Dynamic Generation and Refinement of Concept Hierarchies for
Knowledge Discovery in Databases *

Jiawei Han and Yongjian Fu
School of Computing Science
Simon Fraser University

Burnaby, B.C., Canada V5A 156
{han, yongjian}@cs.sfu.ca

Abstract

Concept hierarchies organize data and concepts in hierarchical forms or in certain partial order, which
helps expressing knowledge and data relationships in databases in concise, high level terms, and thus, plays
an tmportant role in knowledge discovery processes. Concept hierarchies could be provided by knowledge
engineers, domain experts or users, or embedded in some data relations. However, it is sometimes desir-
able to automatically generate some concept hierarchies or adjust some given hierarchies for particular
learning tasks. In this paper, the issues of dynamic generation and refinement of concept hierarchies are
studied. The study leads to some algorithms for automatic generation of concept hierarchies for numer-
tcal attributes based on data distributions and for dynamic refinement of a given or generated concept
hierarchy based on a learning request, the relevant set of data and database statistics. These algorithms
have been implemented in the DBLearn knowledge discovery system and tested against large relational
databases. The experimental results show that the algorithms are efficient and effective for knowledge
discovery in large databases.

Keywords: Knowledge discovery in large databases, discovery methods, KDD system implementation, al-
gorithms, dynamic generation and refinement of concept hierarchies.

1 Introduction

With the rapid growth in size and number of available databases in commercial, industrial, administrative
and other applications [5], it is necessary and interesting to examine how to extract knowledge automatically
from huge amounts of data. By extraction of knowledge in databases, large databases will serve as a rich,
reliable source for knowledge generation and verification, and the discovered knowledge can be applied to
information management, query processing, decision making, process control and many other applications.
Therefore, knowledge discovery in databases (or data mining) has been considered as one of the most important
research topics in 1990s by both machine learning and database researchers [17, 20].

There are different philosophical considerations on knowledge discovery in databases (KDD) [5, 23], which
may lead to different methodologies in the development of KDD techniques [5, 11, 6, 18, 1, 21, 22, 23].

In our previous studies [2, 7, 8], an attribute-oriented induction method has been developed for knowledge
discovery in relational databases. The method integrates a machine learning paradigm, especially learning-
from-ezamples techniques, with database operations and efficiently extracts generalized data from actual
data in databases. The method is based on the following assumptions in data mining.

First, it assumes that a database stores a large amount of information-rich, relatively reliable and stable
data. The assumption on data reliability and stability motives the development of knowledge discovery
mechanisms firstly in relatively simple situations and then evolution of the techniques step-by-step towards
more complicated ones. Secondly, it assumes that a knowledge discovery process is initiated by a user’s

*The research was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada and
the Center for Systems Science of Simon Fraser University.

learning request. User-directed learning may lead to guided discovery with a focus on the interested set of
data and therefore represents relatively constrained search for the desired knowledge. Thirdly, it assumes
that generalized rules are expressed in terms of high level concepts for simplicity, conciseness and clarity.
Fourthly, it assumes that background knowledge, such as conceptual hierarchies, etc., is generally available for
knowledge discovery process. The availability of relatively strong background knowledge not only improves
the efficiency of a discovery process but also expresses user’s preference for guided generalization, which may
lead to an efficient and desirable generalization process.

Following these assumptions, the attribute-oriented induction mechanism can be outlined as follows.
First, a knowledge discovery process is initiated by a learning request, which is usually in relevance to only
a subset of data in a database. A data retrieval process is initiated to collect the set of relevant data.
Second, generalization is performed on the set of retrieved data using the background knowledge and a set of
generalization operators. Third, the generalized data is simplified and transformed into a set of generalized
rules for different applications. Clearly, background knowledge, especially concept hierarchies, plays an
important role in efficient and successful induction in databases.

Concept hierarchies could be provided by knowledge engineers, domain experts or users, or embedded in
some data relations. However, it is sometimes desirable to automatically generate some concept hierarchies
or adjust some given hierarchies for particular learning tasks. In this paper, some algorithms are developed
for automatic generation of concept hierarchies for numerical attributes based on data distributions and for
dynamic refinement of a given or generated concept hierarchy based on a learning request, the relevant set
of data and database statistics. Moreover, the methods for automatic generation of concept hierarchies for
discrete-valued attributes are also considered in the discussion. The algorithms presented in this paper have
been implemented in the DBLearn knowledge discovery system and tested against large relational databases.
The experimental results show that the algorithms are efficient and effective for knowledge discovery in large
databases.

The paper is organized as follows. In Section 2, concept hierarchy and its role in knowledge discovery
in databases are introduced. In Section 3, algorithms for dynamic refinement of concept hierarchies are
presented. In Section 4, algorithms for automatic generation of concept hierarchies for numerical attributes
are presented. In Section 5, automatic generation of concept hierarchies for nominal data is discussed and
the experiments on relational databases are explained. Our study is summarized in Section 6.

2 Concept hierarchy and its role in knowledge discovery in databases

2.1 Concept hierarchies

A concept hierarchy defines a sequence of mappings from a set of lower-level concepts to their higher-level
correspondences. Such mappings may organize the set of concepts in partial order, such as in the shape
of a tree (a hierarchy, a taxonomy), a lattice, a directed acyclic graph, etc., although they are still called
“hierarchies” for convenience.

A concept hierarchy can be defined on one or a set of attribute domains. Suppose a hierarchy H is defined
on a set of domains D, ..., Dy, in which different levels of concepts are organized into a hierarchy. The
concept hierarchy is usually partially ordered according to a general-to-specific ordering. The most general
concept is the null description (described by a reserved word “ANY”); whereas the most specific concepts
correspond to the specific values of attributes in the database.

Formally, we have
H:Djx- - xDy=H_1= - = Hy, (21)

where Hj represents the set of concepts at the primitive level, H;_; represents the concepts at one level higher

than those at Hj, etc., and Hy, the highest level hierarchy, may contain solely the most general concept,
((ANY?? .

Since concept hierarchies define mapping rules between different levels of concepts, they are in general
data- or application-specific. Many concept hierarchies, such as birthplace (city, province, couniry), are
actually stored implicitly in the database, such as in different attributes or different relations, which can be

made explicit by specifying certain attribute mapping rules. Moreover, some concept mapping rules can be
specified by deduction rules or methods (such as in object-oriented databases) and be derived by deduction
or computation. For example, the floor area of a house can be computed from the dimensions of each segment
in the house by a spatial computation algorithm, and then mapped to a high level concept, such as small,
large, etc. defined by deduction rules.

The mappings of a concept hierarchy or a portion of it may also be provided explicitly by a knowledge
engineer or a domain expert. For example, “status: {freshman, sophomore, junior, senior} — undergrad-
uate”, “annual income: {1,000, ..., 25,000} — low_income”, etc., can be specified by domain experts.
This is often reasonable even for large databases since a concept hierarchy registers only the distinct discrete
attribute values or ranges of numerical values for an attribute which are, in general, not very large and
can be specified by domain experts. Furthermore, some concept hierarchies can be discovered automatically
[4, 7].

Different concept hierarchies can be constructed on the same attribute(s) based on different viewpoints or
preferences. For example, the birthplace could be organized according to administrative regions, geographic
locations, size of cities, etc. Usually, a commonly referenced concept hierarchy is associated with an attribute
as the default one. Other hierarchies can be chosen explicitly by preferred users in a learning process. Also, it
is sometimes preferable to perform induction in parallel along more than one concept hierarchy and determine
an appropriate representation based on later generalization results.

2.2 Attribute-oriented induction in relational databases

Since this study is on automatic generation and dynamic refinement of concept hierarchies in a knowledge
discovery system, we first briefly introduce the attribute-oriented (A-O) induction method [2, 7] implemented
in the DBLearn system [9]. The induction method was firstly presented in [2] and has been substantially
enhanced in the later system development [9].

Different kinds of rules, including characteristic rules, discriminant rules, data evolution regularities,
etc., can be discovered by the DBLearn system. A characteristic rule is an assertion which characterizes a
concept satisfied by all or most of the examples in the class undergoing learning (called the target class). For
example, the symptoms of a specific disease can be summarized by a characteristic rule. A discriminant rule
is an assertion which discriminates a concept of the class being learned (the target class) from other classes
(called contrasting classes). For example, to distinguish one disease from others, a discriminant rule should
summarize the symptoms that discriminate this disease from others. A data evolution regularity rule is an
assertion which describes the general properties of a set of data in the database which change with time.

A relation which represents intermediate (or final) learning results is called an intermediate (or a final)
generalized relation. In a generalized relation, some or all of its attribute values are generalized data, that
is, nonleaf nodes in the concept hierarchies. An attribute in a (generalized) relation is at a desirable level if
it contains only a small number of distinct values in the relation. A user or an expert may like to specify a
small integer as a desirable attribute threshold for an attribute. Such a threshold can also be set as a default
by the system. In this case, an attribute is at the desirable level if it contains no more distinct values than
its attribute threshold. Moreover, the attribute is at the minimum desirable level if it would contain more
distinct values than the threshold if it were specialized to a level lower than the current one. A special
generalized relation R’ of an initial relation R is the prime relation of R if every attribute in R’ is at the
minimum desirable level.

To deal with exceptions and noises, each tuple in generalized relations is attached with a count which is
the number of tuples in the original relation which are generalized to the current generalized tuple.

A set of basic techniques for the derivation of a prime relation in learning a characteristic rule are
presented as follows [2, 7].

1. Attribute removal: If there are a large set of distinct values in an attribute of the working relation, but
(1) there is no generalization operator on the attribute, or (2) its higher-level concepts are expressed
in another attribute, the removal of the attribute generalizes the working relation.

2. Attribute generalization: If there are a large set of distinct values in an attribute in the working relation,

but there exist a set of generalization operators on the attribute, a generalization operator should be
selected and be applied to the attribute at every step of generalization.

3. Count propagation: The value of the count of a tuple should be carried to its generalized tuple, and the
count should be accumulated when merging equivalent tuples in generalization.

4. Attribute generalization control: Generalization on an attribute a; is performed until the concepts in a;
has been generalized to a desired level, or the number of distinct values in a; in the resulting relation
is no greater than a prespecified or default attribute threshold.

Since the above induction process enforces only attribute generalization control, the prime generalized
relation so extracted may still contain a relatively large number of generalized tuples. Two alternatives can
be developed for the extraction of generalized rules from a prime generalized relation: (1) further generalize
the prime relation to derive a final generalized relation which contains no more tuples than a prespecified
relation threshold, and then extract the final generalized rule; and (2) directly extract generalized feature
table and present feature-based multiple rules [7].

For Alternative 1, generalization on a prime generalized relation is performed until the number of distinct
generalized tuples in the resulting relation is no greater than a prespecified relation threshold. At this stage,
there are usually alternative choices for selecting a candidate attribute for further generalization. The
interestingness of the final generalized rule relies on the selection of the attributes to be generalized and
the selection of generalization operators. Such selections can be based on data semantics, user preference,
generalization efficiency, etc. Many techniques developed in previous studies on machine learning [14],
statistics [13], fuzzy set and rough set theories [22], etc. can be applied to the selection of attributes and
operators. Interesting rules can often be discovered by following different paths leading to several generalized
relations for examination, comparison and selection, which can be performed interactively by users or experts
[23]. After this generalization, final generalized rule(s) can be extracted from a final generalized relation,
where a tuple in the generalized relation is transformed to conjunctive normal form, and multiple tuples are
transformed to disjunctive normal form [8].

2.3 The role of concept hierarchies in attribute-oriented induction

Concept hierarchy is essential in the attribute-oriented generalization. The following three important roles
are played by concept hierarchies in attribute-oriented induction.

1. Retrieval of the relevant set of data: In the data retrieval process, a query constant could be specified

at a general concept level, for example, the required GPA for an undergraduate (instead of “freshman,

.., senior”) student could be good (instead of a concrete range). Concept hierarchies should be used

to map the high level concepts into the constants at the concept level(s) matching those stored in the
database.

2. Determination of generalization pairs in the derivation of the prime relation. Concept hierarchies should
be used for concept tree climbing in the generalization process.

3. Further generalization of prime relations. Concept hierarchies will be used for further ascension of the
concepts in the prime relation in order to achieve desired generalization results.

3 Dynamic Refinement of Concept Hierarchies

Although concept hierarchies can be provided by users or experts, a provided concept hierarchy may not be
the best fit to a particular learning task. It is often necessary to dynamically refine or adjust an existing
concept hierarchy based on the learning task, the set of relevant data and data distribution statistics.

Example 3.1 Suppose the database stores a concept hierarchy on geographic regions in the world. To find
the regularities of the birth places of the undergraduate students in Simon Fraser University, it may be
desirable to express the top level concepts as {B.C., Other_Provinces_in_Canada, Foreign}. On the other

hand, to find the regularities of the birth places of the professors in the same university, the top level
concepts may better be: { North_America, Europe, Asia, Other_Regions}. Such adaptation of different data
distributions can be achieved by dynamic adjustment or refinement of concept hierarchies based on the set
of relevant data. a

Example 3.1 indicates that dynamic refinement of concept hierarchies according to the distributions of
the relevant set of data should be a regular practice in many generalization processes. At the first glance,
dynamic adjustment /refinement of an existing concept hierarchy seems to be an overly complex process since
it corresponds to dynamically regrouping the data, and its complexity grows exponentially to the size of the
data. However, since the given concept hierarchy provides important semantic information about concept
clustering, it is important to preserve the existing data partition as much as possible and perform minor
refinements on the existing clustering, which will substantially reduce the total number of combinations to
be considered.

The following observations may lead to the design of an efficient and effective algorithm for dynamic
concept hierarchy refinement.

First, dynamic adjustment of concept hierarchies should not be performed during the collection of the
set of relevant data (i.e., Step 1). This is because the data retrieval process involves only the mapping of
higher level concepts in the query (or learning task) to their corresponding lower level data, which should
be determined by the semantics specified in the existing concept hierarchy.

Secondly, concept hierarchy adjustment is a highly dynamic process. The next learning task may have
different relevant set of data with different data distribution which may require the hierarchies to be adjusted
differently from the current task. Therefore, an adjusted hierarchy is usually not saved for future usage.

Thirdly, it is often desirable to present the regularities by a set of nodes (i.e., which are usually “gener-
alized” attribute values) with relatively even data distribution, i.e., not a blend of very big nodes and very
small ones at the same level of abstraction. Thus, it is desirable to promote the “big” (carrying substantial
weight or count) low-level nodes and merge the tiny nodes when presenting generalization results.

Finally, although a concept hierarchy could be quite deep, only the concepts at the levels close to or
above that at the prime-relation are interested to users. Therefore, the adjustment of concept hierarchies
can be focused at the level close to the prime relation without considering a complete adjustment of the
entire hierarchy.

Based on the above observations, we introduce some new terminology and present the algorithm.

Definitions 3.1 A concept hierarchy consists of a set of nodes organized in a partial order. A node is a leaf
node if it has no child(ren), or a nonleaf node otherwise. An occurrence count of a node is a number associated
with the node, representing, if a leaf node, the number of occurrences of the value in the task-relevant data
set, or if a nonleaf node, the sum of the occurrence count of its children nodes. A total occurrence of an
attribute is the sum of the occurrence counts of all the leaf nodes in the initial data relation.

The dynamic hierarchy adjustment algorithm is presented as follows.

Algorithm 3.1 (Dynamic concept hierarchy adjustment) Dynamic adjustment of concept hierarchies
for attribute-oriented induction based on data distribution of an attribute in the initial data relation.

Input. (i) A learning task-relevant initial relation Wy, (ii) an attribute A, (iil) the attribute threshold T for
attribute A, and (iv) a prespecified concept hierarchy H.

Output. An adjusted concept hierarchy H’ of attribute A for the derivation of the prime relation and for
further generalization.

Method. The adjustment essentially consists of two processes: top-down “big” nodes promotion and
bottom-up ”small” nodes merging.

1. Initialization:

(a) Assign the level number to each node in the hierarchy H according to the given partial order;

(b) Scan once the corresponding attribute of each tuple in the initial relation Wy, calculate the
occurrence count ¢;.count for each leaf node ¢;, and propagate them to the corresponding
parents in the hierarchy H. The total_occurrence is the sum of the counts of all the leaf
nodes in the hierarchy. Notice only the nonzero count nodes are considered in the following
computation.

2. Top-down adjustment of concept hierarchy H.

(a) Set a buffer set, Prime, initially empty, and another buffer set, Buff, to hold the set of nodes
at the top-level of H.
i. Calculate the weight of each node ¢;, ¢;. weight := ¢;.count [total_occurrence.
ii. Set weight threshold 7, 7:= 1/T.
iii. Perform node marking: A node, if weighted no less than 7, is a big node; otherwise, a
small one. A big leaf node is marked B, a big nonleaf node is marked B’, a small leaf
node is marked S, and a small nonleaf node is marked S’.
(b) Call ezpand_buffer, which is implemented as follows.
1. Move every B-marked node from Buff to Prime;
ii. Replace every B’-marked node by its children;
iii. Repeat this process until no change (i.e., only the nodes marked S or S’ are left in Buff).
(¢) Perform weight re-calculation and node re-marking again as following.
If |Prime| + | Buff| < T, move all the nodes from Buff to Prime, and the process terminates.
Otherwise, set 7" to T' — |Prime|, total’ to the sum of the counts in Buff, weight’ of each
node in Buff to count/total’'; and 7' := 1/T". Mark the node based on the weight’ and 7/ and
repeat the ezpand_buffer and weight re-calculation processes until no change.

3. If there are still nodes left in Buff, perform bottom-up merging of the remaining nodes in Buff as
follows.
Starting at the bottom level, step up one level (suppose, to level ¢) and merge the nodes in Buff
which share a common ancestor at level 7. If the weight’ of the merged node is no less than 7/,
move it to Prime (and decrement 7”). If the total number of nodes in Buff is no more than 77,
then move all the nodes in Buff to Prime, else perform weight re-calculation, step up a level, and
repeat the process. If there is no more level to climb (the hierarchy is in the shape of a forest),
group the nodes into 7" groups and move them to Prime.
We have the following convention for naming a merged node. Name a node A+ B if it is the result
of merging two nodes A and B. Otherwise, name it £ — A if it is equivalent to an existing node
E with one child node A removed. Otherwise, name it Other_E if it is equivalent to an existing
node E with more than one child node removed.

4. Build up the generalization linkage between the nodes in Prime and the attribute data in the
initial relation. ad

Theorem 3.1 There are no more than T (attribute-threshold) nodes in Prime, and there exists a general-
1zation linkage between every node in the initial relation and a node in the prime relation after the execution

of Algorithm 3.1.

Rationale. According to the algorithm, every node moved into Prime must satisfy one of the following three
conditions: (1) a node with a weight greater than 7 or 7/, (2) when |Prime| 4+ |Buff| is no more than T or
T’, or (3) the reamining nodes are grouped into 7" groups (i.e., 7’ new nodes) when there is no more level
to climb. Moreover, the computations of 77, 7 and 7’ ensure that the number of the accumulated nodes is
no more than 7. Thus the algorithm cannot generate more than 7" nodes in Prime. Also, every non-zero
count node is either a leaf node moved into Prime, or is associated with a nonleaf (ancestor) node that is
finally moved into Prime according to the algorithm, there should exist a generalization linkage from the

node to a node in the prime relation after the execution of the algorithm. a

Furthermore, Algorithm 3.1 is designed based on the consideration that the nodes in the Prime relation
should carry relatively even data distribution, and the shape of the hierarchy should be maximally preserved.
Therefore, hierarchy adjustment following the algorithm should produce desirable results.

CANADA

Maritime

9
New

ewfoundland

Figure 1: Original concept hierarchies for provinces.

Example 3.2 The original concept hierarchy for attribute “Province” (in Canada) is given, as shown in Fig.
1. The learning query is to find a characteristic rule of the NSERC Operating Grants in Computing Science
in relevance to provinces, and the attribute threshold for “Province” is 7. Using the original hierarchy without
dynamic adjustment, the derived prime relation consists of 7 values in the attribute: {British Columbia(68),
Prairies(63), Ontario(212), Quebec(97), New Brunswick(15), Nova Scotia(9), Newfoundland(9)}, (where
each number in parentheses indicates the number of CS grants in the corresponding province), which cor-
responds to 7 level-three nodes in Fig. 1. This is undesirable since the level-four node “Alberta” has count
40, whereas each Maritime province (at level-three) has much smaller counts. Notice that some nodes, such
as Ontario(212), are leaf nodes which, though quite big, cannot be split further. Following Algorithm 3.1,
the dynamic adjustment of hierarchy is performed based on the current learning task and node counts. This
results in Fig. 2, in which “Alberta” is promoted, and the maritime provinces are “merged”. The attribute
in the prime relation consists of 6 nodes: {British Columbia(68), Alberta(40), Sas+Man(23), Ontario(212),
Quebec(97), Maritime(33)}, with a relatively even distribution among all the nodes at the prime relation
level. a

4 Automatic Generation of Concept Hierarchies for Numerical Attributes

Numerical attributes occur frequently in data relations. Concept hierarchies for numerical attributes can be
generated automatically by the examination of data distribution characteristics. The following two standards
are used for automatic generation of concept hierarchies for numerical attributes.

1. Completeness: The value ranges of the hierarchy of a numerical attribute should cover all of its values
in the set of data relevant to the current learning task.

2. Uniformity: The set of ranges presented in the prime relation should have relatively even distribution
based on the frequency of occurrences of the attribute values in the set of data relevant to the current
learning task. This is based on that people would usually like to compare the concepts with relatively
even distributions in the relevant data set.

Example 4.1 Suppose the learning task is to study the characteristics of Canadian scientific researchers in
relevance to provinces, the amount of operating grants received, and their ages. The latter two attributes are
numerical ones. For automatic construction of hierarchies for the attribute “Grant_Amount”, the complete-
ness requirement implies that the hierarchy constructed should cover all the amounts in the relevant data
set, which could be in the range of {$2,000 — $97,000}, i.e., 2k — 97k. The uniformity requirement implies

CANADA

2 -~ S <
Manltoba; rSaskatchewan S lN S _ S e—--9
Tttt TeeemT S(%lt?a) xBrLH%’lck) . Newfoundland,
© Prime Level Node A Generalization Direction
N |
L -7 Lower Level Node

~—_—-

Figure 2: Dynamically adjusted concept hierarchies for provinces.

that the ranges of the amounts of the grants in the prime relation should be relatively evenly distributed
across the whole range. If the threshold value is 4, and more people receive grants in the amount of low and
medium ranges, the desired distribution could be {[2 — 12k),[12 — 16k),[16 — 23k), [23 — 90k)}. Such a set

of ranges has been generated automatically. a

Based on the similar observations analyzed in the last section, the algorithm for automatic generation
of concept hierarchies for numerical attributes of an initial data relation (i.e., the set of data relevant to a
particular learning task) is presented as follows.

Algorithm 4.1 (Automatic generation of concept hierarchy for numerical attributes) Automatic
generation of concept hierarchy for a numerical atiribute based on its data distribution in the initial data
relation.

Input: An initial data relation that contains a numerical attribute A with an attribute threshold T'.
Output: A concept hierarchy H4 on A for the presentation of the prime relation.

Method. The hierarchy H 4 is constructed as follows.

1. Estimation of the total value range by data sampling. Sampling a set of values of A in the initial
data relation. Let low and high be respectively the smallest and the largest value of the sampled
data.

2. Derivation of interval value. Let interval = (high —low)/(k x T, where k is a constant reflecting
the fineness of the segmentation. Usually, k£ is set between 5 to 10. Rounding or truncating
is performed on interval to make it customized to human. For example, an interval of 474 is
rounded up to 500. The range low/high is truncated/rounded accordingly.

3. Creation of segments. A set of segments are created based on the range and interval. [low, low +
interval], [low + interval, low + 2 x interval], ..., [low + (k x T — 1) x interval, high)].

4. Merge of segments based on data distribution. Segments are merged into nodes based on their
occurrence frequency distribution.
First, a histogram (occurrence frequency) is computed based on the data set of the attribute in
the initial relation. Each segment is attached a count which is initialized to 0. The computation
is performed as follows.

For each tuple ¢ in the initial data relation

if there is a segment s = [I, k] such that [< t[A] < h
then count[s] := count[s] + 1;
else { create a segment new: [low + k x interval, low + (k + 1) x interval]
where k = ([A] — low)/interval,
count[new] := 1;}

Then, segments are merged into nodes so that these nodes will have relatively even distribution
of occurrence frequencies. This is implemented as follows. Arrange segments in ascending order
based on their range values. Merge the sequence (of segments) whose sum of the counts reaches
the closest to total_count/T into one node, with its low range set to the low of the first segment,
and high set to the high of the last segment. Repeat the process for the remaining segments until
there is no segment left.

sum :=0;
first .= 1,
node_count := 0;
fori:=1tondo{
sum_sav := sum;
sum := sum + count[s[i]];
if (sum > total/T) or (i = n) then {
if node_count =T — 1 % This is the last node.
then 2 :=n
else if sum — total/T > total/T — sum_sav
then 1 : =7 —1;
merge segments from first to ¢ into a new node;
sum = 0;
node_count := node_count + 1;

first . =i+1; } }

The above piece of code shows the segment merging process. a

Theorem 4.1 The worst-case time complexity of Algorithm 4.1 is O(n), where n is the number of tuples in
the initial data relation.

Rationale. Step 1 (data sampling) costs less than n since it only takes a proper subset of the initial relation
and linear time to find high and low. Steps 2 & 3 work on the creation of intervals and segments using
low, high and T, which is much smaller than n. In Step 4, the computation of the histogram takes O(n)
time since it scans the initial relation once in the computation; where the merge of segment takes the time
proportional to the number of segments, which is smaller than n. Obviously, adding all the steps together,
the worst-case time complexity of the algorithm is O(n). a

Notice when the size of the relevant data set is huge, it could still be costly to calculate the histogram,
and the histogram of the reasonably-sized sampled data may be used instead. Also, if the distribution is
known beforehand, nodes can be built based on the known distribution.

Example 4.2 Suppose the learning task is to find the characteristic rules for the research grants in comput-
ing science from the NSERC database without a provided concept hierarchy for attribute “Grant_Amount”.
First, data sampling results in “high = 62,350, “low = 5,468 and “interval = 1,000 . Segments are then
created, and a histogram is calculated for the current task following the Algorithm 4.1. Then, the hierarchy
is built using the histogram, following the segment merge method presented in Algorithm 4.1. The result is
shown in Fig. 3. o

There are some other techniques on automatic generation of concept hierarchies for numerical attributes.
For example, Chiu et. al. proposed an algorithm for discretization of data using hierarchical maximum
entropy [3]. By this method, the initial node is the whole data set. Based on the statistical assumptions,
the expected frequency of the node is computed and compared with the real frequency. If the difference is

Coizh

2000~97000

T .LIL I T T T

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 Amount

Figure 3: Histogram and Concept hierarchy generated for the Amount

bigger than a threshold, the node is split into several subsets based on hierarchy maximum entropy, and the
process is called recursively. Our method provides a simpler and more efficient way of computation in large
data sets and still achieves elegant results.

5 Discussion

5.1 Automatic generation of concept hierarchies for nominal values

Algorithms have been developed and implemented in the DBLearn system for dynamic adjustment of concept
hierarchies for different kinds of attributes and automatic generation of concept hierarchies for numerical
values. Moreover, a convenient graphics user interface is being developed for users to input concept hierarchies
at both the schema level (e.g., address(City C Province C Country)) and the individual concept level (e.g.,
freshman C undergraduate). Nevertheless, automatic generation of concept hierarchies for nominal attributes
still remains to be an attractive goal because of the substantial efforts for construction and maintenance of
concept hierarchies in large databases.

There have been many interesting studies on automatic generation of concept hierarchies for nominal
data, which can be categorized into different approaches: machine learning approaches [15, 4, 19], statistical
approaches [1], visual feedback approaches [12], algebraic (lattice) approaches [16], etc.

Machine learning approach for concept hierarchy generation is a problem closely related to concept
formation. Many influential studies have been performed on it, including Cluster/2 by Michalski and Stepp
[15], COBWEB by Fisher [4], ID3 by Quinlan [19], hierarchical and parallel clustering by Hong and Mao
[10], and many others.

These approaches are under our careful examination and experimentation and our goal is to develop an
efficient algorithm to mazimize the automatic data clustering capability for large databases. Our progress
will be reported in detail when the algorithm development and experiments reach a mature stage.

5.2 Algorithm testing and experiments in large databases

A prototyped knowledge discovery system, DBLearn, has been constructed based upon the attribute-oriented
induction technique [9]. The system takes learning requests as inputs, applies the knowledge discovery
algorithm(s) on the data stored in a database, with the assistance of the concept hierarchy information
stored in a concept hierarchy base. The learning requests are specified in the syntax similar to SQL, a
standard relational database language. The outputs of the system are generalized relations or knowledge
rules extracted from the database. The system is implemented in C with the assistance of UNIX software
packages LEX and YACC (for compiling the DBLearn language interface) and operates in conjunction with
the SyBase DBMS software. A database learning language for DBLearn is specified in an extended BNF
grammar.

Experimentation using DBLearn has been conducted on several large real databases, including the NSERC
Grants Information system, which contains the information about the research grants awarded by NSERC
(the Natural Sciences and Engineering Research Council of Canada) in the year of 1990-1991. The database
consists of 6 large data relations. The central relation table, award, contains 10,087 tuples with 11 attributes.

The background knowledge in DBLearn is represented by a set of concept hierarchies. The provided
concept hierarchies can be adjusted dynamically for a particular learning task, and concept hierarchies for
numerical attributes can be generated automatically based on data distribution statistics. The concept
hierarchy generation and refinement algorithms described in this paper have been successfully implemented
and tested against large databases.

To examine the effects of these algorithms, our experiments compare different test runs, including those
applying the algorithms vs. those without. In most test runs, automatic generation of concept hierarchies for
numerical attributes produces more desirable value ranges for different learning tasks than the user-provided
ranges since the algorithm adapts data distribution statistics dynamically and in a better calculated way
than human experts. Also, in most cases, concept hierarchies with dynamic refinement generate more
desirable results than those without since the former promotes “important” (i.e., heavily weighted) nodes
and suppresses “trivial” (i.e., lightly weighted) nodes in an organized way. These have been shown in the
examples presented in the previous sections, which are taken from the experiments on the NSERC Grants
Information system. Many tests on other databases were also performed using the same algorithms.

6 Conclusions

Progress has been made in this paper on the further development of the attribute-oriented induction method
for efficient knowledge discovery in large relational databases, with an emphasis on the development of new
algorithms for dynamic generation and refinement of concept hierarchies.

Three algorithms are presented in this paper: (1) the refinement of the basic attribute-oriented induction
algorithm for learning characteristic rules; (2) dynamic refinement of concept hierarchy based on a learning
task and the data statistics; and (3) automatic generation of concept hierarchies for numerical attributes
based on the relevant set of data and the data distribution. These algorithms have been implemented in the
DBLearn data mining system and tested against several large relational databases. The experimental results
show that the algorithms are efficient and effective for knowledge discovery in large databases.

A challenging task is the automatic generation of concept hierarchies for nominal (discrete) data in large
databases. We are currently examining several algorithms which work well for a relatively small amount of
data and some proposals for similar tasks on large databases. The progress of our study on the development
of efficient algorithms in this class for large relational databases will be reported in the future.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In
Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data, pages 207-216, Washington, D.C., May 1993.

[2] Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro
and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 213-228. AAAI/MIT Press, 1991.

[3] D. K. Y. Chiu, A. K. C. Wong, and B. Cheung. Information discovery through hierarchical maximum entropy
discretization and synthesis. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages 125-141. AAAI/MIT Press, 1991.

[4] D. Fisher. Improving inference through conceptual clustering. In Proc. 1987 AAAI Conf., pages 461-465, Seattle,
Washington, July 1987.

[5] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in databases: An overview. In
G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 1-27. AAAI/MIT
Press, 1991.

[6] B. R. Gaines and J. H. Boose. Knowledge Acquisition for Knowledge-Based Systems. London: Academic, 1988.

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[20]

[21]

(22]

(23]

J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute-oriented approach. In Proc.
18th Int. Conf. Very Large Data Bases, pages 547-559, Vancouver, Canada, August 1992.

J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases. IEFE Trans.
Knowledge and Data Engineering, 5:29-40, 1993.

J. Han, Y. Fu, Y. Huang, Y. Cai, and N. Cercone. DBLearn: A system prototype for knowledge discovery
in relational databases (system demonstration). In Proc. 1994 ACM-SIGMOD Conf. Management of Data,
Minneapolis, MN, May 1994.

J. Hong and C. Mao. Incremental discovery of rules and structure by hierarchical and parallel clustering. In
G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 177-193. AAAI/MIT
Press, 1991.

K. A. Kaufman, R. S. Michalski, and L. Kerschberg. Mining for knowledge in databases: Goals and general
description of the INLEN system. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages 449-462. AAAT/MIT Press, 1991.

D. Keim, H. Kriegel, and T. Seidl. Supporting data mining of large databases by visual feedback queries. In
Proc. 10th of Int. Conf. on Data Fngineering, Houston, TX, Feb. 1994.

D. J. Lubinsky. Discovery from database: A review of Al and statistical techniques. In Proc. IJCAI-89 Workshop
on Knowledge Discovery in Databases, pages 204-218, Detroit, MI, August 1989.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning, An Artificial Intelligence Approach,
Vol. 2. Morgan Kaufmann, 1986.

R. S. Michalski and R. Stepp. Automated construction of classifications: Conceptual clustering versus numerical
taxonomy. IFEE Trans. Pattern Analysis and Machine Intelligence, 5:396-410, 1983.

R. Missaoui and R. Godin. An incremental concept formation approach for learning from databases. In V.S.
Alagar, L.V.S. Lakshmanan, and F. Sadri, editors, Formal Methods in Databases and Software Engineering,
pages 39-53. Springer-Verlag, 1993.

G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAT/MIT Press, 1991.

G. Piatetsky-Shapiro and C.J. Matheus. Knowledge discovery workbench for exploring business databases. Int.
J. Intell. Syst., 7:675-686, 1992.

J. R. Quinlan. Learning efficient classification procedures and their application to chess end-games. In Michalski
et. al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 463-482. Morgan Kaufmann,
1983.

M. Stonebraker, R. Agrawal, U. Dayal, E. Neuhold, and A. Reuter. DBMS research at a crossroads: The vienna
update. In Proc. 19th Int. Conf. Very Large Data Bases, pages 688—692, Dublin, Ireland, Aug. 1993.

R. Uthurusamy, U. M. Fayyad, and S. Spnggler. Learning useful rules from inconclusive data. In G. Piatetsky-
Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 141-158. AAAI/MIT Press, 1991.

W. Ziarko. The discovery, analysis, and representation of data dependancies in databases. In G. Piatetsky-
Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 239-258. AAAI/MIT Press, 1991.

J. Zytkow and J. Baker. Interactive mining of regularities in databases. In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, pages 31-54. AAAI/MIT Press, 1991.

