>g</td>
<td>-0.0106</td>
<td>-0.0329</td>
<td>0.0308</td>
<td>0.1870</td>
<td>-0.0280</td>
<td>-0.6309</td>
<td>0.7148</td>
</tr>
</tbody>
</table>

3.3 Signal Decomposition Process

The first step in decomposition consists of computing the trend and detail coefficients. Thereafter, the trend coefficients combined with the scaling function as a basis is used to regenerate the trend signal (left side of the summation in Eq. 3.9) and detail coefficients using the wavelets as a basis are used to regenerate the detail signal (right side of the summation in Eq. 3.9). The trend signal captures the high scale (low frequency) information and detail signal captures the low scale (high frequency) information contained in the signal $f(t)$. Depending upon the number of decomposition levels the end product of a multiresolution decomposition is a set of these signals at different scales (frequencies) as shown in Eq. 3.13. Where, f_H is the high scale signal, f_L is the low scale signal and f_{M_i} are the medium scale signals and N is the number of decomposition levels. For example, if a 3-level ($N=3$)
decomposition of error signal is done, it results in one trend signal (low frequency) and three detail signals (high and intermediate frequency). There is redundancy in the trend signal hence only one obtained at the last level is chosen. The frequency information of these decomposed signals is approximate since wavelet doesn’t have a precise frequency like sines and cosines of Fourier analysis.

\[f(t) = f_H(t) + f_{M_1}(t) + \ldots + f_{M_{N-1}}(t) + f_L(t) \] (3.13)

The process of decomposition into trend and detail signals uses a sub-band coding scheme that is illustrated in Figures 10 and 11. The Discrete Wavelet Transform can be computed using the filters \(h(k) \) and \(g(k) \), which form a Quadrature Conjugate Mirror filter pair with \(H(k) \) and \(G(k) \), where \(h(k) \) and \(g(k) \) are given by Eq. 3.10. Figure 10 illustrates the analysis part of a three level decomposition scheme using sub-band coding. The result of the analysis step is a set of intermediate coefficients, which represent the weights of the original signal in terms of the basis functions used, namely the scaling function and the wavelet function. The original signal is filtered with the scaling function and the wavelet function and down-sampled by 2 resulting in the trend and detail coefficients at level one. The trend coefficients thus obtained are then used as the original signal and filtered with scaling function and the wavelet to yield the coefficients at level two. This process is repeated depending upon the number of decomposition levels desired. The synthesis process involves up-sampling the coefficients obtained during the analysis step by a factor of two and filtering them with the corresponding reconstruction filters. The reconstruction filters \(\overline{h(k)} \) and \(\overline{g(k)} \) are the conjugate filters corresponding to scaling and wavelet filters respectively. The
Figure 10: Decomposition Analysis

The resultant signals are the trend signal f_H, the detail signal f_L, and the intermediate resolution signals f_1 and f_2.

Figure 11: Decomposition Synthesis

3.3.1 Multiresolution Wavelet Controller

Although a lot of work has been done in numerical analysis, signal and image compression using wavelets, the field of control theory has remained largely immune
to this growing phenomenon. One application using wavelets in controls includes U.S.Patent No. 5,610,843, which involves control of MIMO system, and provides a method for implementing a controller in a system having many sensors and actuators. Additionally, the disclosure involves computing two transfer functions P and Q (transfer function from actuator to sensor, and transfer function matrix from sensor back to actuator) using wavelet transforms on a multi-scale basis. The controller K is then implemented using Q-parameterization as $K = (I + PQ)^{-1}Q$. U.S.Patent No 6,480,750 provides a means to perform auto-tracking by adjusting the controller (PID) parameters. A wavelet transformation of the control signal and the output signal is done. The result of the analysis is transformed into a system of differential equations. The formulation of the system of differential equations serves to establish a mathematical function which characterizes the response of a plant. Based on the response from the plant it is possible to document changes in the response characteristics of the controlled system. It is possible in this way for the controlling system to be adapted to simply prescribed operating state of the controlled system which keeps recurring during operation of the controlled system. U.S.Patent No 6,497,099 is similar, but has a specific application to a steam turbine. Multi-scale modeling and model predictive control using wavelets has been reported by Stephanopoulos [5]. However, industries still rely largely on using a PID controller to achieve their control objective.

$$u_{PID}(t) = K_P * e(t) + K_I * \int e(t) + K_D * \frac{d}{dt} e(t)$$ (3.14)

PID has been a phenomenon in industry due to its intuitiveness and simplicity
of tuning. In general, a PID controller takes as its input the error, e, then acts on
the error so that a control output, u, is generated as shown in Eq. (3.14). Gains K_P, K_I and K_D are the Proportional, Integral and Derivative gains used by the system
to act on the error, integral of the error, and derivative of the error respectively. In
terms of frequency information the proportional and integral terms tend to capture
the low frequency information of the error signal and derivative captures the high
frequency information of the signal. In a similar manner, a Multiresolution Wavelet
Controller (MWC) decomposes the error signal into its high, low and intermediate
scale components using Eq. (3.10). Each of these components are scaled by their
respective gains, and then added together to generate the control signal u as shown
in Eq. (3.15).

$$u_{WC}(t) = K_H * e_H(t) + K_{M_1} * e_{M_1}(t) + ... + K_{M_{N-1}} * e_{M_{N-1}}(t) + K_L * f_L(t) \quad (3.15)$$

More generally, the control signal can also take on the form of

$$u_{WC}(t) = K_H * f_H(e_H(t)) + K_{M_1} * f_{M_1}(e_{M_1}(t)) + ...$$

$$+ K_{M_{N-1}} * f_{M_{N-1}}(e_{M_{N-1}}(t)) + K_L * f_L(e_L(t)) \quad (3.16)$$

where, $f(\cdot)$ are linear or non-linear functions of the component of the error signal.
Unlike a PID controller, which has three tuning parameters (gains) a MWC can
have two or more parameters based on the number of decomposition levels of the error signal. For example, a one-level decomposition yields a low and a high-scale component. So a controller with a one-level decomposition using linear functions ($f(.)$) will have two gains. In a similar manner a two-level decomposition of the error signal, results in three signal components. Each of these components can be scaled by a gain and added to generate the control signal. Thereby yielding a controller with three tuning parameters. It is often desirable to have larger number of decomposition levels as it tends to capture larger scale based characteristics of the error signal, thereby providing greater resolution in control signal generation. A schematic diagram of a plant using MWC is shown in Figure 13. Since there are a number of different wavelets, choice of a wavelet affects the performance of the controller. In general, there are two kinds of choices to make: the system of representation (continuous, discrete) and the properties of the wavelets themselves: for example, the number of
degree of regularity. A common theme in choice is trade off. If more resolution in
frequency is desired, less resolution in time is achieved; if more vanishing moments
are required the size of wavelet has to increase. In motion control application it was
found that ”Daubechies” of order 4 was suitable for implementation. Further details
on selection of wavelets are discussed later in this chapter.

All physical systems are subjected to some types of extraneous signals or noise
during operation. Therefore, in the design of a control system, consideration should
be given so that the system is insensitive to noise and disturbance. The effect of
feedback on noise and disturbance greatly depends on where these extraneous signals
occur in the system. But in many situations, feedback can reduce the effect of noise
and disturbance on the system performance. In practice, disturbance and commands
are often low-frequency signals, whereas sensor noises are often high-frequency signals.
This makes it difficult to minimize the effect of these uncertainties simultaneously. It
is under these conditions that MWC performs extremely well. Figure [14] shows the
comparison of signals generated by applying a PID scheme (error, differential of error
and integral of error) to the error signal and a multiresolution decomposition(low
scale, medium scale and high scale) of the error signal. This decomposition, unlike
the filters commonly utilized in classic control theory, do not distort the components
of the error that one finds useful in the control algorithm. The control signal can
therefore be more aggressive, i.e., faster and more accurate, without the presence of
noise and oscillation on the signal, which causes constant jitter, flutter or chatter
of the device being controlled. This constant control action is not only inaccurate,
it usually leads to accelerated wear and early failure of whatever device is being
controlled.

From Figure 14 it can be noticed that the high scale signal filters out noise and high frequency distortion from the error signal. Increasing the gain corresponding to high scale signal pushes the control bandwidth and improves the disturbance rejection of the plant. Consider the medium scale signal in the figure. It approximates the differential of the error signal with low gain and it has very low noise content compared to pure differentiation. Such a noise free differentiation enables us to increase the corresponding gain and add damping to the plant thereby improving its transient response. The lowest scale signal contains mostly noise and high frequency chatter.
present in the original signal. By adjusting the lowest scale gain to zero we can produce a very smooth control signal and drastically reduce the effect of noise on the plant output. Smooth control effort improves the life of the motor and overall performance of the plant.

3.4 Implementation Issues

There are a number of practical considerations that must be addressed in order to come up with a useful wavelet analysis of the time series applicable to controls. Some of these issues include, the type and size of wavelet to use, how to calculate the instantaneous wavelet transform of a signal when a sample of signal becomes available (for real-time control), the number of decomposition levels, the number of samples to use in the transform.

3.4.1 Signal Pipeline Architecture

Wavelet transform is performed on a bunch of data after it is made available to the processing engine on account of the non-causal nature of the wavelets. In order to have causal processing a delay has to be introduced in the channel. This delay is proportional to the number of samples used in the computation. As control systems require real-time signal processing in order to operate in real-time, this delay has been a bottleneck in application of wavelets in controls. Traditionally researchers have worked with the wavelets on the half axis, which work only on past data or circular data structure. The other issue that further adds to the delay is the ill-conditioning
of the data at the boundaries. In order to perform multi-level decomposition for real
time operation a novel pipeline data architecture is proposed. This architecture is
illustrated in Figure 15. In this scheme a signal buffer of length L is chosen to be

![Signal pipeline architecture](image)

Figure 15: Signal pipeline architecture

2^N. Where N is the number of decomposition levels desired in analysis. Initially
the signal buffer is filled with zeros. When the current sample (k^{th}) is available it is
pipelined into the buffer using the First In First Out (FIFO) operation. The signal
buffer values are mirrored and appended so as to have the latest data concentrated
towards the center. The decomposition algorithm is then performed on the resultant
signal buffer. The decomposed k^{th} sample is then available at the center of the signal
buffer.

3.4.2 Number of Decomposition Levels

In order to achieve sufficient resolution in both time and frequency the number
of levels (N) that a signal is decomposed depends upon the size of the signal buffer
(number of observations in the time series) (L) and the size of the filter (F) used. N
is set to be the largest integer satisfying the equation [1]

$$N \leq \log_2\left(\frac{2 \times L - 1}{F - 1} + 1\right)$$

(3.17)
From the perspective of a control system, this would represent the number of tuning parameters in generating the control signal i.e., the gains of the controller. Since the controller does not have a thresholding scheme, it relies on assigning a zero gain to the low scale signal for noise immunity. For this reason it was observed that a slightly larger number of levels than that shown in Eq. 3.17 helped to generate a control signal with better noise immunity.

3.4.3 Selection of Wavelet

The first problem in constructing a wavelet analysis is the selection of a particular wavelet from amongst all available ones. A reasonable choice depends upon the application at hand. In control application the objective is to apply wavelet analysis on the error signal. The choice that is made here will demonstrate the interplay between a specific analysis goal (such as signal decomposition to separate noise) and the properties we need in a wavelet filter to achieve that goal.

It has been found that wavelet of very short widths can sometimes introduce undesirable artifacts into the resulting analysis that might be desirable in terms of their small computational effort and real-time applications. On the other hand wavelet with large number of coefficients can better match the characteristic features in a time series. Their use can result in more coefficients being unduly influenced by boundary conditions, some decrease in the degree of localization of DWT coefficients and an increase in computational burden. An overall strategy is thus to use the smallest sized filter that gives a reasonable result and also be alignable in time
(i.e., phase shift as small as possible).

In the next two sections, the best basis and matching pursuit algorithms are addressed with the objective of using these algorithms in controls. Best basis is an optimal orthonormal transformation of the signal. Stephanopoulos proposed a computational scheme to compute this transformation and called it the best basis algorithm. This algorithm is used in this research to select a wavelet that can best characterize an error signal. From the control system perspective, these two algorithms will help to eliminate the noise from the control signal and enable an increase in the gain corresponding to the low frequency signal thereby providing high disturbance rejection and also bring the steady state error close to zero.

3.4.4 Error Signal Analysis

In order to apply the matching pursuit and best basis algorithms, a dictionary of error signals was generated. This dictionary comprises of all possible combinations of error signals that could be generated in a control system environment. Some of the plots of these signals is shown in Figure 16.

3.4.5 Best Basis Selection

In general a best basis algorithm is used to select a set of basis functions that can be combined to represent the original signal. Choosing a basis in which to decompose a signal means selecting certain compromise between time and frequency. In this research work the selection of wavelets is focused and limited to orthogonal
Figure 16: Dictionary of Error Signals
and compactly supported wavelets. This limited the scope of wavelet selection to Symmlets, Daubechies and Coiflets.

1. Consider the $-l^2 \log(l^2)$ norm of l, also called the entropy information cost functional, where

$$m(|W_{j,n}|) = \begin{cases} -W_{j,n}^2 \log(W_{j,n}^2), & \text{if } |W_{j,n}| \neq 0; \\ 0, & \text{if } |W_{j,n}| = 0, \end{cases} \quad (3.18)$$

where, $W_{j,n} = W_{j,n}/||X||$. This quantity has a monotonic relationship with the entropy of the signal.

2. The optimal wavelet transform is the solution of

$$\min_W \sum_D \sum_{(j,n)} m(|W_{j,n}|) \quad (3.19)$$

where, D is the set of all signals contained in the dictionary.

3. For the set of wavelets contained in W (dictionary of all possible wavelets), and the dictionary of signals contained in D the cost function in Eq. 3.19 is calculated. The best wavelet is then selected as the one that minimizes this cost function.

3.5 Tuning the Gains of the Controller

In this section, some preliminary formulae for calculating linear gains of the MWC for the motion control plant are given. Simulations were done on the motion control plant to arrive at these closed form solutions. The parameters shown here
will bring the plant in an operable range. However, fine tuning may be needed to improve the performance of the plant.

The original plant equation can be rewritten as

$$G(s) = K \frac{1}{s} \frac{a_1 s^2 + b_1 s + c}{a_2 s^2 + b_2 s + c}$$ \hspace{1cm} (3.20)

where, $K = \frac{1}{J_M + J_L}$, $a_1 = J_L$, $a_2 = \frac{J_M J_L}{J_M + J_L}$, $b_1 = b_2 = b_S$ and $c = K_S$.

Define $a = \frac{a_1}{a_2}$ and $b = \frac{b_1}{b_2}$. Then for a three level decomposition, the approximate MWC gains are selected as

$$K_H = \frac{\alpha}{K*T}$$

$$K_{M1} = \alpha * b$$

$$K_{M2} = \alpha * a$$

$$K_L = 0$$ \hspace{1cm} (3.21)

where, T is the sampling rate of the plant and α is a noise suppression factor and may be chosen to be $0.6 \leq \alpha \leq 1.0$. Further research may be needed to come up with a better tuning scheme for the controller gains and also to extend it to a larger class of problems involving time constants and delays in the plant.

3.5.1 Observations and framework of a Multiresolution Wavelet Controller

In this research work, the set of wavelets were limited to orthogonal and compactly supported wavelets. Simulations were done on different models of plants to arrive at some of the fundamental results for a MWC:
1. In this research work the selection of wavelets is focused and limited to orthogonal and compactly supported wavelets. This limited the scope of wavelet selection to Symmlets, Daubechies and Coiflets. Daubechies of order 4 were found to perform well for control signal analysis.

2. The number of decomposition levels(N) using the matching pursuit algorithm was found to be three. This implies that the MWC with 4 tunable gains was needed to meet desired performance.

3. Since wavelet analysis is a windowing technique it works on finite-length zero-order-hold signals. Length of the signal used during analysis is an important factor that can affect the performance of the controller. It was found that the length of the buffer corresponding to the error signal was to be no less than $2 \times$ order of wavelets$ \times$ number of decomposition levels.

4. With Daubechies wavelets the decomposed signal with scale just below the low scale (f_{H-1}) signal gives the differentiated signal with most noise immunity.

5. A major advantage with this controller is the low gain associated with computation of the differentiation of the signal.

6. In order to have better noise rejection, gain corresponding to low level detailed signal (K_L) is set to zero.

7. Steady state error in most plants reduced to less than 0.2 % and in case of a plant of type 1 or more (with one or more pole at zero) the steady state error goes to zero.
8. A major disadvantage was a lack of integral action in the controller. This made it difficult for this controller to be used for plants with large time constants or those requiring high integral gains. Disturbance rejection was low based on the lack of integral control.

9. Based on the above issue another parameter based on the sum of the approximate terms was introduced into the controller. This took care of the lack of integral action and improved the disturbance rejection of the controller.

10. Another disadvantage is the amount of computational overhead involved in the implementation. However, with increasing computational speed, implementing the MWC on a stand alone DSP could easily eliminate this deficiency.

3.6 Generalized Multiresolution Controller

Similar to a MWC, a Generalized Multiresolution Controller (GMC) uses any combination of orthogonal functions to decompose the error signal into set of signal components; which are then transformed and combined to generate the control signal. The MWC becomes a special case of GMC when wavelets are selected as the orthogonal basis functions in the decomposition procedure. Although wavelets are orthonormal functions, any type of orthogonal functions such as the trigonometric functions (sine and cosine), which can be used to decompose the error signal, may be used in the GMC. Furthermore, each of the signal components may be modified by a linear or a nonlinear function, or a transformation such as integration or dif-
ifferentiation, and combined together to generate the control signal. Mathematical representation of the control signal generator is given by

\[e(t) = \sum_{i=1}^{N} e_i(t) \]
\[u(t) = \sum_{i=1}^{N} K_i * f_i(e_i(t)) \]

(3.22)

where, \(f(.) \) are linear or nonlinear functions of the component of the error signal or a transformation such as integration or differentiation. A block diagram of a GMC being used in a control system is shown in Figure 17. Another special case of the GMC is the PID controller. If two of the transforming functions \((f(.)) \) in Eq. 3.22 are selected to be integration and differentiation, the resulting controller becomes a PID controller. Similarly, a number of controllers including PI, PD, PID, NPI, NPD, NPID, etc., may be emulated as a special case of this Generalized Multiresolution Controller.
Simulations were run on different types of plants; however, in order to show the versatility of the MWC, application on two examples from different areas of control are shown in the first part of the chapter. The later part of the chapter deals with computation of the differential of a signal using wavelets transforms.

4.1 Temperature Regulation Problem

Consider a generic temperature control application. Hot and cold fluids are mixed in a mixing valve, and the fluid is supplied through a supply line to a tank at a
distance. The temperature is measured using a suitable sensor such as Thermocouple, Thermistor, etc., and converted to a signal acceptable to the controller. The controller compares the temperature signal to the desired set-point temperature and actuates the control element. The control element alters the manipulated variable to change the quantity of heat being added to or taken from the process. The objective of the controller is to regulate the temperature as close as possible to the set point. In this simulation test, hot and cold water are the manipulated variable and a valve is the controller element. One of the difficulties with this system is the wide range of temperatures at which the system is operated, and also the variable time delays. The simplified block diagram of the temperature control problem is shown in Figure 18. $C(s)$ represents the controller and $G(s)e^{-s\tau}$ represents the plant with a pure time delay of τ. It is well known that time delays make the temperature loops hard to tune. The transfer function for the tank temperature control problem is given by:

$$G(s) = \frac{e^{-s\tau}}{a + 1}$$ \hspace{1cm} (4.1)

where, τ is the time delay for material transport in the pipe, $a = m/M$ where, m is the mass flow rate, and M is the fluid mass contained in the tank. More details of the problem can be found in [18]. The simulation block diagram of the plant using a MWC is shown in Figure 18.

Figures 19(a) and (b) show the response of the model using a PID and a MWC for variable delays with plant parameter $a = 1$. Both controllers were each tuned for a delay of 5 seconds and then the delay was changed from 5 seconds to 7 seconds. Effect of this change can be seen in Figure 19(b). The results for temperature regulation
Figure 18: Block diagram of a temperature regulation problem

plant are shown in order to validate the scheme of the MWC and demonstrate its applicability to different industrial processes. Once again it can be seen that MWC performs slightly better than a PID in terms of transient and steady state response. It gives us an alternative framework for controlling a system. Furthermore, it has an edge over the PID when it comes to disturbance rejection and de-noising as will be shown later in this chapter.

4.2 Position Control System

In a typical application using a motor as the power source, the transfer function from input current u to output position y can be modeled as:

$$ y = \frac{b}{s(Js + c)} \quad (4.2) $$

Where, b is the torque constant, J is the total inertia of motor and load, and c is the viscous friction coefficient. The experimental setup includes a PC based control platform and a DC brush-less servo system made by ECP (Model 220). The servo system includes two motors, one as an actuator, the other as the disturbance source; a power amplifier and an encoder, which provides the position measurement. The
Figure 19: Simulation response of a temperature regulation plant under different time delays
inertia, friction and backlash are all adjustable. A Pentium 133 MHz PC running in DOS is programmed as the controller. It contains a data acquisition board to read the position encoder output in the servo system. The sampling frequency is 400Hz. As shown in Figure 20, the PC performs the position control of the load disc. The position signal is read into the microcomputer via the counter board and the control signals are output to the motor drive via DAC. The PID and MWC control algorithms are written in C language. In the nominal case, 4 brass weights are placed on the load disc, each of 0.2 Kg, 6.6 cm from the center of the load disk. Initially, no friction, disturbance or backlash is intentionally added. The nominal set point is one revolution.

![Figure 20: Block diagram of a DC brush-less servo system](image)

4.2.1 Experimental Results

To verify the effectiveness of the MWC, a series of experiments were carried out. These include

1. Change of set-point from 1 to 10 revolutions.
2. Increase the inertia by 125 percent (adding two 0.5 Kg weights to the disc at a
radius of 7.5 cm).

3. Increase the friction by adjusting the rubbing screw in the test setup.

4. Introduce 30 percent torque disturbance using the disturbance motor.

For comparison reasons, both PID and MWC are tested for each scenario and
the results are evaluated in terms of overshoot, settling time, steady state error and
the root-mean-square error, defined as:

\[
I(e) = \sqrt{\frac{\sum_P (v(t) - y(t))^2}{P}}
\]

The results of these tests are listed in Table 2. In general, the MWC performs at par
or better than the PID. Noticeably when the number of revolutions is changed from
a nominal value of 1 to 10, the percentage over shoot using the PID persists however,
in case of a MWC it goes to zero. Furthermore, the steady state error in case of a
PID increased by almost 10 times due to this change but it only increased by three
times in case of a MWC. By assigning low gain to high frequency component we can
actively remove noise from the control signal. Further in the absence of noise, low
frequency component can be tuned with higher gain to improve transient response
and disturbance rejection.

Disturbance Rejection

In order to investigate the disturbance rejection feature of the MWC, a step
torque disturbance was applied using the second motor in the servo system. It occurs
Table 2: Experimental results using a MWC and a PID

<table>
<thead>
<tr>
<th></th>
<th>Overshoot(%)</th>
<th>Settling Time(Sec)</th>
<th>SS Error(Rev.)</th>
<th>L(e)(Rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Case</td>
<td>0.67</td>
<td>1.25</td>
<td>0.0083</td>
<td>0.0679</td>
</tr>
<tr>
<td>10 Rev.</td>
<td>0.74</td>
<td>12.24</td>
<td>0.0771</td>
<td>0.2131</td>
</tr>
<tr>
<td>Friction Exerted</td>
<td>0.00</td>
<td>1.26</td>
<td>0.0372</td>
<td>0.0810</td>
</tr>
<tr>
<td>Load Added</td>
<td>0.00</td>
<td>1.27</td>
<td>0.0107</td>
<td>0.0978</td>
</tr>
<tr>
<td>30% Torque Dist.</td>
<td>N/A</td>
<td>2.56</td>
<td>0.0183</td>
<td>0.1372</td>
</tr>
<tr>
<td>WC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Case</td>
<td>0.85</td>
<td>1.21</td>
<td>0.0034</td>
<td>0.0560</td>
</tr>
<tr>
<td>10 Rev.</td>
<td>0.00</td>
<td>12.19</td>
<td>0.0112</td>
<td>0.1446</td>
</tr>
<tr>
<td>Friction Exerted</td>
<td>0.04</td>
<td>1.22</td>
<td>0.0014</td>
<td>0.0620</td>
</tr>
<tr>
<td>Load Added</td>
<td>0.21</td>
<td>1.20</td>
<td>0.0018</td>
<td>0.0614</td>
</tr>
<tr>
<td>30% Torque Dist.</td>
<td>N/A</td>
<td>0.59</td>
<td>0.0108</td>
<td>0.1118</td>
</tr>
</tbody>
</table>

Figure 21: MWC and PID responses to torque disturbance
after the system reaches the steady state, as shown in Figure[21]. Compared to the PID, the position output recovers from the disturbance much faster in MWC on account of its ability to accommodate high gains. The disturbance settling time is almost 5 times less than that of a PID. Further it can be seen that the control signal generated by a MWC is much smoother and the steady state error is much smaller than that obtained using a PID.

4.3 Wavelet Differentiator

In industry the primary issue with differentiation has been noise corruption. It is known that a pure differentiation is not physically realizable due to its noise amplification property. Finding an approximation differentiation with good noise immunity is paramount in achieving high control performance. There have been many variations of differentiation techniques in literature. In the framework of practical constraints, with dynamic uncertainties in the plant, Jing[25] has reported that the second order linear approximate differentiator performs better than all other linear and non-linear approximate differentiators.

An observation of the medium scale signal plotted in Figure[14] shows that wavelets, in particular the Daubechies wavelets which have a differencing property can be used to differentiate the signal, within the framework of multiresolution decomposition. In order to achieve greater noise immunity a simple thresholding is also involved.
4.3.1 Differentiation Procedure

Computing the differentiation of a signal in real time is done using the same multiresolution decomposition algorithm described in chapter 3. The overall steps involved are outlines below.

1. With Daubechies wavelet as the basis, compute the DWT coefficients using the analysis part of the decomposition algorithm for N number of levels and signal containing samples of size $L = 2^N \times F$. Where, F is the size of the wavelet filter.

2. Arrange the coefficients in the ascending order of their absolute value.

3. Compute the median of the coefficients.

4. Compute the threshold as $\sqrt{2 \times \log(L) \times \delta}$ where δ is an external parameter that can be changed to reflect the amount of noise present in the signal.

5. All coefficients with absolute value less than the threshold computed in step 4 are set to zero.

6. The resultant coefficients are then used to compute the decomposed signals using the synthesis part of the decomposition algorithm.

7. The decomposed signal with scale just below the low scale signal (in Eq. 3.7) (f_{H-1}) gives the differentiated signal with most noise immunity.
4.3.2 Comparison of Differentiators

Figure 22 shows the simulation block diagram for comparison of differentiated signals using a second order linear approximation and a wavelet differentiator. The parameter N and δ are the configurable parameters in the wavelet differentiator.

δ can be tuned to change the amount of noise rejection desired in the differentiated signal. Changing the parameter N, changes the number of decomposition levels. The greater the L, larger the resolution of the output signal, however, it adds more delay to the output. Simulation results are plotted in Figure 23. The wavelet differentiated signal provides less phase lag compared to the second order differentiation. Furthermore a close examination of the signal between 0.05 and 0.1 seconds reveals that the wavelet based differentiation provides high amount of noise rejection compared to a second order differentiator. Computing a low noise differential signal during steady state is a highly desirable objective in control systems.
Figure 23: Comparison of differentiators
4.4 Improving the PID performance using wavelets

Alternative to using a MWC one can use a denoised error signal or a wavelet based differentiated error signal in a conventional PID configuration to enhance its features. The motion control plant is simulated using wavelets for denoising and differentiation in a PID based control architecture.

4.4.1 PID using wavelet differentiator

In industry the primary issue with limited usage of differentiation in a PID has been noise corruption of the differentiator. In this section a wavelet based differentiator is proposed to be used in place of a traditional first order or second order differentiator in PID. Because of its inherent tendency to suppress noise, the differentiator helps to improve the overall performance of the PID controller. Firstly, increased differential gain adds damping to the system and improves its transient response. Secondly, the steady state response is not adversely affected due to this increase, as the noise is effectively suppressed by the wavelet differentiator. The simulation block diagram of a plant using this configuration is shown in Figure 24.

![Figure 24: Block diagram of a plant using a PID controller with wavelet differentiated error](image)

Figure 24: Block diagram of a plant using a PID controller with wavelet differentiated error
4.4.2 PID using denoised error

Wavelet decomposition can be used to generate the denoised error signal. This error signal is then fed to the PID controller, which generates the control signal. Since this architecture removes noise it enables us to increase the proportional and differential gain, which improves the transient response, disturbance rejection and adds damping to the system. This configuration is shown in the simulation block diagram of Figure 25.

![Block diagram of a plant using a wavelet denoised error signal](image)

Figure 25: Block diagram of a plant using a wavelet denoised error signal

4.4.3 PID using denoised error and wavelet differentiator

Finally a hybrid combination of the two previous configurations may be used to improve the overall performance. This configuration yields best results and is very effective because the differential signal may be obtained as a byproduct of the wavelet decomposition being used to produce the denoised signal. The results on the motion control setup using the three configurations mentioned earlier are plotted in Figure 27. The tuning of the PIDs are done with the objective of maintaining the same amount of noise level at output signal. The difference is most obvious from the error
Figure 26: Block diagram of a plant using a denoised error and wavelet differentiated error signal

Figure 27: Simulation results on a plant using wavelets in different PID configurations
signal plotted in this figure. The hybrid combination yields best results on account of its ability to not only denoise the error but also use this denoised signal to compute the differential signal.
Several new concepts and methods, such as the use of nonlinear servo gains and profile modification, were proposed in [22]. These and other advanced schemes are applied here for low frequency resonance problems. This chapter focuses on methods to be used for resonance reduction in industrial servo drives, which includes:

1. Profile modification

2. Nonlinear servo gains

3. Acceleration Feed-forward

4. Discrete Time Optimal Control

5. Active Disturbance Rejection Control
6. Single Parameter Tuning

7. Multiresolution Wavelet Control

The methods discussed here are limited to using a single position sensor on a motor. The evaluation is based on the ability of the control scheme to provide improved disturbance rejection and faster command response. The following sections develop each of the methods. In order to show the ability of each method to increase margins of stability, the servo system is tuned aggressively, with servo gains that are high enough to induce low margins of stability. The method is then applied without reducing the servo gain. Each method greatly reduces oscillations, demonstrating that larger servo gains can be supported with the method than without it. Simulations were done with all the schemes. However, implementation on the industrial set-up involving Active Disturbance Rejection Control and Multiresolution Wavelet Control was hindered by complexity of the controller and limitations on the memory size of the servo drive.

The test unit mechanism established in the lab is shown in Figure 28. It is a Kollmorgen 1503 motor and load connected by plastic PVC tubing that has been slit to increase compliance. The motor inertia is $1.8 \times 10^{-5} \ Kg \cdot m^2$ and the load is $6.3 \times 10^{-5} \ Kg \cdot m^2$ (both inertias include the coupling to the tubing). The coupling has a compliance of 30Nm/rad. This ratio produced a resonant frequency of 233 Hz. This frequency is consistent with machines used in industry. Note that this experiment used a PVC coupling, a material with high viscous damping in order to produce low-frequency resonance. Most papers on this subject use couplings with
very-low damping such as steel. The drive used was a 3 Amp Kollmorgen ServoStar 600 amplifier. The test unit’s parameters are summarized in Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant frequency</td>
<td>233 Hz</td>
</tr>
<tr>
<td>Motor Inertia J_M</td>
<td>$0.000018 , Kg - m^2$</td>
</tr>
<tr>
<td>Load Inertia J_L</td>
<td>$0.000063 , Kg - m^2$</td>
</tr>
<tr>
<td>Damping Coefficient b_S</td>
<td>$0.005 , Nm - sec/rad$</td>
</tr>
<tr>
<td>Torque Constant K_T</td>
<td>$0.44 , Nm/A - rms$</td>
</tr>
<tr>
<td>Equivalent Spring Constant K_S</td>
<td>$30 , Nm/rad$</td>
</tr>
</tbody>
</table>

5.1 Baseline System

The baseline system has no low-pass filter and does not use acceleration feedback. The velocity controller (PI) was tuned to maximize performance. The proportional gain was raised as high as possible without generating instability ($K_P = G_{VD} = 2.5$). The velocity-loop integral gain was then raised until a step command
Figure 29: Implementation block diagram of motor

Figure 30: Step response of the baseline system
generated 25% overshoot \(K_I = G_{VTN} = 15msec \). The implementation block diagram is shown in Figure 29. The step response is shown in Figure 30. Settling time was found to be about 60 msec. The -3 dB bandwidth was measured as 23 Hz.

5.2 Profile Modification

![Figure 31: A profile generator](image)

It has been found that a soft start is often beneficial in reducing the jerk and thus vibrations in servo systems. It is commonly known as a motion profile in the motion control industry. Instead of a step command, a motion profile specifies a desired smooth trajectory as the set-point for the control loop and is often called soft start. The overshoot in the transient response could be greatly reduced by using a reference signal not as impulsive as a step. In this case a trapezoidal profile was generated as shown in Figure 31. The soft start on the command enabled an increase in the servo gains. It was found that by using the profile the overshoot was greatly reduced. This enabled an increase in the servo gains further. For the same amount of overshoot as the baseline system, the steady state time decreased to 40 msec as shown in Figure 32. The -3dB bandwidth increased to 30 Hz.
Figure 32: Response of the system using a profile
5.3 Nonlinear PI Control

A proportional integral (PI) controller is generally implemented in the industry to control the velocity of a motor. The conventional PI controller can be described as:

$$u = K_P(e + K_I \int e \, dt) \quad (5.1)$$

where, e and $\int e$ represent the error, and the integral of error. K_P is the proportional gain and K_I is the integral time constant. The very simplicity of the PI controller which makes it attractive, also becomes a liability when it comes to performance. Since the digital era began various attempts have been made to enhance it with methods like gain scheduling and other nonlinear means. But the methods often turned out to be problem dependent and not easily repeatable for different problems. Han proposed a fundamental change in the way the nonlinear function is designed. Based on the conventional PI controller, a nonlinear PI controller is described as

$$u = K_P [fal(e, \alpha_P, \delta_P) + K_I (fal(e, \alpha_I, \delta_I))] \quad (5.2)$$

where, e and $\int e$ are the same as in PI and $fal(\ast)$ is a nonlinear function which is defined as

$$fal(x, \alpha, \delta) = \begin{cases}
|x|^\alpha \, sign(x), & |x| > \delta \\
\frac{x}{\delta^{1-\alpha}}, & |x| \leq \delta
\end{cases} \quad (5.3)$$

The reason, the nonlinear controller performs better is that, when $0 < \alpha < 1$, it provides higher gain when the error is small and lower gain when error is large. A plot of the function $fal(\ast)$ vs e is shown in Figure 33.
Figure 33: Plot of nonlinear function vs. error

\[f_{\text{al}}(e) = \begin{cases} e^{\alpha} \text{sign}(e), & |e| > d, \\ e / d^{1-\alpha}, & |e| \leq d, \end{cases} \quad d > 0 \]

Figure 34: Block diagram of the plant using an NPI Controller
It was shown in [22] that such a control law provides better disturbance rejection and faster command response. Due to the 90° lag associated with the integral control, it is seldom used in dealing with resonance problem of concern here. In this research, however, the nonlinear integral control along with nonlinear proportional control greatly improved the performance of the plant. It is known that in general an integral term causes saturation, which leads to an overshoot in the transient region. However, by using the \(f_{al} \) function shown above, gains can be chosen to be higher when the error is small and relatively lower when the error is large. This configuration enabled an increase in the servo gains, which improved the system transient time and offered higher disturbance rejection. Motor velocity using the NPI configuration is
plotted in Figure 35. When the nonlinear control was used along with the soft start it gave a smoother response and good disturbance rejection and was found to be better than most existing techniques. It can be seen from Figure 35 that the settling time was reduced to 14 msec with the additional advantage of no overshoot in the motor velocity. The -3dB bandwidth was found to increase to 72 Hz.

5.4 Acceleration Feed-forward with Nonlinear Servo gains

Secondary output from the profile generator shown in Figure 31 is the acceleration command. Unlike the actual acceleration, or the observed acceleration, the command acceleration is free of errors in differentiation or observation. This acceleration command from the profile is fed forward, scaled by a gain K_{FF}, to the control signal, as shown in Figure 36. When acceleration feed-forward is applied to the baseline system, it improved the settling time of system. When acceleration feed-forward was used with NPI, best results were obtained. NPI gave good disturbance rejection, and the feed-forward signal improved the settling time of the response. It can be seen
Figure 37: Command response using Acceleration Feed-forward and NPI
from the figure that the settling time was reduced to 10 msec, and the bandwidth was measured to be 82 Hz, which is almost 4 folds increase over the baseline system.

5.5 Discrete Time Optimal Control

Time optimal control (TOC) is an established technique in control. It originated in servo control design problems in 1950s, where heuristic arguments were made regarding the optimality. It was extended to the second order system $\ddot{y} + 2\zeta \dot{y} + y = \varphi(y, \dot{y})$, where $\varphi(y, \dot{y})$ is a switching function of values ± 1. Based on the Pontryagin’s principle, the existence of a solution, the uniqueness of the solution and number of switches in control signal were proved for time optimal control of a linear time invariant continuous plant.

From the engineering perspective, the instant switching between extreme values in the control signal required by the TOC is often neither feasible, because of the physical limits on how fast a control signal can change, nor desirable because of the stress it puts on the control actuators. On the other hand, the research continues in development of methodology on determining switching surfaces for various plants. Recently Z. Gao et al. have extended the TOC technique to non-unity gain plants.

A non unity gain second order plant is denoted by

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= Ku
\end{align*}
\]

(5.4)
The optimal control algorithm to the non-unity gain plant is given as [15]:

\[
\delta = hKR, \\
\delta_1 = h^2KR, \\
z_1 = x_1 + hx_2, \\
z_2 = x_2, \\
g(z) = \begin{cases}
 z_2 + \frac{z_1}{h}, & |z_1| \leq \delta_1 \\
 z_2 - sign(z_1)\frac{KR}{2}(h - \sqrt{\frac{8|z_1|}{KR} + h^2}), & |z_1| > \delta_1
\end{cases}
\]

\[u(z_1, z_2) = -R * sat(g(z), hKR)\] (5.5)

where, \(sat\) is defined as:

\[sat(a, b) = \begin{cases}
 sign(a), & |a| > b \\
 \frac{a}{b}, & |x| \leq b
\end{cases}\] (5.6)

The parameters in the above set of equations are: \(K\) is the overall gain of the plant,

\(R\) is the limit value of the control signal, \(h\) is the sampling rate, and \(u\) is the control signal driving the plant. The control scheme defined in Eqs. (5.5 and 5.6) is the Discrete Time Optimal Control law (DTOC) for a non-unity gain plant. For more information on DTOC see [15]. This technique was used here to study the performance of the test unit under consideration. Instead of position and velocity as the two states, velocity
and acceleration were treated as the two states while applying the control signal. The implementation block diagram is shown in Figure 38. Results obtained using a DTOC are plotted in Figure 39. Results were not as good as that of NPI with Acceleration Feed-forward.

![Figure 39: Command response using a DTOC](image)

5.6 Active Disturbance Rejection Control

It is well known that integral control helps to suppress steady state error, reduce the transient time and improve disturbance rejection in a plant. However, it also brings inevitable lag, which could destabilize the closed loop system. An alter-
native to dealing with disturbances and steady state errors was proposed by Prof. Han in the form of a unique nonlinear observer designed to estimate disturbances. By estimating an extended state which represents the internal dynamics and external disturbances of the physical system it is possible to reduce the system to a pure second order plant which can be controlled using a PD controller. This observer is model independent. By choosing the nonlinear function carefully, we can estimate the internal and external uncertainties and remove them using the modified control signal. The final structure involving the modified control signal, Nonlinear Proportional Derivative (NPD) control and Extended State Observer (ESO) form the Active Disturbance Rejection Control (ADRC).

5.6.1 Extended State Observer

The governing equation for the second order motor model is given by:

$$J_M \ddot{x}_M = -b_S \dot{x}_M - K_S x_M + b_S \dot{x}_L + K_S x_L + W + K_T u$$ \hspace{1cm} (5.7)

Which can be rewritten as

$$\ddot{x}_M = f + \frac{1}{J_M} \left(-b_S \dot{x}_M - K_S x_M + K_T u \right)$$ \hspace{1cm} (5.8)

where, f is referred to as generalized disturbance which include external disturbances W and internal plant dynamics. Although ESO may be designed without any information about the plant; available plant dynamics may be incorporated to simplify the tuning of ESO. Eq. 5.8 is a second order model. Applying the ESO to this model
we get
\[
\begin{align*}
\dot{z}_1 &= z_2 - \beta_{01} f_a(l(e)) \\
\dot{z}_2 &= z_3 - \beta_{02} f_a(l(e)) - \frac{(b_2 z_2 + K_S z_1 - K_T u)}{J_M} \\
\dot{z}_3 &= -\beta_{03} f_a(l(e))
\end{align*}
\] (5.9)

where, \(e = z - x_M \) and \(f_a(.) \) is the nonlinear function given in Eq. 5.3. As \(z_1 \) and \(z_2 \) estimate the states of the plant in Eq. 5.7, the state \(z_3 \) estimates the combination of external disturbances and plant uncertainties \(f \). If we can estimate the disturbance and actively eliminate it from the plant as shown in Figure 40, the plant reduces to a second order system which can be easily controlled using a PD controller.

The name ADRC comes from its ability to actively detect and compensate the total disturbance, which lumps together the effects of internal and external disturbances. The former comes from the system dynamics and can be assumed to be unknown. The latter represents the external forces applied to the system that needs to be compensated by the control signal.

Applying ESO to plant in Eq. 5.7, it is reduced to a double integrator control problem which can be easily controlled using a PD controller. Using the profile generator to generate the desired trajectory a nonlinear PD controller is used. This overall architecture is called ADRC. The control law takes the form \(u(t) = u_0(t) - z_3(t) * J_M / K_T \) with
\[
u_0(t) = \beta_1 f_a(x_1 - z_1) + \beta_2 f_a(x_2 - z_2)
\] (5.10)

The output position and control signal are fed to the ESO and the outputs of the ESO are used to apply the modified control signal to the plant and feedback. The simulation block diagram is shown in Figure 40. Simulation results are shown in Figure
Figure 40: Block diagram for ADRC structure

Figure 41: Simulation result using ADRC
The controller performed extremely well in the presence of external disturbances and model parameter variations because it does not overly depend on the model of the plant. However, a major problem in implementation was the high sampling rate required for the ESO to estimate the states and the disturbance. In the simulation study it was found that it was difficult to estimate the states with sampling rate less than 100 KHz. However, the drive on the test unit was limited to a sampling rate of 4 KHz, which made implementation difficult under the present circumstances. It was found that the key to this design approach was the ESO. Once the ESO was properly tuned the nonlinear PD gains were usually straightforward since they had the same linear PD control intuition.

5.7 Single Parameter Tuning

The Extended State Observer (ESO) is an excellent observer, and it forms the core part of the Active Disturbance Rejection Control (ADRC). However, the number of tuning parameters involved (9 in case of a 3-state observer) makes the tuning process highly cumbersome. In addition, since there is no knowledge between design objectives and these parameters, it is difficult to determine whether or not the final tuning result is optimal. Based on this difficulty, Z. Gao recently developed a linear ESO, which can be tuned using a single parameter. This technique aims to reduce the transfer function of a plant to a unit gain and unit bandwidth form (UGUB) [21]. The pre-designed controller for the UGUB is simply numerically scaled for the plant. The controller parameterization makes all control parameters to be functions of a
single variable, the loop gain bandwidth, which can be easily tuned.

5.7.1 Linear Extended State Observer

Due to the complexity of the ESO and difficulty of its implementation on the motion control set-up, the motion control model was simplified to represent it as a first order model corrupted by external disturbances. Reconsider the Eq. 5.7 with the state being velocity. The governing equation for the first order motor model is given by:

\[J_M \ddot{V}_M = -b_S V_M + W + K_T u \]

(5.11)

Which can be rewritten as

\[\dot{x} = \frac{1}{J_M} (-b_S x + W + K_T u - b_o J_M u) + b_o u = f + b_o u \]

(5.12)

This is the state space form of Eq. 5.11 with the state \(x \) representing the velocity of the plant \(V_M \). \(f \) is referred to as a generalized disturbance, which includes external disturbances \(W \) and internal plant dynamics. The basic idea is that if we can somehow obtain an estimate of \(f \), \(\hat{f} \), then the control law \(u = -\frac{\dot{\hat{f}} + u_o}{b_o} \) reduces the plant to \(\dot{x} = (f - \hat{f}) + u_o \), which is a unit-gain single integrator control problem with a disturbance of \((f - \hat{f}) \).

Rewriting the plant in Eq. 5.12 in state space form

\[\begin{align*}
\dot{x}_1 &= x_2 + b_o u \\
\dot{x}_2 &= h
\end{align*} \]

(5.13)

where, \(\dot{x}_2 = f \) is added as an augmented state, and \(h = \dot{\hat{f}} \) is seen as an unknown disturbance. Now \(f \) can be estimated using a state observer based on the state space
model
\[\dot{x} = Ax + Bu + Eh \] \hspace{1cm} \text{(5.14)}

where,
\[A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} b_0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad E = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \] \hspace{1cm} \text{(5.15)}

Now the state space observer, denoted as the Linear Extended State Observer (LESO) can be constructed as
\[\dot{z} = Az + Bu + L(y - \hat{y}) \] \hspace{1cm} \text{(5.16)}
\[\hat{y} = Cz \]

where, \(L \) is the observer gain vector given by
\[L = [\beta_1 \beta_2]^T \] \hspace{1cm} \text{(5.17)}

Define \(e_i = x_i - z_i \), \(i = 1, 2 \); subtract Eq. \text{5.16} from Eq. \text{5.14} the error is:
\[\dot{e} = (A - LC)e + Eh \] \hspace{1cm} \text{(5.18)}

where \(A_e = A - LC = \begin{bmatrix} -\beta_1 & 1 \\ -\beta_2 & 0 \end{bmatrix} \).

5.7.2 Parameterization of Linear Extended State Observer

If \(h \) is bounded and if all the roots of the characteristic polynomial are in the left half of the s-plane, then LESO is BIBO stable and the observer will track all the states as \(z_1 \to y, z_2 \to f \). The characteristic polynomial of \(A_e \) is
\[\lambda = s^2 + \beta_1 s + \beta_2 \] \hspace{1cm} \text{(5.19)}
Figure 42: Observed velocity using LESO
For simplicity if we assume that both the eigen values are same then

$$\lambda = s^2 + \beta_1 s + \beta_2 = (s + \omega_o)^2$$ \hspace{1cm} (5.20)

then, $\beta_1 = 2\omega_o$ and $\beta_2 = \omega_o^2$. Here ω_o has a specific meaning: it is the bandwidth of the observer. The larger the ω_o, the quicker the disturbance is observed and cancelled by the controller. In actual practice, this bandwidth is limited by hardware such as noise and sampling rate. Plot of actual velocity and the observed velocity for the motion control plant using LESO parameterization is shown in Figure 42. The observed velocity is immune to measurement noise and tracks the actual velocity closely.

5.7.3 Controller Parameterization

Once the observer is built and well tuned, the output of the observer z_1 and z_2 will track y and $f(t, y, w)$ respectively. The objective is to actively eliminate the f from the plant and reduce it to a single integrator plant. The control law is given by

$$u = -\frac{z_2 + u_o}{b_o}$$ \hspace{1cm} (5.21)

as $z_2 \rightarrow f$ the plant equation reduces to

$$\dot{y} = u_o$$ \hspace{1cm} (5.22)

The feedback control law can be

$$u = k_p e$$ \hspace{1cm} (5.23)

where k_p is the proportional gain. A single proportional gain is sufficient under this configuration as the extended state dynamically eliminates the effect of external
disturbances. In terms of the error the plant equation becomes

\[\dot{y} = u = k_p e \]

(5.24)

In terms of the setpoint \(r \) Eq. 5.24 reduces to

\[\dot{y} = k_p (r - y) \]

(5.25)

taking the laplace transform of Eq. 5.25 we get

\[sY(s) = k_p R(s) - k_p Y(s) \]

(5.26)

the closed loop transfer function from setpoint \(r \) to plant velocity \(y \) reduces to

\[G(s) = \frac{Y(s)}{R(s)} = \frac{k_p}{s + k_p} \]

(5.27)

The controller tuning reduces to tuning a single parameter \(k_p \) tuning, where, \(k_p \) has a specific meaning: it is the bandwidth of the controller \(\omega_c \). The larger the \(k_p \), faster the disturbance rejection. In actual practice however, this is limited by hardware.

5.7.4 Linear Active Disturbance Rejection Control

When the ESO is replaced by LESO, and the controller reduced to a single parameter bandwidth controller the ADRC architecture reduces to a Linear ADRC (LADRC). Once the observer gains are designed, the primary control objective of the LADRC comes down to tuning the controller bandwidth by modifying \(\omega_c \). Maximize the \(\omega_c \) to achieve greatest performance until noise levels and/or oscillations in the control signal are close to tolerance limits. The implementation block diagram of a LADRC is shown in Figure [43]. Hardware results for the plant using a LADRC are shown in
Figure 43: Simulation block diagram using LADRC

Figure 44: Response of the plant using Single Parameter Tuning
Figure 44. LADRC with the soft start gave a smooth response and good disturbance rejection and was found to have least noise content when compared to other techniques that were implemented in hardware. It can be seen from Figure 44 that the settling time was found to be 14 msec with the additional advantage of no overshoot in the motor velocity. The -3dB bandwidth was found to be 72 Hz. The largest advantage offered by this technique was its simplicity and ease of application. The practical aspects of the tuning parameters involved makes this technique most user friendly.

5.8 Multiresolution Wavelet Controller

Most control applications in industries still rely on a traditional PID controller. PIDs have been a phenomenon in industry due to their intuitiveness and simplicity of tuning. In general, a PID controller takes as its input the error (e), then acts on the error so that a control signal, u, is generated. Gains K_P, K_I and K_D are the Proportional, Integral and Derivative gains used by the system to act on the error, integral of the error, and derivative of the error respectively. In terms of frequency content, the proportional and integral terms tend to capture the low frequency information of the error signal and derivative captures the high frequency information of the signal. In a similar manner a multiresolution wavelet controller (MWC) generates a control signal based on the decomposition of the error signal into its high, low and intermediate scale signal components, using the multiresolution decomposition property of the wavelets. Error signals obtained using high scale decomposition are
called *Approximations*, and those obtained using low scale decomposition are called *Details*. Each of these signal components tend to capture certain range of frequency components contained in the original error signal. For example, the high scale signal captures the low frequency information, low scale signal captures the high frequency information and the intermediate scale signals capture the intermediate frequency signal contained in the original error signal. Each of these components are multiplied by their respective gains, and then added together to generate the control signal u. This configuration of combining the signals to generate the control signal makes the MWC analogous to a Proportional-Integral-Derivative (PID) controller. The block diagram for implementation of the MWC for the motor is same as Figure 13 except

![Figure 45: Simulation response using a Multiresolution Wavelet Controller](image)

- **WAVELET**
- **PI**

TIME (SEC)

VELOCITY (RPM)
that the plant model is replaced by Figure 4. Results obtained using simulation are shown in Figure 46. In the case where disturbance was applied both plants had zero steady state error; however, MWC approached zero at a relatively faster rate. And it exhibited far better noise rejection than the PI controller as can be seen in Figure 46. Noise is an important factor that effects control system performance. It is an established fact that noise restricts the bandwidth of the control system and reduces system stability. Therefore using a MWC offers distinct advantage of improving system bandwidth and stability.

Figure 46: Effect of noise during steady state response

Unlike a PID controller, which has three tuning parameters (gains) a MWC can have two or more parameters based on the level of decomposition of the error
signal. Furthermore, MWC is very intuitive, easy to understand and tune. For a plant corrupted with high amount of measurement noise, MWC can be used to generate low and high frequency components and then as noise is high frequency component of the error signal, gain corresponding to the high frequency component can be set to zero. In a similar way higher gains have to be assigned to the lower frequency components of the MWC in order to increase the disturbance rejection of the plant.

5.9 Summary of Results

Although results for each of the techniques are discussed in their relevant section, an overall comparison and their tuning parameters are shown in this section. Nonlinear PI, acceleration feedforward and LADRC produced good results on the test setup and are plotted for comparison in Figure 47. Although ADRC and Multiresolution controller also gave good results they were not implemented on the test setup due to complexity of the algorithm and the memory and hardware limitations of the servo drive. When the nonlinear control was used along with the soft start it gave a smoother response and good disturbance rejection. The settling time was reduced to 14 msec with the additional advantage of no overshoot in the motor velocity. The -3dB bandwidth was found to increase to 72 Hz. When acceleration feed-forward was used along with NPI, best results were obtained in terms of system bandwidth. NPI gave good disturbance rejection, and the feed-forward signal improved the settling time of the response. The settling time was reduced to 10 msec, and the bandwidth was measured to be 82 Hz, which is almost 4 folds increase over the baseline system.
Figure 47: Comparison of results
It can be seen that this controller produced the smallest error signal compared to all other techniques. LADRC with the soft start gave a smooth response and good disturbance rejection and was found to have least noise content when compared to other techniques that were implemented in hardware. The settling time was found to be 14 msec with the additional advantage of no overshoot in the motor velocity. The -3dB bandwidth was found to be 72 Hz. The biggest advantage of this technique was its simplicity and ease of application. The practical aspects of the tuning parameters involved, makes this technique most user friendly.
Table 4: Parameters and comparison of results of different techniques

<table>
<thead>
<tr>
<th>h (sec)</th>
<th>DTOC</th>
<th>LADRC</th>
<th>MWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>4096</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>K</td>
<td>8192</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>K_H</td>
<td>x</td>
<td>x</td>
<td>0.025</td>
</tr>
<tr>
<td>K_L</td>
<td>x</td>
<td>x</td>
<td>0.0</td>
</tr>
<tr>
<td>K_M1</td>
<td>x</td>
<td>x</td>
<td>0.2</td>
</tr>
<tr>
<td>K_M2</td>
<td>x</td>
<td>x</td>
<td>0.2</td>
</tr>
<tr>
<td>K_p</td>
<td>x</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>W_o</td>
<td>x</td>
<td>128</td>
<td>x</td>
</tr>
<tr>
<td>b_o</td>
<td>x</td>
<td>4096</td>
<td>x</td>
</tr>
<tr>
<td>SSTime(Sec)</td>
<td>30</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>BW(Hz)</td>
<td>43</td>
<td>72</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h (sec)</th>
<th>Baseline</th>
<th>Profile</th>
<th>NPI</th>
<th>NPI with AFF</th>
<th>ADRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_P</td>
<td>2.5</td>
<td>4.5</td>
<td>15</td>
<td>12</td>
<td>0.1</td>
</tr>
<tr>
<td>K_I (msec)</td>
<td>15</td>
<td>15</td>
<td>45</td>
<td>20</td>
<td>x</td>
</tr>
<tr>
<td>K_D</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>10^-8</td>
</tr>
<tr>
<td>K_FF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.43</td>
<td>x</td>
</tr>
<tr>
<td>α_P</td>
<td>x</td>
<td>x</td>
<td>0.9</td>
<td>x</td>
<td>0.35</td>
</tr>
<tr>
<td>α_I</td>
<td>x</td>
<td>x</td>
<td>0.9</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>α_D</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.5</td>
</tr>
<tr>
<td>δ_P</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>10^-6</td>
</tr>
<tr>
<td>δ_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>δ_D</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>10^-6</td>
</tr>
<tr>
<td>α_1</td>
<td>x</td>
<td>x</td>
<td>0.9</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>α_2</td>
<td>x</td>
<td>x</td>
<td>0.9</td>
<td>x</td>
<td>0.5</td>
</tr>
<tr>
<td>α_3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.25</td>
</tr>
<tr>
<td>β_1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2000</td>
</tr>
<tr>
<td>β_2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>98000</td>
</tr>
<tr>
<td>β_3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>10^6</td>
</tr>
<tr>
<td>δ_1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>9*10^-4</td>
</tr>
<tr>
<td>δ_2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>10^-4</td>
</tr>
<tr>
<td>δ_3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.0079</td>
</tr>
<tr>
<td>SSTime(Sec)</td>
<td>60</td>
<td>40</td>
<td>14</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>BW(Hz)</td>
<td>23</td>
<td>30</td>
<td>72</td>
<td>82</td>
<td>48</td>
</tr>
</tbody>
</table>
A novel controller based on multiresolution decomposition using wavelets called the Multiresolution Wavelet Controller was developed. This controller is similar to a Proportional-Integral-Derivative controller in principle and application. The output from a control system represents the cumulative effect of uncertainties such as measurement noise, frictional variation and external torque disturbances, which manifest at different scales. The wavelet is used to decompose the error signal into signals at different scales. These signals are then used to compensate for the uncertainties in the plant. This controller is applied to different industrial applications to validate the control scheme. A scheme to compute DWT in real-time using a signal pipeline architecture is also developed.

Wavelet transform is performed on a bunch of data after it is made available to the processing engine on account of the non-causal nature of the wavelets. As
control systems require real-time signal processing in order to operate in real-time, wavelets have had limited applications in controls. In order to perform multi-level decomposition for real time operation, a novel pipeline data architecture is developed. This architecture not only provides wavelet transform in real-time, it also resolves the issue of ill-conditioned data at the boundaries.

A scheme to generate low noise differential signal using wavelets is also developed. Wavelet transforms are investigated for their ability to solve industrial control issues such as noise, disturbance, and improving loop bandwidth. Different schemes to improve existing controllers using wavelet differentiator and wavelet denoising are proposed.

Linear and non-linear algorithms including Profile modification, NPI, LADRC and TOC to solve low frequency mechanical resonance are proposed and applied on an industrial setup.

6.1 Future Work

A Novel control scheme using wavelets is developed in this research. A lot of different aspects related to this controller can be considered for future work. Further research is needed to investigate the stability of the controller. Some preliminary results on tuning the MWC are given. Further work needs to be done to investigate the tuning of both integrating and non-integrating plants. An important feature that may be added to the MWC is to investigate integration as part of the wavelet decomposition. Although integration may be added as an external feature to the
MWC, it will be desirable to investigate how integration may be performed using wavelets.

[23] Z. Gao and T. A. Trautzsch, A stable self-tuning fuzzy logic control system

APPENDIX
A. MWC CODE

In this appendix a "c" code for implementation of Multiresolution Wavelet Controller on a motion control setup are given. The code needs to be compiled using a 'TURBO C' programming compiler. Some of the header files related to the drive have to be included during compilation. If the number of decomposition levels, and the wavelet filters need to be changed for testing purposed this has to done during compile-time, as they are hard coded. However, this will just need some changes in the global variables and memory allocation to arrays. The gains of the controller can be tuned during run-time. It is often advisable to assign zero gain to the highest signal component to provide good amount of noise rejection. The midlevel components may be tuned to provide damping, to increase the transient time and the low frequency component may be tuned aggressively, to track the changes in setpoint and provide greater immunity to disturbances.

/%%

"C" Code for implementation of Multiresolution
Wavelet Controller for Servo Motor Postion Control

%% /

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <dos.h>
#include <conio.h>

#define number 1000

#define pi 3.141592653589793

 plastics
/**
 *Declaration of global functions
 */

unsigned long read_7166();

void Wavelet_decomposition(double *Signal, double *DecomposedSignal,
 double *LowFilter, double *HighFilter);

double Wavelet_Decrec(double *DecomposedSignal, double *LowFilterRec,
 double *HighFilterRec, int level);

double Wavelet_Apprec(double *DecomposedSignal, double *LowFilterRec);

void Convolution(double *Signal, double *Filter, double *Convolved_Signal,
 int SignalLength);

void Upsampling(double *Signal, double *SampledSignal, int SignalLength);

void DownSampling(double *Signal, double *SampledSignal, int SignalLength);
static const long length_of_filter=8;
static const long Signal_length=64;
static const long NoOfLevels=5;
static const long DecomposedSignalLengths[] = {64, 35, 21, 14, 10, 8, 8};
static const long RecSignalLengths[] = {8, 10, 14, 21, 35, 71};
static const long RecSignalIndex[] = {88, 80, 70, 56, 35, 0};

/*****************************/

void main(){
 double Kp, Kd, Ki, h;
 double KA5, KD5, KD4, KD3, KD2, KD1, ControlSignal=0;
 double ErrorBufferSignal[64];
 double Signal[64];
 double Convolved_Signal[100];
 double DecomposedSignal[100];
 double ReconstructedSignal[6];
 double LowFilter[] = {-0.0106, 0.0329, 0.0308, -0.1870, -0.0280, 0.6309, 0.7148, 0.2304};
 double HighFilter[] = -0.2304, 0.7148, -0.6309, -0.0280, -0.1870, 0.0308, -0.0329, -0.0106;
 double LowFilterRec[] = 0.2304, 0.7148, 0.6309, -0.0280, -0.1870, 0.0308, 0.0329, -0.0106;
 double HighFilterRec[] = -0.0106, -0.0329, 0.0308, 0.1870, -0.0280, -0.6309,
0.7148, -0.2304;

int index, Index1;
double y, y0, ysp=0, V_max, e, e_1, e_dot, e_integral, t_sec=0, t1, u, out,

ysp_buffer=0, scale, y_buffer=0;

long t_previous, t_current, position;

int time_count;

int i=0, k, first=1, flag=0;
char buff[10];
double time[number], control[number], feedback[number],

error[number], error_dot[number];

FILE *fp, *Stream;

init_DAC();

for (i=0; i<100; i++)
 DecomposedSignal[i]=0;

for (i=0; i<6; i++)
 ReconstructedSignal[i]=0;

for (i=0; i<number; i++)
{
 time[i]=0;
 control[i]=0;
feedback[i]=0;
error[i]=0;
error_dot[i]=0;
}

for (index =0; index<Signal_length; index++)
 ErrorBufferSignal[index]=0.0;

fp = fopen("wav1.out","w"); /* open file for saving data */
if (fp==NULL) {
 printf("Can’t create the output file wav1.out\n");
 exit(1);
}

Stream = fopen("wav.out","w"); /* open file for saving data */
if (Stream==NULL) {
 printf("Can’t create the output file wav.out\n");
 exit(1);
}

printf("\n Input how many revolutions to go [default 1]: ");
gets(buff);
if (strlen(buff) == 0) y0=1;
else

 y0 = atof(buff);

V_max = 7.0;
Kp = 2.8;
Kd = 1.5;
Ki = 0.0001;

printf("\n KA5 [default 7.5]: "); /* 7.5, 30, 30 for 5 level decomposition*/
gets(buff);
if (strlen(buff) == 0) KA5 = 7.5;
else

 KA5 = atof(buff);

printf("\n KD5 [default 30]: ");
gets(buff);
if (strlen(buff) == 0) KD5 = 30;
else

 KD5 = atof(buff);

printf("\n KD4 [default 30]: ");
gets(buff);
if (strlen(buff) == 0) KD4 = 30;
else

 KD4 = atof(buff);
KD4 = atof(buff);

printf(" Program running...
");
printf(" Press any key to exit.
");

init_7166();
init_8254();
i=0;
e_1 = 0;
e_integral = 0;
t1 = 3*pi*y0/V_max;
t_previous = read_8254();
delay(15);

while(kbhit()) {
 for (k=0; k<10; k++) {
 t_current=read_8254(); /* decide step size */
 if (t_current<t_previous) t_previous+=65536;
 time_count=(int)(t_previous-t_current);
 h=(double)time_count/1193180.0;
 if (first) h = 0.001;
 t_previous=t_current;
 t_sec+=h;
if (t_sec == t1/3) ysp = 3*V_max/t1/2*t_sec*t_sec;
else
 if (t_sec == 2*t1/3) ysp = V_max * t1/6 + V_max * (t_sec-t1/3);
 else
 if (t_sec==t1) ysp = V_max * t1/2
 +((t_sec-2*t1/3)*t1-(t_sec*t_sec-4*t1*t1/9)/2)*3*V_max/t1;
 else
 ysp = 2*V_max*t1/3;
position = read_7166() - (unsigned long) 0x080800000;
y = (double)(position*2*pi/16000.0); /* obtain current position */
e = ysp - y;
e_integral = e_integral + e;
e_dot = e - e_1;
e_1 = e;
if (first) {
 first = 0;
 continue;
}
for (index=0; index ≤ 30; index ++){ /* Save the Error Buffer */
 ErrorBufferSignal[index]=ErrorBufferSignal[index+1];
 ErrorBufferSignal[63-index]=ErrorBufferSignal[62-index];
ErrorBufferSignal[31] = e;
ErrorBufferSignal[32] = e;

for (index = 0; index < Signal_length; index++) {
 Signal[index] = ErrorBufferSignal[index];
}

/* Decompose the signal */
Wavelet_decomposition(Signal, DecomposedSignal, LowFilter, HighFilter);

switch(flag) {
 case 0:
 {
 ReconstructedSignal[0] = Wavelet_Apprec(DecomposedSignal, LowFilterRec);
 flag = 1;
 }
 break;
 case 1:
\{
 \text{ReconstructedSignal}[1]=\text{Wavelet-Decrec}(\text{DecomposedSignal},
 \text{LowFilterRec}, \text{HighFilterRec},0);
 \text{flag}=2;
\}
break;
case 2:
\{
 \text{ReconstructedSignal}[2]=\text{Wavelet-Decrec}(\text{DecomposedSignal},
 \text{LowFilterRec}, \text{HighFilterRec},1);
 \text{flag}=0;
\}
break;
default:
 break;
\}
\text{ControlSignal} = \text{KA5} \times \text{ReconstructedSignal}[0] + \text{KD5} \times \text{ReconstructedSignal}[1]
+ \text{KD4} \times \text{ReconstructedSignal}[2];

if (\text{ControlSignal} > 3.5) \text{ControlSignal} = 3.5;
if (\text{ControlSignal} < -3.5) \text{ControlSignal} =-3.5;
\text{out}=5.0\times\text{ControlSignal}/7.0+2.5;
\text{DAC}_\text{out}(\text{out});
if (i < number) { /* keep data for saving */
 fprintf(Stream, "%.f %.f %.f; n", ReconstructedSignal[0],
 ReconstructedSignal[1], ReconstructedSignal[2]);
 time[i] = t_sec;
 control[i] = ysp;
 feedback[i] = y;
 error[i] = e;
 error_dot[i] = ControlSignal;
 i = i + 1;
}
else
 goto exit1;
}

exit1:
 init_DAC();
 for (i=0; i<number; i++)
 fprintf(fp,"%.f %.f %.f %.f; n", time[i], control[i], feedback[i],
 error[i], error_dot[i]);
 fclose(fp);
 fclose(Stream);
printf(”\n Program completed \n”);
} /* end of main */

/****************************
/* Function Decomposition */
/* Given a Signal it computes wavelet coefficients */

void Wavelet_decomposition(double *Signal, double *DecomposedSignal, double *LowFilter, double *HighFilter)
{
 int index,index1, SIndex, tempIndex=0;
 double AppSignal[80], DecSignal[80];

 for (index=0; index<NoOfLevels; index++) {
 Convolution(Signal, LowFilter, AppSignal, DecSignalLengths[index]);
 Convolution(Signal, HighFilter, DecSignal, DecSignalLengths[index]);
 DownSampling(AppSignal,Signal, DecSignalLengths[index+1]);
 DownSampling(DecSignal,DecSignal, DecSignalLengths[index+1]);

 for (SIndex=0; SIndex< DecSignalLengths[index+1]; SIndex++){
 DecomposedSignal[SIndex+tempIndex]= DecSignal[SIndex];
 }
 tempIndex = tempIndex+DecSignalLengths[index+1];
 }
for (SIndex=0; SIndex<DecSignalLengths[index+1]; SIndex++)
 DecomposedSignal[SIndex+tempIndex]= Signal[SIndex];

/
* Function for Reconstruction of Approximate Signal from coefficients */

double Wavelet_Apprec(double *DecomposedSignal, double *LowFilterRec)
{
 int index, SIndex, subSIndex;
 double appsignal[100], convolvedsignal[100], buffersignal[100];

 for (index=0; index<RecSignalLengths[0]; index++)
 appsignal[index] = DecomposedSignal[RecSignalIndex[0]+index];

 for (index=0; index<NoOfLevels; index++)
 {
 Upsampling(appsignal, buffersignal, RecSignalLengths[index]);
 Convolution(buffersignal, LowFilterRec, convolvedsignal, 2*ReconstructedSignalLengths[index]);
 for (SIndex=0; SIndex<RecSignalLengths[index+1]; SIndex++)
 {
 appsignal[SIndex]=convolvedsignal[SIndex+length_of_filter-1];
 }
 }
 return appsignal[31];
}
/ Function for Reconstruction of Detail Signal from coefficients */
*/ level=0 => Detail Signal at Nth Level, level=1 => Detail Signal at N-1 Level... */

double Wavelet_Decrec(double *DecomposedSignal, double *LowFilterRec,
 double *HighFilterRec, int level)
{
 int index, SIndex, SIndex2, SIndex3, SIndex4, tempIndex=0;
 double detsignal[100],convolvedsignal[100],buffersignal[100];

 tempIndex=RecSignalIndex[level+1];
 for(SIndex=0; SIndex<RecSignalLengths[level] ; SIndex++){
 detsignal[SIndex]=DecomposedSignal[SIndex+tempIndex];
 }

 for (SIndex3=level; SIndex3<NoOfLevels; SIndex3++){
 Upsampling(detsignal,buffersignal, RecSignalLengths[SIndex3]);

 if (SIndex3==level)
 Convolution(buffersignal,HighFilterRec,convolvedsignal,
 2*RecSignalLengths[SIndex3]);
 else
 Convolution(buffersignal,LowFilterRec,convolvedsignal,
 2*RecSignalLengths[SIndex3]);
 }
}
for(SIndex4=0; SIndex4<RecSignalLengths[SIndex3+1]; SIndex4++){
 detsignal[SIndex4]=convolvedsignal[SIndex4+length_of_filter-1];
}
}

return detsignal[31];

/* Function to upsample a signal */
void Upsampling(double *Signal, double *SampledSignal, int SignalLength)
{
 int index;

 for (index=0; index < SignalLength; index++){
 SampledSignal[2*index+1]=Signal[index];
 SampledSignal[2*index]=0;
 }
}

/* Function to Compute convolution using a signal and a filter */
void Convolution(double *Signal, double *Filter, double *Convolved_Signal,
 int signallength)
{
 }
int index, SIndex;

double Buffer_Signal[100], sum=0.0;

for (index=0; index < (signalLength+2*length_of_filter); index++){
 Buffer_Signal[index]=0.0;
}

for (index=0; index < (signalLength); index++){
 Buffer_Signal[length_of_filter+index]=Signal[index];
}

for (index=0; index < (signalLength+length_of_filter); index++){
 sum=0.0;

 for (SIndex=0; SIndex < length_of_filter; SIndex++){
 sum+= Filter[SIndex]*Buffer_Signal[length_of_filter+index-SIndex];
 }

 Convolved_Signal[index]=sum;
}

/* Function to downsample a signal */

void DownSampling(double *Signal, double *SampledSignal, int SignalLength) {

}
int index;

for (index=0; index<SignalLength ; index++){
 SampledSignal[index] = Signal[index*2+1];
}

for (index=SignalLength; index<2*SignalLength ; index++){
 SampledSignal[index] =0.0;
}

="/**/

```
# B. WAVELET FILTERS

Table 5: Coefficients of Daubechies wavelet filters

<table>
<thead>
<tr>
<th>l</th>
<th>( h ) for D(2)</th>
<th>( h ) for D(4)</th>
<th>( h ) for D(6)</th>
<th>( h ) for D(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7071</td>
<td>0.4830</td>
<td>0.3327</td>
<td>0.2304</td>
</tr>
<tr>
<td>1</td>
<td>0.7071</td>
<td>0.8365</td>
<td>0.8069</td>
<td>0.7148</td>
</tr>
<tr>
<td>2</td>
<td>0.2241</td>
<td>0.4599</td>
<td>0.6309</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.1294</td>
<td>-0.1350</td>
<td>-0.0280</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.0854</td>
<td>-0.1870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0352</td>
<td>0.0308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.0329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-0.0106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients of Symlet wavelet Filters

<table>
<thead>
<tr>
<th>l</th>
<th>( h ) for Sym(2)</th>
<th>( h ) for Sym(4)</th>
<th>( h ) for Sym(6)</th>
<th>( h ) for Sym(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7071</td>
<td>0.4830</td>
<td>0.3327</td>
<td>0.0322</td>
</tr>
<tr>
<td>1</td>
<td>0.7071</td>
<td>0.8365</td>
<td>0.8069</td>
<td>-0.0126</td>
</tr>
<tr>
<td>2</td>
<td>0.2241</td>
<td>0.4599</td>
<td>0.4599</td>
<td>-0.0992</td>
</tr>
<tr>
<td>3</td>
<td>-0.1294</td>
<td>-0.1350</td>
<td>-0.1350</td>
<td>0.2979</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-0.0854</td>
<td>0.8037</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.0352</td>
<td>0.4976</td>
<td>-0.0296</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>-0.0758</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Coefficients of Coiflet wavelet filters

<table>
<thead>
<tr>
<th>l</th>
<th>$h$ for Coiflet(6)</th>
<th>$h$ for Coiflet(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.0727</td>
<td>0.0164</td>
</tr>
<tr>
<td>1</td>
<td>0.3379</td>
<td>-0.0415</td>
</tr>
<tr>
<td>2</td>
<td>0.8526</td>
<td>-0.0674</td>
</tr>
<tr>
<td>3</td>
<td>0.3849</td>
<td>0.3861</td>
</tr>
<tr>
<td>4</td>
<td>-0.0727</td>
<td>0.8127</td>
</tr>
<tr>
<td>5</td>
<td>-0.0157</td>
<td>0.4170</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.0765</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-0.0594</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.0237</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.0056</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-0.0018</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-0.0007</td>
</tr>
</tbody>
</table>
INDEX

Acceleration, 6, 16
Active Disturbance Rejection Control(ADRC), 76, 77, 81
Basis, 25
Best Basis, 40
Compliantly-coupled, 6
Conjugate, 26, 29, 30
Daubechies, 29, 35, 44
Decomposition, 25, 29, 30
Decomposition Analysis, 30
Decomposition Synthesis, 30
Detail, 29, 30
Disturbance, 11, 35, 52, 70
Extended State Observer(ESO), 76, 77
External disturbances, 3, 35
Feed-forward, 73
Feedback, 16
Fourier, 20
Fourier Transform, 21
Friction, 6, 7
Generalized Multiresolution Controller(GMC), 45, 46
Inertia, 6, 13
Instability, 6, 9, 64
Linear Active Disturbance Rejection Control(LADRC), 84
Measurement noise, 3
Mechanical damping, 7
Multiresolution, 24
Multiresolution Wavelet Controller(MWC), 3, 18, 33, 35, 43, 45, 47, 86
Newton, 6
Nonlinear Control, 46
Observer, 16
Parameterization, 4, 79, 84
PID, 3, 8, 18, 32, 35, 49
Process dynamics, 3

120
Profile, 66
Profile modification, 4
Resonance, 2, 12, 13
Scaling Function, 30
Servo gains, 4
Stability, 15, 63
Sub-band Coding, 30
Time optimal control(TOC), 73
Torque, 6
Transfer function, 32
Trend, 29, 30
Wavelet Differentiator, 54
Wavelet Transform, 22, 23, 27, 32
Wavelets, 19, 23, 27, 30, 39