.MCAD 304020000 1 74 3220674418 0 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 0 3 .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=1 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 1.200000 1.218750 1.200000 1.200000 0 .CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty* .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFAULT_TEXT_PARPROPS 0 0 0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=2 family=Courier points=12 bold=0 italic=0 underline=0 colrid=5 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .CMD COLORTAB_ENTRY 0 0 0 .CMD COLORTAB_ENTRY 128 0 0 .CMD COLORTAB_ENTRY 0 128 0 .CMD COLORTAB_ENTRY 128 128 0 .CMD COLORTAB_ENTRY 0 0 128 .CMD COLORTAB_ENTRY 128 0 128 .CMD COLORTAB_ENTRY 0 128 128 .CMD COLORTAB_ENTRY 128 128 128 .CMD COLORTAB_ENTRY 192 192 192 .CMD COLORTAB_ENTRY 255 0 0 .CMD COLORTAB_ENTRY 0 255 0 .CMD COLORTAB_ENTRY 255 255 0 .CMD COLORTAB_ENTRY 0 0 255 .CMD COLORTAB_ENTRY 255 0 255 .CMD COLORTAB_ENTRY 0 255 255 .CMD COLORTAB_ENTRY 255 255 255 .CMD COLORTAB_ENTRY 0 64 128 .TXT 3 21 -1074292889 0 0 Cg a74.000000,74.000000,20 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}} \plain\cf1\fs24 \pard {\cf2\f1\fs36 Ideal Gas Simulation}} .TXT 4 -20 -1074292897 0 0 Cg a72.625000,72.625000,647 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard \tab In this computer lab we will simulate a two-dimensional ideal gas. An example of such a system is helium adsorbed on evaporated silver films (see for example: T.W.Kenny, P.L.Richards, Phys.Rev.Lett.64,2386(1990). An ideal gas is a sufficiently dilute gas so that the forces between molecules are negligible. We are going to use animation to visualise the motion of the molecules. Then we will illustrate the 2'nd law of thermodynamics: natural systems evolve to more disorder (higher entropy). We will also explore the influence of boundary conditions on small systems.\par \tab We start by setting the number of molecules and their initial positions.} .TXT 25 2 -1074292951 0 0 Cg a72.000000,72.000000,27 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard The number of molecules is:} .EQN 0 32 -1074292953 0 0 {0:N}NAME:49 .TXT 3 -32 -1074292950 0 0 Cg a71.000000,71.000000,42 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard We use the index i to label the molecules:} .EQN 0 50 -1074292943 0 0 {0:i}NAME:0;{0:N}NAME-1 .TXT 3 -50 -1074292942 0 0 Cg a72.000000,72.000000,12 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard The time is:} .EQN 0 16 -1074292941 0 0 {0:T}NAME:500 .TXT 0 31 -1074292949 0 0 Cg a72.000000,72.000000,1 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}} \plain\cf1\fs24 \pard {\cf2\f1 }} .TXT 4 -47 -1074292940 0 0 Cg a74.000000,74.000000,20 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}} \plain\cf1\fs24 \pard The time label is:{\cf2\f1 }} .EQN 0 23 -1074292880 0 0 {0:j}NAME:0;{0:T}NAME-1 .TXT 6 -25 -1074292916 0 0 Cg a74.000000,74.000000,229 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}} \plain\cf1\fs24 \pard {\cf2\f1 \tab }{\cf2 We arrange the N molecules in an ordered square array. We chose this ordered configuration to better show that the system evolves to a disorderd configuration, thus demonstrating the essence of the second law of thermodynamics.}} .EQN 9 1 -1074292938 0 0 {0:s}NAME:\({0:N}NAME) .EQN 1 14 -1074292937 0 0 ({0:x}NAME)[({0:i}NAME,0):{0:floor}NAME(({0:i}NAME)/({0:s}NAME)) .EQN 0 20 -1074292936 0 0 ({0:y}NAME)[({0:i}NAME,0):{0:mod}NAME({0:i}NAME,{0:s}NAME) .TXT 6 -35 -1074292932 0 0 Cg a74.000000,74.000000,152 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}} \plain\cf1\fs24 \pard {\cf2\f1 \tab }{\cf2 We set limits to the outer region |x| < lim, |y| < lim. The constant limg sets the margins for the graph which shows the positions of the N molecules.}} .EQN 6 15 -1074292964 0 0 {0:lim}NAME:{0:s}NAME-1 .EQN 3 0 -1074292965 0 0 {0:limg}NAME:{0:lim}NAME+1 .EQN 3 -15 -1074293024 0 0 ({0:u}NAME)[(1):{0:s}NAME-1 .EQN 0 14 -1074293023 0 0 ({0:u}NAME)[(2):0 .EQN 0 16 -1074293022 0 0 ({0:u}NAME)[(3):0 .EQN 0 9 -1074292995 0 0 ({0:u}NAME)[(4):{0:s}NAME-1 .EQN 0 12 -1074292993 0 0 ({0:u}NAME)[(0):{0:s}NAME-1 .EQN 3 13 -1074293009 0 0 {0:k}NAME:0;4 .EQN 1 -64 -1074293015 0 0 ({0:t}NAME)[(1):{0:s}NAME-1 .EQN 0 13 -1074293014 0 0 ({0:t}NAME)[(2):{0:s}NAME-1 .EQN 0 17 -1074293013 0 0 ({0:t}NAME)[(3):0 .EQN 0 9 -1074292986 0 0 ({0:t}NAME)[(4):0 .EQN 0 12 -1074292992 0 0 ({0:t}NAME)[(0):0 .TXT 5 -50 -1074292903 0 0 Cg a72.000000,72.000000,41 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard The initial configuration is shown below:} .TXT 18 -1 -1074292902 0 0 Cg a73.000000,73.000000,28 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard COPYRIGHT MIRON KAUFMAN 1997} .EQN 2 0 -1074292991 0 0 {0:limg}NAME&-{0:limg}NAME&(-{0:lim}NAME&{0:lim}NAME)&({0:y}NAME)[({0:i}NAME,0),({0:t}NAME)[({0:k}NAME)@{0:limg}NAME&-{0:limg}NAME&(-{0:lim}NAME&{0:lim}NAME)&({0:x}NAME)[({0:i}NAME,0),({0:u}NAME)[({0:k}NAME) 0 1 0 0 0 2 1 1 1 0 1 0 0 0 2 1 1 1 5 0 0 0 1 1 NO-TRACE-STRING 0 3 1 5 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 65 28 10 0 3 .TXT 38 -1 26 0 0 Cg a74.000000,74.000000,531 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}{\f2 \fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard {\cf2\f1 \tab }{\cf2 The new position of a particule is: }{\cf2 x}{\dn new}{\cf2 = x}{\dn old}{ \cf2 + }{\cf2\f2 D}{\cf2 x and y}{\dn new}{\cf2 = y}{\dn old}{\cf2 + }{\f2 D}{\cf2 y. Now }{\f2 D}{\cf2 x=vx}{\f2 D}{\cf2 t and }{\f2 D}{ \cf2 y=vy}{\f2 D}{\cf2 t. The velocities vx and vy}{\dn }{\cf2 are random variables each normally distributed: vx~}{\cf2\b N(meanvx,sx) and }{\cf2 vy~}{\cf2\b N(meanvy,sy}){\cf2 . Most gases and liquids (not liquid crystals) are }{\cf2\i isotropic, }{\cf2 i.e. all directions are equivalent. Then the two variances are equal. The standard deviation is determined by two physical parameters: the temperature and the mass of the molecule, }{\f2 s}{\cf2 = (k}{\dn B}{ \cf2 T/m)}{\up 1/2}{\cf2 . In the absence of a driving force the mean velocity is zero.}} .EQN 21 2 -1074292957 0 0 {0:\sx}NAME:300 .EQN 0 25 -1074292910 0 0 {0:\sy}NAME:300 .EQN 4 -25 -1074292913 0 0 {0:meanvx}NAME:0 .EQN 0 25 -1074292909 0 0 {0:meanvy}NAME:0 .EQN 4 -25 -1074292908 0 0 ({0:vx}NAME)[({0:i}NAME,{0:j}NAME):({0:rnorm}NAME({0:N}NAME,{0:meanvx}NAME,{0:\sx}NAME))[({0:i}NAME) .EQN 0 25 -1074292907 0 0 ({0:vy}NAME)[({0:i}NAME,{0:j}NAME):({0:rnorm}NAME({0:N}NAME,{0:meanvy}NAME,{0:\sy}NAME))[({0:i}NAME) .EQN 4 -6 -1074292906 0 0 {0:\Dt}NAME:.001 .EQN 3 -19 -1074292904 0 0 ({0:\Dx}NAME)[({0:i}NAME,{0:j}NAME):({0:vx}NAME)[({0:i}NAME,{0:j}NAME)*{0:\Dt}NAME .EQN 0 25 -1074292905 0 0 ({0:\Dy}NAME)[({0:i}NAME,{0:j}NAME):({0:vy}NAME)[({0:i}NAME,{0:j}NAME)*{0:\Dt}NAME .TXT 5 -27 32 0 0 Cg a74.000000,74.000000,298 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Courier;}{\f1\fcharset0\fnil Arial;}} \plain\cf1\fs24 \pard {\cf2\f1 \tab }{\cf2 Now we have to decide what happens when the molecules get to the walls. We are going to assume periodic bondary conditions: if the molecules wander off to the left, they reappear at the right, and }{\cf2\i vice versa}{\cf2 ; if the molecules get to the top wall they reappear at the bottom wall, and }{ \cf2\i vice versa.}} .EQN 13 0 33 0 0 ({2,1}ö({0:y}NAME)[({0:i}NAME,{0:j}NAME+1)ö({0:x}NAME)[({0:i}NAME,{0:j}NAME+1)):({2,1}ö{0:if}NAME(({0:y}NAME)[({0:i}NAME,{0:j}NAME)+({0:\Dy}NAME)[({0:i}NAME,{0:j}NAME)>{0:lim}NAME,-{0:lim}NAME,{0:if}NAME(({0:y}NAME)[({0:i}NAME,{0:j}NAME)+({0:\Dy}NAME)[( {0:i}NAME,{0:j}NAME)<-{0:lim}NAME,{0:lim}NAME,({0:y}NAME)[({0:i}NAME,{0:j}NAME)+({0:\Dy}NAME)[({0:i}NAME,{0:j}NAME)))ö{0:if}NAME(({0:x}NAME)[({0:i}NAME,{0:j}NAME)+({0:\Dx}NAME)[({0:i}NAME,{0:j}NAME)>{0:lim}NAME,-{0:lim}NAME,{0:if}NAME(({0:x}NAME)[( {0:i}NAME,{0:j}NAME)+({0:\Dx}NAME)[({0:i}NAME,{0:j}NAME)<-{0:lim}NAME,{0:lim}NAME,({0:x}NAME)[({0:i}NAME,{0:j}NAME)+({0:\Dx}NAME)[({0:i}NAME,{0:j}NAME)))) .TXT 9 1 -1074292901 0 0 Cg a73.000000,73.000000,28 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard COPYRIGHT MIRON KAUFMAN 1997} .EQN 1 0 -1074293101 0 0 {0:limg}NAME&-{0:limg}NAME&(-{0:lim}NAME&{0:lim}NAME)&({0:y}NAME)[({0:i}NAME,{0:T}NAME-1),({0:t}NAME)[({0:k}NAME)@{0:limg}NAME&-{0:limg}NAME&(-{0:lim}NAME&{0:lim}NAME)&({0:x}NAME)[({0:i}NAME,{0:T}NAME-1),({0:u}NAME)[({0:k}NAME) 0 1 1 0 0 2 1 1 1 0 1 1 0 0 2 1 1 1 5 0 0 0 1 1 NO-TRACE-STRING 0 3 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 61 26 10 0 3 .TXT 40 0 -1074292899 0 0 Cg a73.000000,73.000000,826 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard The graph above shows the last configuration.\par \par {\b ASSIGNMENT1}: Use the Animation option of MathCad 6 to create a movie (*.mov file) to visualise the molecular motion.\par First set the FRAME constant: T = FRAME +1. Then select the graph. Click on VIEW and then on ANIMATE. Give the upper bound for the FRAME, by choosing TO: 49, for example. That means that your movie will have 49+1 = 50 frames. Then select the graph again. Click on SAVE AS. Give a name to the file. Then SAVE. For more information go to HELP ANIMATION. If you want to play your animation go to VIEW and then pick PLAYBACK.\par \pard {\b \par ASSIGNMENT2}: Run the ideal gas simulation with different boundary conditions: when a molecule goes beyond a wall it is set back on the same wall. Which boundary conditions, these or the periodic ones, give the faster equilibration? } .TXT 61 0 -1074292898 0 0 Cg a73.000000,73.000000,23 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard COPYRIGHT MIRON KAUFMAN} .TXT 4 -1 -1074292896 0 0 Cg a74.000000,74.000000,919 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard The gas started in an ordered configuration and evolved to a disordered configuration. This is the essence of the Second Law of Thermodynamics. Nature obeys thius law, but if you would like to violate it you should play the movie file backwards. This is the analog of pushing back the toothpaste into the tube. \par \tab We are going next to make this visual impression quantitative by using the concept of {\i entropy}. Entropy is the measure of disorder (or lack of information). This concept was invented in the context of thermal physics by Carnot, Boltzmann and others. Entropy is used by electrical engineers and computer scientistists to measure the amount of information. It is also use by cognitive scientists to quantify memory. Entropy is also used in Biology to quantify evolution and diversity of species. \par \tab We start by calculating the number of molecules in each of the four regions we divided the box into. } .EQN 33 1 -1074293130 0 0 ({0:n1}NAME)[({0:j}NAME):{0:i}NAME$(({0:x}NAME)[({0:i}NAME,{0:j}NAME)<{0:s}NAME)*(({0:x}NAME)[({0:i}NAME,{0:j}NAME)ò{0}0)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)<{0:s}NAME)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)ò{0}0) .EQN 0 36 -1074293054 0 0 ({0:n2}NAME)[({0:j}NAME):{0:i}NAME$(({0:x}NAME)[({0:i}NAME,{0:j}NAME)>-{0:s}NAME)*(({0:x}NAME)[({0:i}NAME,{0:j}NAME)<{0}0)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)<{0:s}NAME)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)ò{0}0) .EQN 6 -36 -1074293051 0 0 ({0:n3}NAME)[({0:j}NAME):{0:i}NAME$(({0:x}NAME)[({0:i}NAME,{0:j}NAME)>-{0:s}NAME)*(({0:x}NAME)[({0:i}NAME,{0:j}NAME)<{0}0)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)>-{0:s}NAME)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)ó{0}0) .EQN 0 37 -1074293048 0 0 ({0:n4}NAME)[({0:j}NAME):{0:i}NAME$(({0:x}NAME)[({0:i}NAME,{0:j}NAME)<{0:s}NAME)*(({0:x}NAME)[({0:i}NAME,{0:j}NAME)>{0}0)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)>-{0:s}NAME)*(({0:y}NAME)[({0:i}NAME,{0:j}NAME)<{0}0) .EQN 5 -37 -1074293133 0 0 50&&(_n_u_l_l_&_n_u_l_l_)&({0:n1}NAME)[({0:j}NAME)@500&&(_n_u_l_l_&_n_u_l_l_)&{0:j}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 10 0 3 .EQN 0 39 -1074292982 0 0 50&&(_n_u_l_l_&_n_u_l_l_)&({0:n2}NAME)[({0:j}NAME)@500&&(_n_u_l_l_&_n_u_l_l_)&{0:j}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 10 0 3 .EQN 22 -39 -1074292981 0 0 50&&(_n_u_l_l_&_n_u_l_l_)&({0:n3}NAME)[({0:j}NAME)@500&&(_n_u_l_l_&_n_u_l_l_)&{0:j}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 10 0 3 .EQN 0 39 -1074292979 0 0 50&&(_n_u_l_l_&_n_u_l_l_)&({0:n4}NAME)[({0:j}NAME)@500&&(_n_u_l_l_&_n_u_l_l_)&{0:j}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 10 0 3 .TXT 34 -39 -1074292894 0 0 Cg a73.000000,73.000000,23 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard COPYRIGHT MIRON KAUFMAN} .TXT 4 0 -1074292892 0 0 Cg a73.000000,73.000000,81 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard We calculate next the frequency (probability) for visiting each of the 4 regions.} .EQN 7 2 -1074293117 0 0 ({0:P1}NAME)[({0:j}NAME):(({0:n1}NAME)[({0:j}NAME))/({0:N}NAME) .EQN 0 14 -1074293039 0 0 ({0:P2}NAME)[({0:j}NAME):(({0:n2}NAME)[({0:j}NAME))/({0:N}NAME) .EQN 0 15 -1074293038 0 0 ({0:P3}NAME)[({0:j}NAME):(({0:n3}NAME)[({0:j}NAME))/({0:N}NAME) .EQN 0 17 -1074292887 0 0 ({0:P4}NAME)[({0:j}NAME):(({0:n4}NAME)[({0:j}NAME))/({0:N}NAME) .EQN 3 -48 -1074292888 0 0 &&(_n_u_l_l_&_n_u_l_l_)&({0:P1}NAME)[({0:j}NAME),({0:P2}NAME)[({0:j}NAME),({0:P3}NAME)[({0:j}NAME),({0:P4}NAME)[({0:j}NAME)@&&(_n_u_l_l_&_n_u_l_l_)&{0:j}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 63 25 10 0 3 .TXT 34 0 -1074292890 0 0 Cg a72.000000,72.000000,243 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard Note that P1 starts at one (because we started with all molecules in region 1) and evolves in time to about 0.25. The other three probabilities start at zero and evolve to 0.25 each.\par \tab The entropy associated with the spatial configurations is:} .EQN 10 4 -1074292886 0 0 ({0:entropy}NAME)[({0:j}NAME):-(({0:P1}NAME)[({0:j}NAME)*{0:ln}NAME(({0:P1}NAME)[({0:j}NAME))+({0:P2}NAME)[({0:j}NAME)*{0:ln}NAME(({0:P2}NAME)[({0:j}NAME))+({0:P3}NAME)[({0:j}NAME)*{0:ln}NAME(({0:P3}NAME)[({0:j}NAME))+({0:P4}NAME)[({0:j}NAME)*{0:ln}NAME(( {0:P4}NAME)[({0:j}NAME))) .EQN 2 -4 -1074292885 0 0 &&(_n_u_l_l_&_n_u_l_l_)&({0:entropy}NAME)[({0:j}NAME),{0:ln}NAME(4)@&0&(_n_u_l_l_&_n_u_l_l_)&{0:j}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 61 22 10 0 3 .TXT 31 0 -1074292884 0 0 Cg a73.000000,73.000000,370 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard Note that the entropy starts at zero, meaning order or complete information, and increases in time to ln(4), which corresponds to disorder or total lack of information. This is the Second Law of thermodynamics: physical systems evolve in time to the state of maximum posssible entropy. The system equilibrates (reaches the maximum entropy) in a time of about 100 units.} .TXT 13 0 -1074292878 0 0 Cg a73.000000,73.000000,23 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Courier;}}\plain\cf1\fs24 \pard COPYRIGHT MIRON KAUFMAN}