Figure C-1 (p. 907)
MATLAB window showing how to access Simulink. The Simulink Library Browser button is shown circled.
Figure C-2 (p. 908)
(a) Simulink Library Browser window showing the Create a new model button encircled; b. resulting untitled model window.
Figure C-3a&b (p. 909)
Simulink block libraries: a. Continuous systems; b. Sources.
Figure C-3c (p. 909)

(c) Sinks
Figure C-4 (p. 910)
Simulink Block Library window.
Figure C-5 (p. 912)
Simulink block diagram for Example C1.
Figure C-6a&b (p. 913)
Block Parameters window for a. 1-volt step source; b. gain.
Figure C-6c&d (p. 913)

Block Parameters window for c. transfer function 1; d. mux.

Control Systems Engineering, Fourth Edition by Norman S. Nise
Copyright © 2004 by John Wiley & Sons. All rights reserved.
Figure C-7a&b (p. 914)
Figure C-7c&d (p. 914)
Windows for the scope: c. ‘Scope’ parameters, Data history tab; d. ‘Scope’ properties: axis 1.
Figure C-8 (p. 914)
Simulation Parameters window for Solver tab
Figure C-9 (p. 915)
Scope window after Example C.1 simulation stops
Figure C-10 (p. 916)
Simulink block diagram for Example C.2
Figure C-11 (p. 916)
(a) Simulink library for nonlinearities; (b) parameter settings for saturation
Figure C-12 (p. 917)
Scope window after simulation of Example C. stops. The lower curve is the output with saturation.
Figure C-13 (p. 918)
a. Simulation block diagram for a feedback system with saturation;
b. block parameter window for the summer
Figure C-14 (p. 919)
Simulation output for Example C.3
Figure C-15 (p. 919)
Simulink block diagram for simulating digital systems two ways.
Figure C-16 (p. 919)
Simulink library of discrete blocks
Figure C-17 (p. 920)
Block Parameter windows for **a. Zero-Order Hold** block; **b. Discrete Transfer Fcn** block.
Figure C-18 (p. 920)
Outputs of the digital systems
Figure D-1 (p. 924)
LTI Viewer showing right click pop-up menu
Figure D-2 (p. 926)
LTI Viewer used for step response:

a. M-file;
b. LTI Viewer
Figure D-3 (p. 927)
LTI Viewer used for Nyquist diagram:
 a. M-file;
 b. LTI Viewer
Figure D-4 (p. 928)
LTI Viewer used for Bode plot:

a. M-file;
b. LTI Viewer
Figure D-5 (p. 929)
LTI Viewer used for Nichols chart:

a. M-file;

b. LTI Viewer
Figure D-6 (p. 930)
LTI Viewer used for digital step response:

a. M-file;
b. LTI Viewer
Figure D-7 (p. 932)
(a) Model_Inputs_and_Outputs window.
(b) Simulink model window showing Input Point and Output Point.
Figure D-8 (p. 933)

Operating Point window
Figure D-9 (p. 933)
Simulink LTI Viewer after selecting Get Linearized Model
Figure D-10 (p. 935)
SISO Design Tool window

Use Import Model... off the File menu to import the plant data.
Figure D-11 (p. 935)
The Import System Data window showing G selected as the plant.
Figure D-12 (p. 936)
SISO Design Tool window
Figure D-13 (p. 937)
SISO Design Tool window toolbar
Figure F.1
Current-carrying wire in a magnetic field

Force = F
Current = i
Magnetic field = B

North pole

South pole
Figure F.2

a. Current-carrying wire on a rotor;
b. current-carrying wire on a rotor with commutation and coils added to the permanent magnets to increase magnetic field strength
Figure F.3
Magnetic flux density passing through a loop of wire on an armature
Figure F.4
DC motor circuit diagram