
SHORT TUTORIAL ON FPRO SYSTEM DEVELOPMENT 37

Note On Update (May 2018)

The original tutorial of the software derivation of the text is based on Xilinx Vi-
vado/SDK version 2016. The procedure to embed the elf file to MicroBlaze MCS
configuration bit stream is cumbersome and slow. The newer versions streamline
the process. Subsections A.5.3 to A.5.6 are updated to demonstrate the features of
the new version.

A.5 SHORT TUTORIAL ON FPRO SYSTEM DEVELOPMENT

The FPro system development involves the derivation of hardware and software.
The procedure consists of following steps:

1. Create a design project.
2. Add or create a MicroBlaze MCS instance.
3. Add or create HDL codes with an MCS instance.
4. Add a constraint file.
5. Perform synthesis, implementation, and bitstream generation.
6. Export hardware configuration.
7. Derive software and generate the executable file (elf file).
8. Set up a terminal emulator program.
9. Embed the elf file into FPGA’s memory module, regenerate bitstream, and

Program an FPGA device.

The procedure expands the previous hardware development procedure in Section A.2
and incorporates three additional steps (Steps 6, 7, and 8) to accommodate the soft-
ware development. The tutorials of the three steps are provided in the following
subsections.

Note that Vivado Design Suite can serve as a platform for SoC development.
The IP Integrator process of Flow Navigator is for this purpose. However, the plat-
form is intended for full-featured MicroBlaze and AXI-based IP cores. Support for
MicroBlaze MCS is limited and its development does not follow Vivado’s general
IP-based flow. The FPro system in the book is constructed from scratch and does
not use any Vivado’s built-in IP integration facilities.

A.5.1 Derive FPro system hardware

We use the vanilla FPro system discussed in Section 10.7 for the tutorial. The
cpu.xci IP file and HDL files can be found in the companion website. The FPro
system hardware can be derived as follows:

1. Create a design project: same as in Section A.2.1.
2. Add a MicroBlaze MCS instance: add cpu.xci to project. The .xci may

need to be updated for the new Vivado version. Follow the procedure in
Section A.4.3 to recreate the instance if needed.

3. Add HDL codes: add the following HDL files:

• Top-level design and slot definition: mcs top vanilla and chu io map

• MMIO subsystem and bridge: mmio sys vanilla, chu mmio controller,
and chu mcs bridge

• GPI, GPO, and timer MMIO cores: chu gpi, chu gpo, and chu timer



38 TUTORIALS

• UART core: chu uart, uart, uart rx, uart tx, baud gen, fifo, fifo ctrl,
and reg file

4. Add a constraint file: same as in Section A.2.4.
5. Perform synthesis, implementation, and bitstream generation: same as in

Section A.2.5.

A.5.2 Export hardware configuration

Many features of MicroBlaze MCS core can be customized and thus the config-
uration of each instance can be different. This configuration information can be
obtained and encapsulated in a hardware description file. In Vivado version 2016,
the file can be obtained as follows:

1. Select the File � Export � Export Hardware... menu and a subwindow appears.
2. In the Export to field, navigate to destination folder and then click the Ok

button.
3. The hardware description file (with the extension of .hdf) is generated in the

designated folder.

Since an FPro system is designed manually from scratch and not from IP Integrator,
the hardware description file only contains the information about the MicroBlaze
MCS configuration, not the entire FPro system. Thus, this step does not need to
be repeated if the same MicroBlaze MCS instance is used.

A.5.3 Derive software

We use Xilinx SDK (software development kit) as the platform for software devel-
opment. It is based on Eclipse IDE (integrated development environment) with
a custom Xilinx plug-in module. A typical Xilinx SDK window is shown in Fig-
ure A.13. The basic software model constitutes a three-layer hierarchy:

• Hardware platform specifications
• BSP (board support package)
• Application program

An embedded system is built around a specific application and its configuration
is tailored to support the application. Hardware platform specification is the bot-
tom layer that captures the relevant hardware information required for software
development and deployment. BSP is the middle layer. It is a software library
that contains drivers and start-up routines based on the information from a spe-
cific hardware platform specification file. The term is borrowed from traditional
embedded system development, in which the system is usually realized by a custom
printed circuit board. An application program is the top-layer that uses the routines
in the BSP library to access hardware.

This software model is automated for a system derived from Vivado’s IP Integra-
tor. Since the FPro system is designed from scratch, the first two layers are just
for MicroBlaze MCS and the BSP only contains a start-up routine. We need to
manually include the software I/O drivers in an application program.

The software development constructs the three layers in sequence. The basic
steps are the following:

1. Select Xilinx SDK from the Windows start menu or click on the SDK icon.
Do not launch it from Vivado.



SHORT TUTORIAL ON FPRO SYSTEM DEVELOPMENT 39

Figure A.13 Xilinx SDK.

2. Create or select a workspace.
3. Select File � New � Others and a window appears. Expand the Xilinx folder

and then select Hardware Platform Specification. The New Hardware Project
dialog appears.

(a) Enter a name, say mcs cpu platform, for the hardware project.
(b) Click on Bitstream and BMM/MMI Files to expand the panel, as shown

in Figure A.14.
(c) In Bitstream field, navigate to the Vivado implementation folder (nor-

mally proj name.runs/impl 1) and select the .bit file.
(d) In BMM/MMI field, navigate to the Vivado implementation folder and

select the .mmi file.
(e) In Target Hardware Specification field, navigate to the destination folder

specified in Section A.5.2 and select the .hdf file. Click Finish to generate
the hardware platform specifications. The new hardware platform folder
appears on the Project Explorer subwindow.

4. Select File � New � Board Support Package and a dialog appears. Enter a
name, say mcs cpu bsp, for the BSP project, select the previously created
mcs cpu platform in Target Hardware, and then select standalone for the OS



40 TUTORIALS

Figure A.14 Hardware project dialog.

field, as shown in Figure A.15. Click finish to generate BSP. The new BSP
folder appears the Project Explorer subwindow.

5. Select File � New � Application Project and a dialog appears. Enter a
name, say vanilla test, for the application project, select the previously cre-
ated mcs cpu platform and mcs cpu bsp, and then click on C++ button, as
shown in Figure A.16. Click Finish to create a new application project. The
new application project folder appears in the Project Explorer subwindow.

6. Import the main program file and driver files discussed in Chapter 9. An easy
way to do this is to open Windows File Explorer and drag these files into the
src folder. The Project Explorer subwindow of the completed project is shown
in Figure A.17.

7. By default, Xilinx SDK is configured to build a project automatically and
thus the vanilla test.elf file is compiled and linked automatically after the files
are dragged into the project. Note that the file size is displayed in the console
tab, shown in Figure A.18.

A.5.4 Set up a terminal emulator program

To display the UART output character stream, a terminal emulator program is
needed. We use a program, PuTTY, for this purpose. PuTTY is a telnet client and
can be downloaded for free. The procedure to set up PuTTY is as follows:



SHORT TUTORIAL ON FPRO SYSTEM DEVELOPMENT 41

Figure A.15 BSP project dialog.

Figure A.16 Application project dialog.



42 TUTORIALS

Figure A.17 Project Explorer subwindow.

Figure A.18 File size information.



SHORT TUTORIAL ON FPRO SYSTEM DEVELOPMENT 43

Figure A.19 PuTTY screen.

1. Connect the Nexys 4 DDR board to the PC’s USB port and turn on the power
of the board. The PC should recognize the FT2232 device of the board and
treat the connection as a serial port.

2. In Windows, open Control Panel, select Device Manager, and expand Ports
(COM & LPT). The board should be listed as one of the serial ports, labeled
as USB Serial Port (COMn), where n is the designated serial port (i.e., COM
port) number. Record this number.

3. Invoke the PuTTY program. In its application window, select the Serial
button for serial port and enter the previous recorded COMn in the Serial line
field. Make sure that the 9600 baud rate is specified in the Speed field. The
completed configuration screen is shown in Figure A.19.

4. Click the Open button and the terminal window appears.

A.5.5 Embed elf file, regenerate bitstream, and program an FPGA device

After the elf file is generated, it can be used as the initial values of FPGA’s BRAMs
and embedded into the module definitions. The bitstream needs to to regenerated
and the new bit file can be downloaded to an FPGA device. In version 2016, this
task must be performed within Vivado Suite. In version 2017 or later, it can also
be invoked directly from Xilinx SDK.

Vivado based process The steps are as follows:

1. In Vivado Design Suite, select the Tools � Associate ELF Files... menu and a
dialog appears.

2. Navigate to thefolder and select vanilla test.elf and then click OK. The file will
be shown under the ELF subfolder of the Design Sources folder in the Sources
subwindow.

3. Follow the procedure in Section A.2 to regenerate the bit file.



44 TUTORIALS

Figure A.20 Program FPGA dialog

4. Follow the procedure in Section A.2 to download the bit file to an FPGA
device.

The program starts upon completion and the UART character data stream from
the FPGA board will be displayed in PuTTY window.

SDK based process The steps are as follows:

1. In Xilinx SDK, select the Xilinx Tools � Program FPGA menu and a dialog
appears, as shown in Figure A.20. Verify that the desired hardware platform,
bit stream file, and mmi file are correct.

2. In the Software Configuration subpanel, click the microblaze 1 row.
3. Click the Program button to regenerate the bit file and download it an FPGA

device.

The application program starts upon completion and the UART character data
stream from the FPGA board will be displayed in PuTTY window.

Comparison The SDK based process separates the software development from Vi-
vado Suite and does not reinvoke the time-consuming implementation (i.e., placement-
and-routing) process. It is the preferred method.

A.5.6 Subsequent software application development

A complete FPro hardware implementation can be encompassed in three files:

1. .hdf (hardware description) file
2. .mmi (memory map info) file
3. .bit file

The software development can be done with these files in Xilinx SDK alone. As
long as the hardware portion remains the same, Vivado Suite does not needed to
be invoked.


