
Environmental Physics Computer Lab #7
Deterministic Chaos

Since Newton's time physicists have believed that it is possible to predict accurately
the time evolution of any complex system by solving the set of differential equations
representing Newton's second law applied to the componets of that system. For
example, it is possible to predict the motion of the planets, moons and comets (e.g.
Halley's) over a period of many years.  It seemed that Newton's laws and his calculus
can in principle be used to predict the future of a complex system.  We now know this is
not quite true because even relatively simple systems exhibit deterministic chaos.
Indeed a system as simple as three objects interacting through gravitational forces (e.
g. Sun and two planets) has complex and unpredictable  dynamics.  This was first noted
by the French mathematician Poincare in 1892 in "Les Methodes Nouvelles de la
Mecanique Celeste"  . 

An important example of deterministic chaos is the weather.  The forecasts are never
for more than a few days into the future.  This is not because our models of the weather
are not complete. More powerful supercomputers and even more complicated models
will not help much with the long term weather forecasts. Edward Lorenz, an MIT
meteorologist,  showed that this is the case in a paper titled "Deterministic
Nonperiodic Flow" published in 1963 in the Journal of Atmospheric Science. The
weather is chaotic. Even with a perfect model of the weather it is not possible to predict
it very far into the future. The reason is the so-called butterfly effect, a name coined by
Lorenz. Let us assume that we have a good model of the weather. To use it to predict
the future weather conditions we have to know the initial conditions, i.e. the weather
conditions today.  Lorenz showed that (for a particular model of atmospheric
convection) two initial conditions different by very little lead to two very different
long-term predictions.

COPYRIGHT @MIRON KAUFMAN 2019

1



Another influential model exhibiting chaos was studied by Robert May, Nature, 261, 459 (1976) 
the context of population dynamics.  This model describes the evolution in time of the population
some species. The model is based on the following difference equation xi+1=axi(1-xi), called the

logistic equation. This model has been used extensively to study the dynamics of populations.  It
aparent simplicity is deceptive as this equation can predict highly complex dynamics exhibited by
populations.  x is a scaled variable taking values in the [0,1] interval and which is proportional to 
actual population. The index i measures the time in some unit, e.g. year.  a is a constant which
determines the type of time evolution, e.g. chaotic or periodic.  The logistic equation is the simple
nonlinear difference equation.  It is the simplest generalization of the linear equation xi+1=axi,

which was studied early in the course as the exponential growth model of consumption.  Within t

latter context the addition of the nonlinear contribution -x2  models the reduction in the rate of gro
expected when the resources become scarce.  Nonlinearity is a necessary ingredient of chaos.

We start now the simulations of  the logistic equation.  The number of iterations is  N.
The initial condition is the value for  x 0. The parameter  a determines the type of

dynamics. We will iterate the logistic equation for different values of a, and the same
initial condition a = 0.5, 1., 1.25, 2.25, 3., 3.4, 3.5, 3.55, 3.6, 3.63, 3.7, 3.8, 3.9, 4, all for
x0 = 0.45. Save the graphs of x vs i for all the values of a.

COPYRIGHT @MIRON KAUFMAN 2019

2



N 500 x0 0.45

a 4 i 0 N

xi 1 a xi 1 xi 

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

LOGISTIC EQUATION

TIME

X

xi

1
1

a


i

COPYRIGHT @MIRON KAUFMAN 2019

3



 QUALITATIVE CONCLUSIONS ON THE SIMULATIONS OF THE LOGISTIC MODEL

For a = 0.5 after many iterations x approaches zero, i.e. the population becomes extinct. x = 0 is
called a stable fixed point.  

For a = 1.25, 2.25,  x approaches a nonzero value, i.e. the population is constant.  The population
reaches a sustainable level.

For a = 3.4 after a sufficient number of iterations x oscillates between two different values.  This is
stable situation, called period 2 cycle.

For a = 3.5 we have a stable situation where the population oscillates between four different values
This is a period 4 cycle.

For a = 3.55 the population oscillates between eight values, i.e. period 8 cycle.

For a = 3.63 the stable population oscillates between six values, i.e. period 6 cycle.

For a = 3.6, 3.7, 3.8, 3.9, 4. the population dynamics is chaotic.  No matter how many iterations
the population never reaches a stable value or a cycle of a few values.  The dependence of x on i
looks random and unpredictable though it is produced by using a deterministic equation.
In the next computer session  we will verify the butterfly effect (sensitivity to initial conditions).

To understand the long term behavior of x, we determine the location and stability of the fixed
points.  The fixed point equation: x* = ax*(1-x*) has two solutions x* = 0 and x* = 1-1/a.  The
slope of the map at the second fixed point is 2-a.  One can see that the magnitude of the slope
is larger than 1 for a > 3. Thus this fixed point is stable for a < 3 and unstable for a > 3.  At the
first fixed point (x* = 0) the map slope is a. So that fixed point is stable for a < 1 and is unstable
for a > 1.  
Hence: for a < 1, x approaches 0 (extinction); for 1 < a < 3, x approaches 1-1/a (sustainable). 
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