.MCAD 306000000 Z  docDocument<mcObjectI d2_graph_format graphData axisFormatLLtrace2D      dim_formatCmasslengthtimecharge temperature luminosity substance'NumericalFormat@dii shpRectEmcDocumentObjectStateJ mcPageModel:????mcHeaderFooter99 ComputeEngine=BuiltInsBy SerialAnyvalH@z@H @{@H|@HMbP?}@H units_classA TextState0 TextStyle/@ArialNormalfont_style_list> font_style?  VariablesTimes New Roman?  ConstantsTimes New Roman?TextArial? Symbol? User^1Arial? User^2 Courier New? User^3System? User^4Script? User^5Roman? User^6Modern? User^7Times New Roman? Symbol? Arial? ? Arial? Arial? Times New Roman& TextRegion docRegion7shpBoxD@-@( CharacterMapRangeMap,$UNIVERSITY PHYSICS I COMPUTER LAB #1 ChrPropMap($ RangeElem-$  ChrPropData) RangeData.lArial0,128,0 ParPropMap*$ -$  ParPropData+EmbedMap" -LinkMap $ -$LinkData!@NormalArial@DG2X>8""AdFirst we learn how to do simple computations with MathCad. (1) Type:3*4= The answer is: 12. (2) Type 24-35= The answer is -11 (3) Type: \3= (this is square root of 3). The answer is 1.73 (4) Type 2.3^4.5= (this is 2.3 to the power 4.5). The answer is 42.44 (5) Type: (3-4)*4-6= The answer is -10 (6) Type: 7/(2.3-8.6)space bar+3=. The answer is:1.889 (d*d-d+"- d-d!@NormalArialeqRegion3@DKtree1 p11@1t31411+@Serial_DisplayNodeF1 _n_u_l_l_3@D% J1 p 1!1@ "1t!24#1!35$1 %1+@$@F&1$ _n_u_l_l_'3@D/MHI(1 p)1(*1{@)+1*3,1)-1+@,@F.1, _n_u_l_l_/3@DZupH01 p11021@131t22.34124.551161+@5@F715 _n_u_l_l_83@D6G91 p:19;1@:<1@;=1p@<>1=?1t>3@@1>4@A1<4@B1;6@C1:@D1+@@C@F@E1@C _n_u_l_l_@F3@DPF@G1 p@H1@G@I1@@H@J1@@I@K1t@J7@L1p@J@M1@L@N1t@M2.3@O1@M8.6@P1@I3@Q1@H@R1+@@Q@F@S1@Q _n_u_l_l_@T@DFL@>>AWe now learn to use vectors and matrices (arrays) with MathCad. (1) Open the Vextor and Matrix palette and click on Matrix and Vector button. Create two vectors a and b: 3 rows and 1 column. To assign the values to the vector a type: a: Then type the values. (2) Do the cross product axb by clicking on the correspondinkg button. (3) Do the dot product. (4) Calculate: a*(axb). Can you explain the answer. (5) Calculate the product of a scalar and a vector: c = -3a. What is cxa equal to? (@U-@V)@T`Arial0,0,0@W-@X)@Tn Arial0,64,128@U@Y-@Z)@Tl Arial0,64,128@W@Y@U*@[-@\+"@]- @^-@_!@NormalArial@`3@DEd@a1 p@b1 @a@c1d@ba@d1p@b@e10@d@f10A@e@g10A@f@h1@@g@i1@g1@j1@f3@k1K@e@l1@k2@m3@Dhyc@n1 p@o1 @n@p1d@ob@q1p@o@r10@q@s10A@r@t10A@s@u1@@t@v1K@t@w1@v0.3@x1@s3.1@y1K@r@z1@y2.5@{3@D1b@|1 p@}1@|@~12@@}@1d@~a@1@~b@1@}@1+@@@F@1@ _n_u_l_l_@3@DXta@1 p@1@@1@@@1d@a@1@b@1@@1+@@@F@1@ _n_u_l_l_@3@D4`@1 p@1@@1@@@1d@a@1p@@12@@1d@a@1@b@1@@1+@@@F@1@ _n_u_l_l_@@D#<30fcopyright Miron Kaufman, 1998(@-@)@n Arial*@-@+"@- @-@!@NormalArial@3@DhP}(xj@1 p@1 @@1d@c@1@@1K@@@1@3@1@a@3@DL xi@1 p@1@@1d@c@1@@1+@@@F@1@ _n_u_l_l_@3@DLxh@1 p@1@@12@@@1d@c@1@a@1@@1+@@@F@1@ _n_u_l_l_@@D%Hl(AWe next study projectile motion. Set the constants: v0, theta (in radians) and g. Set the time interval by typing t: 0,0.01;1(meaning the first t is 0, the next is 0.01 and the last is 1). Define x(t), y(t), vx(t), and vy(t). To get a subscript type . period . For example: v.x(t) shows as vx(t). Graph the trajectory y versus x. Graph velocity components and position components versus time. Note that at the top of the trajectory vy = 0.(6@-6@)@lArial255,0,0@-@)@LArial255,0,0@@-@)@lArial255,0,0@@-@)@LArial255,0,0@@- @)@lArial255,0,0@@-@)@LArial255,0,0@@- @)@lArial255,0,0@@-@)@hArial255,0,0@@- @)@lArial255,0,0@@-@)@255,0,0@@-@)@_255,0,0@@-@)@255,0,0@@-@)@lArial255,0,0@@-@)@LArial255,0,0@@-@)@lArial255,0,0@@@*@-@+"@- @-@!@NormalArial@3@D PYk<`@1 p@1 @@1d@v.0@1@23@3@DxEs`@1 p@1 @@1d@\q@1@@1t@60@1@@1d@\p@1@180@3@DPe`@1 p@1 @@1d@g@1@9.8@3@D0EsB`@1 p@1 @@1d@T@1@@1@@@1t@2@1@v.0@1@@1@@@1d@sin@1p@@1@\q@1@g@@DO@d`T is time of flight.(@-A)@~255,0,0*A-A+"A- A-A!@NormalArialA3@D |-qA1 pA1 AA 1dAtA 1AA 1 @A A 1tA 0A 1A 0.01A1A TA3@D CxA1 pA1 AA1@AA1dAxA1pAA1AtA1AA1@AA1dAv.0A1AA1dAcosA1pAA1A\qA1AtA3@D6wA1 pA 1 AA!1@A A"1dA!v.xA#1pA!A$1A#tA%1A A&1dA%v.0A'1A%A(1dA'cosA)1pA'A*1A)\qA+3@D CzA,1 pA-1 A,A.1@A-A/1dA.yA01pA.A11A0tA21A-A31@A2A41@A3A51dA4v.0A61A4A71dA6sinA81pA6A91A8\qA:1A3tA;1A2A<1@A;A=1@A1tA=1A?1A=2A@1A<gAA1A;AB1dAAtAC1AA2AD3@D6yAE1 pAF1 AEAG1@AFAH1dAGv.yAI1pAGAJ1AItAK1AFAL1@AKAM1dALv.0AN1ALAO1dANsinAP1pANAQ1AP\qAR1AKAS1dARgAT1ARtAU3@D9!AV1 pAW1AVAX1@AWAY1@AXAZ1@AYA[1fAZ 20.242316A\1AZ0A]1AYA^1dA] _n_u_l_l_A_1A] _n_u_l_l_A`1AXAa1dA`yAb1pA`Ac1AbtAd1AWAe1@AdAf1@AeAg1fAf46.69Ah1Af0Ai1AeAj1dAi _n_u_l_l_Ak1Ai _n_u_l_l_Al1AdAm1dAlxAn1pAlAo1AntAp7 NXNY TRAJECTORY     Aq@DhS+ch`Copyright @Miron Kaufman, 1998(Ar-As)Aqn Arial*At-Au+"Av- Aw-Ax!@NormalArialAy3@DAz1 pA{1AzA|1@A{A}1@A|A~1@A}A1tA~30A1A~0A1A}A1dA _n_u_l_l_A1A _n_u_l_l_A1 A|A1@AA1dAxA1pAA1AtA1AA1dAv.xA1pAA1AtA1A{A1@AA1@AA1dATA1A0A1AA1dA _n_u_l_l_A1A _n_u_l_l_A1AtA NN     A3@D0 0A1 pA1AA1@AA1@AA1@AA1tA30A1KAA1A 19.869416A1AA1dA _n_u_l_l_A1A _n_u_l_l_A1 AA1@AA1dAyA1pAA1AtA1AA1dAv.yA1pAA1AtA1AA1@AA1@AA1dATA1A0A1AA1dA _n_u_l_l_A1A _n_u_l_l_A1AtA NN     A@D;83/3/@\The angle q between the velocity vector and positive x axis is obtained from tan(Q) = vy/vx.([ \A- A)Al255,0,0A-A)AlSymbol255,0,0AA-FA)Al255,0,0AA-A)AlSymbol255,0,0AA-A)Al255,0,0AA-A)AL255,0,0AA-A)Al255,0,0AA-A)AL255,0,0AA-A)AL255,0,0AAA*\A-\A+"A- \A-\A!@NormalArialA3@D(IQ0-A1 pA1 AA1@AA1dA\QA1pAA1AtA1AA1dAatanA1pAA1AA1@AA1dAv.yA1pAA1AtA1AA1dAv.xA1pAA1AtA3@DO:p P0A1 pA1AA1@AA1@AA1@AA1fA 1.047198A1KAA1A 1.046127A1AA1dA _n_u_l_l_A1A _n_u_l_l_A1AA1dA\QA1pAA1AtA1AA1@AA1@AA1dATA1A0A1AA1dA _n_u_l_l_A1A _n_u_l_l_A1AtA9 NN     A@Dx ; x Copyright @Miron Kaufman, 1998(A-A)An Arial*A-A+"B- B-B!@NormalArialB@D   7@copyright Miron Kaufman, 1996(B-B)B0,0,128*B-B+"B- B -B !@NormalArial