.MCAD 304020000 1 74 333 0 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 0 3 .CMD FORMAT rd=d ct=10 im=i et=3 zt=40 pr=3 mass length time charge temperature tr=0 vm=0 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 1.200000 1.218750 1.200000 1.200000 0 .CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty* .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=1733264598 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=1733264598 .CMD DEFAULT_TEXT_PARPROPS 0 0 0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=12 bold=0 italic=0 underline=0 colrid=5 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .CMD COLORTAB_ENTRY 0 0 0 .CMD COLORTAB_ENTRY 128 0 0 .CMD COLORTAB_ENTRY 0 128 0 .CMD COLORTAB_ENTRY 128 128 0 .CMD COLORTAB_ENTRY 0 0 128 .CMD COLORTAB_ENTRY 128 0 128 .CMD COLORTAB_ENTRY 0 128 128 .CMD COLORTAB_ENTRY 128 128 128 .CMD COLORTAB_ENTRY 192 192 192 .CMD COLORTAB_ENTRY 255 0 0 .CMD COLORTAB_ENTRY 0 255 0 .CMD COLORTAB_ENTRY 255 255 0 .CMD COLORTAB_ENTRY 0 0 255 .CMD COLORTAB_ENTRY 255 0 255 .CMD COLORTAB_ENTRY 0 255 255 .CMD COLORTAB_ENTRY 255 255 255 .CMD COLORTAB_ENTRY 0 64 128 .TXT 2 1 7 0 0 Cg b73.000000,73.000000,514 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset0\fnil Century Gothic;}{ \f2\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard COPYRIGHT MIRON KAUFMAN, 1997\par {\b \par }{\f1\fs36\ul STATISTICAL PHYSICS COMPUTER LAB }{\f1\fs36\ul #3}{\f1\fs32 \par }{\fs28 \par }We study the black-body (electromagnetic) radiation in thermal equilibrium at a temperature T inside a container of volume V. We will start with the free energy. We will then get the energy U(V,T). Then we will study the spectral energy density \tab u{\f2\dn w}{\f2 }{ \cf2 = }dU/d{\f2 w } and the spectral energy density u{\f2\dn l} {\cf2 = }dU/d{\f2 l}. Next we will derive the Wien displacement law. Finally we will compute the number of photons in a volume V at a temperature T.} .EQN 25 0 119 0 0 {0:c}NAME:3*(10)^(8) .EQN 0 8 120 0 0 {0:k.B}NAME:1.381*(10)^(-23) .EQN 0 13 121 0 0 {0:hbar}NAME:1.05457*(10)^(-34) .EQN 0 18 193 0 0 {0:h}NAME:{0:hbar}NAME*2*{0:\p}NAME .EQN 5 -18 330 0 0 {0:F}NAME({0:V}NAME,{0:T}NAME):(({0:k.B}NAME)^(4))/(({0:\p}NAME)^(2)*({0:c}NAME)^(3)*({0:hbar}NAME)^(3))*{0:V}NAME*({0:T}NAME)^(4)*(0&{0:\¥}NAME`({0:x}NAME)^(2)*{0:ln}NAME(1-({0:e}NAME)^(-{0:x}NAME))&{0:x}NAME) .TXT 1 -21 264 0 0 Cg a72.000000,72.000000,19 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The free energy is:} .TXT 7 0 265 0 0 Cg a68.750000,68.750000,76 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The integral is done by using {\cf2\ul Floating Point Evaluation f}rom under {\cf2 \ul Symbolic}.} .EQN 7 0 132 0 0 (0&{0:\¥}NAME`({0:x}NAME)^(2)*{0:ln}NAME(1-({0:e}NAME)^(-{0:x}NAME))&{0:x}NAME) .EQN 6 0 133 0 0 -2.16464646742228 .TXT 4 0 134 0 0 Cg a73.000000,73.000000,27 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The integral is equal to: {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 57 16 135 0 0 -((({0:\p}NAME)^(4))/(45))={19007}?_n_u_l_l_ }}} .TXT 6 0 137 0 0 Cg a73.000000,73.000000,36 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The Stefan constant is defined as: {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 63 23 138 0 0 {0:a}NAME:3*(({0:\p}NAME)^(4))/(45)*(({0:k.B}NAME)^(4))/(({0:\p}NAME)^(2)*({0:c}NAME)^(3)*({0:hbar}NAME)^(3)) }}} .EQN 3 47 317 0 0 {0:a}NAME={19187}?_n_u_l_l_ .TXT 3 -47 144 0 0 Cg a73.000000,73.000000,7 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Then: {\object{ \*\objclass \eqn}\rsltpict{\*\objdata .EQN 69 5 145 0 0 {0:F}NAME({0:V}NAME,{0:T}NAME):-(({0:a}NAME)/(3))*{0:V}NAME*({0:T}NAME)^(4) }}} .TXT 4 0 266 0 0 Cg a72.000000,72.000000,110 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard This is the fundamental equation. We find the pressure from: p = -dF/dV and the entropy from: S = -dF/dT.} .EQN 7 0 147 0 0 {0:p}NAME({0:T}NAME):({0:a}NAME)/(3)*({0:T}NAME)^(4) .EQN 0 19 148 0 0 {0:S}NAME({0:V}NAME,{0:T}NAME):(4)/(3)*{0:a}NAME*{0:V}NAME*({0:T}NAME)^(3) .TXT 19 -19 298 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997\par }} .EQN 7 36 296 0 0 {0:V}NAME:1 .EQN 0 15 297 0 0 {0:T}NAME:0;500 .EQN 3 -51 295 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:S}NAME({0:V}NAME,{0:T}NAME)@&&(_n_u_l_l_&_n_u_l_l_)&{0:T}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 57 23 10 0 3 .TXT 34 1 273 0 0 Cg a72.000000,72.000000,64 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The energy is U = F +TS = aVT{\up 4}{\cf2\up }and the heat capacity C{\dn V} = 4aVT{ \fs20\up 3}{\cf2\fs20\up }} .EQN 4 0 150 0 0 {0:U}NAME({0:V}NAME,{0:T}NAME):{0:a}NAME*{0:V}NAME*({0:T}NAME)^(4) .EQN 0 16 321 0 0 {0:C.V}NAME({0:V}NAME,{0:T}NAME):4*{0:a}NAME*{0:V}NAME*({0:T}NAME)^(3) .EQN 4 -17 69 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:U}NAME({0:V}NAME,{0:T}NAME)@&&(_n_u_l_l_&_n_u_l_l_)&{0:T}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 24 33 10 0 3 .EQN 2 35 324 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:C.V}NAME({0:V}NAME,{0:T}NAME)@&&(_n_u_l_l_&_n_u_l_l_)&{0:T}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 24 32 10 0 3 .TXT 52 -35 300 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}{\fs20 \par }} .TXT 7 1 151 0 0 Cg a59.375000,59.375000,51 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard u{\f1\fs20\dn w} = dU/d{\f1\fs20 w} is the frequency spectral energy density} .EQN 6 -1 73 0 0 {0:u.\w}NAME({0:\w}NAME,{0:V}NAME,{0:T}NAME):({0:V}NAME*{0:hbar}NAME)/(({0:\p}NAME)^(2)*({0:c}NAME)^(3))*(({0:\w}NAME)^(3))/(({0:e}NAME)^(({0:hbar}NAME*{0:\w}NAME)/({0:k.B}NAME*{0:T}NAME))-1) .EQN 0 27 75 0 0 {0:\w}NAME:5*(10)^(11),6*(10)^(11);5*(10)^(14) .EQN 6 -27 74 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:u.\w}NAME({0:\w}NAME,1,300)@&&(_n_u_l_l_&_n_u_l_l_)&{0:\w}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 59 47 10 0 3 .TXT 83 0 301 0 0 Cg b73.000000,73.000000,29 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}} .TXT 9 1 157 0 0 Cg a72.000000,72.000000,191 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0; \red0\green64\blue128;}{\fonttbl{\f0\fcharset0\fnil Arial;}{\f1 \fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard The spectral energy density has a maximum. We determine it by setting the derivative of u{ \cf2\f1\fs20\dn w}{\cf3\fs20 }{\cf3 equal to zero.}{\cf3\fs20 \par }{ \cf3 Derivative of: }{\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 322 20 159 0 0 ((({0:x}NAME)^(3))/(({0:e}NAME)^({0:x}NAME)-1)) }}{\cf3 is obtained by using }{\cf3\ul Differentiate on Variable}{\cf3 from under }{\cf3\ul Symbolic}{\cf3 .}} .EQN 15 0 104 0 0 3*(({0:x}NAME)^(2))/(({0:exp}NAME({0:x}NAME)-1))-(({0:x}NAME)^(3))/((({0:exp}NAME({0:x}NAME)-1))^(2))*{0:exp}NAME({0:x}NAME) .TXT 6 0 162 0 0 Cg a72.000000,72.000000,38 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Then use {\ul Simplify} from under {\ul Symbolic}:} .EQN 4 0 168 0 0 -({0:x}NAME)^(2)*((-3*{0:exp}NAME({0:x}NAME)+3+{0:x}NAME*{0:exp}NAME({0:x}NAME)))/((({0:exp}NAME({0:x}NAME)-1))^(2)) .TXT 7 0 169 0 0 Cg a72.000000,72.000000,99 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Next set the numerator equal to zero. We use the root function to solve the transcedental equation.} .EQN 5 2 166 0 0 {0:x}NAME:3 .EQN 3 -3 167 0 0 {0:x.max}NAME:{0:root}NAME(-3*{0:exp}NAME({0:x}NAME)+3+{0:x}NAME*{0:exp}NAME({0:x}NAME),{0:x}NAME) .EQN 3 4 173 0 0 {0:x.max}NAME={0}?_n_u_l_l_ .TXT 6 -4 260 0 0 Cg a71.000000,71.000000,23 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128; \red0\green0\blue0;}{\fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2 \fnil Symbol;}}\plain\cf1\fs24 \pard The frequency {\cf2\f1\fs20 w}{ \cf3\fs20\dn max}{\cf3\fs20 is:}{\object{\*\objclass \eqn}\rsltpict{ \*\objdata .EQN 365 16 177 0 0 {0:\w.max}NAME({0:T}NAME):({0:x.max}NAME*{0:k.B}NAME)/({0:hbar}NAME)*{0:T}NAME }}} .TXT 7 1 180 0 0 Cg a72.000000,72.000000,6 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Now: {\object{ \*\objclass \eqn}\rsltpict{\*\objdata .EQN 372 6 181 0 0 ({0:x.max}NAME*{0:k.B}NAME)/({0:hbar}NAME)={84723}?_n_u_l_l_ }}} .TXT 6 -1 278 0 0 Cg a43.000000,43.000000,8 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard So at: {\object{ \*\objclass \eqn}\rsltpict{\*\objdata .EQN 378 5 184 0 0 {0:T}NAME:300 }}} .TXT 2 14 290 0 0 Cg a47.375000,47.375000,23 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard the frequency {\f1 w}{\dn max} is: } .EQN 0 21 291 0 0 {0:\w.max}NAME({0:T}NAME)={0}?_n_u_l_l_ .TXT 32 -35 292 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}{\fs20 \par }} .TXT 7 2 190 0 0 Cg a71.000000,71.000000,58 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0; \red0\green64\blue128;}{\fonttbl{\f0\fcharset0\fnil Arial;}{\f1 \fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard The wavelength spectral energy frequency is u{\cf2\f1\fs20\dn l}{\cf3\fs20 = u}{\cf2\f1\fs20 \dn w}{\cf3\fs20 |d}{\cf3\f1\fs20 w}{\cf3\fs20 /d}{\cf3\f1\fs20 l}{\cf3 \fs20 |}} .EQN 4 1 191 0 0 {0:u.\l}NAME({0:\l}NAME,{0:V}NAME,{0:T}NAME):(8*{0:\p}NAME*{0:h}NAME*{0:c}NAME*{0:V}NAME)/(({0:\l}NAME)^(5)*(({0:e}NAME)^(({0:h}NAME*{0:c}NAME)/({0:k.B}NAME*{0:T}NAME*{0:\l}NAME))-1)) .EQN 9 1 194 0 0 {0:\l}NAME:(10)^(-6),1.1*(10)^(-6);(10)^(-4) .EQN 1 -4 196 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:u.\l}NAME({0:\l}NAME,1,200),{0:u.\l}NAME({0:\l}NAME,1,300),{0:u.\l}NAME({0:\l}NAME,1,400)@1*(10)^(-4)&&(_n_u_l_l_&_n_u_l_l_)&{0:\l}NAME 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 3 1 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 57 67 10 0 3 .TXT 82 0 83 0 0 Cg b73.000000,73.000000,29 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}} .TXT 4 0 203 0 0 Cg a68.000000,68.000000,138 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0; \red0\green64\blue128;}{\fonttbl{\f0\fcharset0\fnil Arial;}{\f1 \fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard The maximum in u{\cf2\f1 \dn l}{\cf3 is obtained by setting the derivative du}{\cf2\f1\dn l}{ \cf3 /d}{\cf3\f1 l}{\cf3 equal to zero. Equivalently we differentiate }{ \object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 522 16 212 0 0 (({0:e}NAME)^({0:x}NAME)-1)/(({0:x}NAME)^(5)) }}{\cf3 with respect to x and get: }} .EQN 9 0 213 0 0 ({0:exp}NAME({0:x}NAME))/(({0:x}NAME)^(5))-5*(({0:exp}NAME({0:x}NAME)-1))/(({0:x}NAME)^(6)) .TXT 8 1 214 0 0 Cg a72.000000,72.000000,9 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Simplify:} .EQN 5 2 206 0 0 (({0:x}NAME*{0:exp}NAME({0:x}NAME)-5*{0:exp}NAME({0:x}NAME)+5))/(({0:x}NAME)^(6)) .TXT 5 -3 215 0 0 Cg a73.000000,73.000000,12 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Solve for x:} .EQN 6 0 216 0 0 {0:x}NAME:5 .EQN 3 1 223 0 0 {0:x.max}NAME:{0:root}NAME(({0:x}NAME*{0:exp}NAME({0:x}NAME)-5*{0:exp}NAME({0:x}NAME)+5),{0:x}NAME) .EQN 3 2 225 0 0 {0:x.max}NAME={0}?_n_u_l_l_ .TXT 6 -2 219 0 0 Cg a72.000000,72.000000,129 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue0; \red0\green64\blue128;}{\fonttbl{\f0\fcharset0\fnil Arial;}{\f1 \fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard Since: x = hc/k{\cf2\dn B}T{ \cf3\f1\fs20 l }it follows: {\cf3\f1\fs20 l}{\cf2\dn max}*T = hc/k{\cf2 \dn B}x{\cf2\dn max } {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 564 46 229 0 0 ({0:h}NAME*{0:c}NAME)/({0:k.B}NAME*{0:x.max}NAME)={0}?_n_u_l_l_ }}{\cf3\f1\fs20 }This equation is known as the {\b Wien displacement law}.} .EQN 12 3 228 0 0 {0:\l.max}NAME({0:T}NAME):(2.899*(10)^(-3))/({0:T}NAME) .TXT 8 -2 302 0 0 Cg a71.000000,71.000000,103 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard The Sun' s spectrum has a maximum at {\f1 l} = 470nm. Then by Wien's law the Sun's surface temperature is: {\object{\*\objclass \eqn} \rsltpict{\*\objdata .EQN 587 18 303 0 0 (2.899*(10)^(-3))/(4.7*(10)^(-7))={0}?_n_u_l_l_ }}} .TXT 10 1 305 0 0 Cg a70.000000,70.000000,45 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The energy per volume from all spectrum is: {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 594 33 306 0 0 {0:a}NAME*(6168)^(4)={0}?_n_u_l_l_ }}} .TXT 5 -3 326 0 0 Cg a70.000000,70.000000,80 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The energy per volume from the visible part of the spectrum, 400nm to 700nm, is:} .EQN 7 3 308 0 0 (4*(10)^(-7)&7*(10)^(-7)`{0:u.\l}NAME({0:\l}NAME,1,6168)&{0:\l}NAME)={19187}?_n_u_l_l_ .TXT 7 0 309 0 0 Cg a70.000000,70.000000,64 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Hence the visible energy represents: {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 613 28 310 0 0 (0.417)/(1.094)={0}?_n_u_l_l_ }}of the total solar energy.} .TXT 6 -3 281 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}{\fs20 \par }} .TXT 6 0 117 0 0 Cg a67.625000,67.625000,82 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Next we calculate the average number of photons in a volume V at temperature T\tab {\object{ \*\objclass \eqn}\rsltpict{\*\objdata .EQN 630 15 232 0 0 {0:N}NAME({0:V}NAME,{0:T}NAME):(({0:k.B}NAME)^(3))/(({0:\p}NAME)^(2)*({0:c}NAME)^(3)*({0:hbar}NAME)^(3))*{0:V}NAME*({0:T}NAME)^(3)*(0&{0:\¥}NAME`(({0:x}NAME)^(2))/(({0:e}NAME)^({0:x}NAME)-1)&{0:x}NAME) }}.} .TXT 16 2 251 0 0 Cg a71.000000,71.000000,74 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green64\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard We do the integral by using {\cf2\ul Floating Point Evaluation} from under {\cf2 \ul Symbolic}.} .EQN 8 1 236 0 0 (0&{0:\¥}NAME`(({0:x}NAME)^(2))/(({0:e}NAME)^({0:x}NAME)-1)&{0:x}NAME) .EQN 8 0 237 0 0 2.40411380631918 .TXT 5 -1 254 0 0 Cg a71.000000,71.000000,12 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Then:{\object{ \*\objclass \eqn}\rsltpict{\*\objdata .EQN 662 6 256 0 0 2.40411380631918*(({0:k.B}NAME)^(3))/(({0:\p}NAME)^(2)*({0:c}NAME)^(3)*({0:hbar}NAME)^(3))={0}?_n_u_l_l_ }} or: {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 662 40 258 0 0 {0:N}NAME({0:V}NAME,{0:T}NAME):2.026032049498775*(10)^(7)*{0:V}NAME*({0:T}NAME)^(3) }}} .TXT 9 -2 311 0 0 Cg a71.500000,71.500000,195 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The average number of photons inside a one cubic meter volume at room temperature 300K is: \tab {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 673 13 327 0 0 {0:N}NAME(1,300)={0}?_n_u_l_l_ }}\par The average number of photons inside a one cubic meter volume at Sun's surface temperature 6168K is:\tab {\object{\*\objclass \eqn} \rsltpict{\*\objdata .EQN 678 22 328 0 0 {0:N}NAME(1,6168)={0}?_n_u_l_l_ }}} .TXT 50 0 282 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}{\fs20 \par }}