.MCAD 304020000 1 74 128 0 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 0 3 .CMD FORMAT rd=d ct=10 im=i et=15 zt=30 pr=5 mass length time charge temperature tr=0 vm=0 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 1.200000 1.218750 1.200000 1.200000 0 .CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty* .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=16973956 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=16973956 .CMD DEFAULT_TEXT_PARPROPS 0 0 0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .CMD COLORTAB_ENTRY 0 0 0 .CMD COLORTAB_ENTRY 128 0 0 .CMD COLORTAB_ENTRY 0 128 0 .CMD COLORTAB_ENTRY 128 128 0 .CMD COLORTAB_ENTRY 0 0 128 .CMD COLORTAB_ENTRY 128 0 128 .CMD COLORTAB_ENTRY 0 128 128 .CMD COLORTAB_ENTRY 128 128 128 .CMD COLORTAB_ENTRY 192 192 192 .CMD COLORTAB_ENTRY 255 0 0 .CMD COLORTAB_ENTRY 0 255 0 .CMD COLORTAB_ENTRY 255 255 0 .CMD COLORTAB_ENTRY 0 0 255 .CMD COLORTAB_ENTRY 255 0 255 .CMD COLORTAB_ENTRY 0 255 255 .CMD COLORTAB_ENTRY 255 255 255 .TXT 3 17 125 0 0 Cg a34.625000,34.625000,52 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset0\fnil Britannic Bold;}}\plain\cf1 \fs20 \pard {\f1\fs36\b Physics B PHY232/235\par Computer Project\par Laboratory #1\par }} .TXT 14 -16 29 0 0 Cg b73.000000,73.000000,249 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset0\froman Times New Roman;}} \plain\cf1\fs20 \pard {\cf2\f1\fs28 We compute the net }{\cf2\f1\fs28 electric field components E}{\cf2\f1\fs28\dn x}{\cf2\f1\fs28 and E}{ \cf2\f1\fs28\dn Y }{\cf2\f1\fs28 created by two charges Q}{\cf2\f1\fs28 \dn 1}{\cf2\f1\fs28 and Q}{\cf2\f1\fs28\dn 2}{\cf2\f1\fs28 . The charges are located on the x axis at x = -L/2 and at x = L/2, respectively. We graph the field components versus x for fixed y, and versus y for fixed x.}{\fs32\b \par }} .TXT 14 0 87 0 0 Cg a58.000000,58.000000,43 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard The electric charges expressed in coulombs.} .TXT 0 38 95 0 0 Cg a28.000000,28.000000,21 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Permitivity constant:} .EQN 1 15 96 0 0 {0:\e.0}NAME:8.85*(10)^(-12)*(({0:coul}NAME)^(2))/(({0:m}NAME)^(2)*{0:newton}NAME) .EQN 3 -53 33 0 0 {0:Q.1}NAME:-(10)^(-14)*{0:coul}NAME .EQN 4 0 84 0 0 {0:Q.2}NAME:-2*(10)^(-14)*{0:coul}NAME .TXT 3 0 126 0 0 Cg a72.000000,72.000000,35 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Distance between charges in meters:} .EQN 0 29 97 0 0 {0:L}NAME:0.01*{0:m}NAME .EQN 3 -26 36 0 0 {0:X}NAME:-0.02*{0:m}NAME,-0.0198*{0:m}NAME;0.02*{0:m}NAME .EQN 0 26 64 0 0 {0:Y}NAME:.0001*{0:m}NAME,.0011*{0:m}NAME;0.2*{0:m}NAME .TXT 3 -28 98 0 0 Cg a72.000000,72.000000,82 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard The electric field created by the two charges at the point (X,Y) expressed in N/C.} .EQN 6 1 41 0 0 {0:E.X}NAME({0:X}NAME,{0:Y}NAME):({0:Q.1}NAME)/(4*{0:\p}NAME*{0:\e.0}NAME)*({0:X}NAME+({0:L}NAME)/(2))/((((({0:X}NAME+({0:L}NAME)/(2)))^(2)+({0:Y}NAME)^(2)))^((3)/(2)))+({0:Q.2}NAME)/(4*{0:\p}NAME*{0:\e.0}NAME)*({0:X}NAME-({0:L}NAME)/(2))/((((({0:X}NAME-( {0:L}NAME)/(2)))^(2)+({0:Y}NAME)^(2)))^((3)/(2))) .EQN 12 0 44 0 0 {0:E.Y}NAME({0:X}NAME,{0:Y}NAME):({0:Q.1}NAME)/(4*{0:\p}NAME*{0:\e.0}NAME)*({0:Y}NAME)/((((({0:X}NAME+({0:L}NAME)/(2)))^(2)+({0:Y}NAME)^(2)))^((3)/(2)))+({0:Q.2}NAME)/(4*{0:\p}NAME*{0:\e.0}NAME)*({0:Y}NAME)/((((({0:X}NAME-({0:L}NAME)/(2)))^(2)+({0:Y}NAME) ^(2)))^((3)/(2))) .TXT 10 -2 55 0 0 Cg a72.000000,72.000000,28 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard COPYRIGHT MIRON KAUFMAN 1995} .TXT 1 0 46 0 0 C x1,1,0,0 .TXT 3 0 100 0 0 Cg a73.000000,73.000000,73 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset0\froman Times New Roman;}} \plain\cf1\fs20 \pard {\cf2\f1\fs28 The graph below shows the electric field as function of X at Y = 0.001m.}} .EQN 4 2 47 0 0 &&(_n_u_l_l_&_n_u_l_l_)&({0:E.X}NAME({0:X}NAME,0.001*{0:m}NAME))/((({0:newton}NAME)/({0:coul}NAME))),({0:E.Y}NAME({0:X}NAME,0.001*{0:m}NAME))/((({0:newton}NAME)/({0:coul}NAME)))@&&(_n_u_l_l_&_n_u_l_l_)&({0:X}NAME)/({0:m}NAME) 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 3 1 0 0 1 1 NO-TRACE-STRING 4 1 1 0 1 1 NO-TRACE-STRING 3 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 50 39 10 0 2 .TXT 96 -2 107 0 0 Cg a72.000000,72.000000,28 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard COPYRIGHT MIRON KAUFMAN 1995} .TXT 5 0 48 0 0 Cg b73.000000,73.000000,191 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset0\froman Times New Roman;}} \plain\cf1\fs20 \pard {\cf2\f1\fs28 In the next graph we show the electric field variation along a line perpendicular on the x axis. }{ \cf2\f1\fs28 Note that for Y>>L the electric field variation is as if we had a single point charge Q}{\cf2\f1\fs28\dn 1}{\cf2\f1\fs28 +Q}{ \cf2\f1\fs28\dn 2}{\cf2\f1\fs28 .}} .EQN 8 3 49 0 0 5&-5&(_n_u_l_l_&_n_u_l_l_)&({0:E.X}NAME(0*{0:m}NAME,{0:Y}NAME))/((({0:newton}NAME)/({0:coul}NAME))),({0:E.Y}NAME(0*{0:m}NAME,{0:Y}NAME))/((({0:newton}NAME)/({0:coul}NAME))),(({0:Q.1}NAME+{0:Q.2}NAME)/(4*{0:\p}NAME*{0:\e.0}NAME*({0:Y}NAME)^(2)))/((( {0:newton}NAME)/({0:coul}NAME)))@0.05&&(_n_u_l_l_&_n_u_l_l_)&({0:Y}NAME)/({0:m}NAME) 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 NO-TRACE-STRING 4 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 2 2 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 56 32 10 0 3 Electric field vs. Y at fixed X=0. .TXT 89 -3 108 0 0 Cg a72.000000,72.000000,28 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard COPYRIGHT MIRON KAUFMAN 1995} .TXT 4 -1 103 0 0 Cg a74.000000,74.000000,75 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset0\froman Times New Roman;}} \plain\cf1\fs20 \pard {\cf2\f1\fs28 In the next graph we show the electric field variation with X for Y = 0. }} .EQN 4 1 51 0 0 200&-200&(_n_u_l_l_&_n_u_l_l_)&({0:E.X}NAME({0:X}NAME,0*{0:m}NAME))/(({0:newton}NAME)/({0:coul}NAME))@0.02&&(_n_u_l_l_&_n_u_l_l_)&({0:X}NAME)/({0:m}NAME) 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 3 0 0 0 1 1 NO-TRACE-STRING 4 0 1 0 1 1 NO-TRACE-STRING 3 0 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 50 39 10 0 3 Electric field vs. X at Y=0 .TXT 58 1 66 0 0 Cg a72.000000,72.000000,86 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset0\froman Times New Roman;}} \plain\cf1\fs20 \pard {\cf2\f1\fs28 We now find the point where the electric field is zero by using Mathcad function }{\cf2\f1\fs28\b\i root}{ \cf2\f1\fs28 .}} .EQN 5 6 76 0 0 {0:X}NAME:0*{0:m}NAME .TXT 0 10 114 0 0 Cg a53.625000,53.625000,32 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard This is the guess for the root. } .EQN 3 -10 75 0 0 {0:x}NAME:{0:root}NAME({0:E.X}NAME({0:X}NAME,0*{0:m}NAME),{0:X}NAME) .EQN 3 0 105 0 0 {0:x}NAME={0}?_n_u_l_l_ .TXT 0 11 115 0 0 Cg a53.000000,53.000000,65 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard This is the point on the x axis where the electric field is zero.} .EQN 6 -11 113 0 0 {0:E.X}NAME({0:x}NAME,0*{0:m}NAME)={0}?_n_u_l_l_ .TXT 0 29 122 0 0 Cg a37.000000,37.000000,50 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard This is the check that x is the solution of E{\dn X} = 0} .TXT 21 -36 128 0 0 Cg b73.000000,73.000000,28 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard COPYRIGHT MIRON KAUFMAN 1995}