.MCAD 304020000 1 74 461 0 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 0 3 .CMD FORMAT rd=d ct=10 im=i et=3 zt=40 pr=3 mass length time charge temperature tr=0 vm=0 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 1.200000 1.218750 1.200000 1.200000 0 .CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty* .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=1733264598 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=1733264598 .CMD DEFAULT_TEXT_PARPROPS 0 0 0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=12 bold=0 italic=0 underline=0 colrid=5 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .CMD COLORTAB_ENTRY 0 0 0 .CMD COLORTAB_ENTRY 128 0 0 .CMD COLORTAB_ENTRY 0 128 0 .CMD COLORTAB_ENTRY 128 128 0 .CMD COLORTAB_ENTRY 0 0 128 .CMD COLORTAB_ENTRY 128 0 128 .CMD COLORTAB_ENTRY 0 128 128 .CMD COLORTAB_ENTRY 128 128 128 .CMD COLORTAB_ENTRY 192 192 192 .CMD COLORTAB_ENTRY 255 0 0 .CMD COLORTAB_ENTRY 0 255 0 .CMD COLORTAB_ENTRY 255 255 0 .CMD COLORTAB_ENTRY 0 0 255 .CMD COLORTAB_ENTRY 255 0 255 .CMD COLORTAB_ENTRY 0 255 255 .CMD COLORTAB_ENTRY 255 255 255 .CMD COLORTAB_ENTRY 0 64 128 .TXT 2 1 7 0 0 Cg b73.000000,73.000000,475 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset0\fnil Century Gothic;}{\f2 \fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}\par {\b \par }{\f1\fs36\ul STATISTICAL PHYSICS COMPUTER LAB }{\f1\fs36\ul #5:\par \tab }{\f1\fs36 }{\f1 \fs36\ul Bose-Einstein Ideal Gas}{\f1\fs32 \par }{\fs28 \par }We study the Bose-Einstein ideal gas of {\f2 ¥}ltra-relativistic particles, {\f2 e} = pc, in three dimensions. First we define the constants. Then we define the set of F functions that are used in the Bose-Einstein theory. {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 24 37 440 0 0 {0:F}NAME({0:m}NAME,{0:\x}NAME):(1)/({0:\G}NAME({0:m}NAME))*(0&{0:\¥}NAME`(({0:x}NAME)^({0:m}NAME-1))/(({0:e}NAME)^({0:x}NAME)*({0:\x}NAME)^(-1)-1)&{0:x}NAME) }} where {\f2 x} < 1 \par It can be shown that: {\object{\*\objclass \eqn}\rsltpict{\*\objdata .EQN 33 18 447 0 0 {0:F}NAME({0:m}NAME,{0:\x}NAME):((1,{0:\¥}NAME,{0:i}NAME,(({0:\x}NAME)^({0:i}NAME))/(({0:i}NAME)^({0:m}NAME))){64}) }} We start with the energy density U(T, {\f2 x})/V and the density of bosons N(T{\f2 ,}{\f2 x})/V{\f2 }where {\f2 x }is the fugacity. } .EQN 40 0 119 0 0 {0:c}NAME:3*(10)^(8) .EQN 0 8 120 0 0 {0:k.B}NAME:1.381*(10)^(-23) .EQN 0 13 121 0 0 {0:hbar}NAME:1.05457*(10)^(-34) .EQN 0 18 193 0 0 {0:h}NAME:{0:hbar}NAME*2*{0:\p}NAME .EQN 0 17 334 0 0 {0:g}NAME:1 .EQN 6 -56 349 0 0 {0:F}NAME({0:m}NAME,{0:\x}NAME):((1,100,{0:i}NAME,(({0:\x}NAME)^({0:i}NAME))/(({0:i}NAME)^({0:m}NAME))){64}) .TXT 6 0 264 0 0 Cg a72.000000,72.000000,38 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The energy per unit volume u = U/V is:} .EQN 0 35 455 0 0 {0:u}NAME({0:T}NAME,{0:\x}NAME):(24*{0:\p}NAME*({0:k.B}NAME)^(4))/(({0:c}NAME)^(3)*({0:h}NAME)^(3))*{0:g}NAME*({0:T}NAME)^(4)*{0:F}NAME(4,{0:\x}NAME) .TXT 10 -34 367 0 0 Cg a72.000000,72.000000,31 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Since U = 3pV, the pressure is:} .EQN 0 33 456 0 0 {0:p}NAME({0:T}NAME,{0:\x}NAME):(8*{0:\p}NAME*({0:k.B}NAME)^(4))/(({0:c}NAME)^(3)*({0:h}NAME)^(3))*{0:g}NAME*({0:T}NAME)^(4)*{0:F}NAME(4,{0:\x}NAME) .TXT 9 -33 343 0 0 Cg a72.000000,72.000000,48 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard The number of bosons per unit volume n = N/V is:} .EQN 0 45 457 0 0 {0:n}NAME({0:T}NAME,{0:\x}NAME):(8*{0:\p}NAME*({0:k.B}NAME)^(3))/(({0:c}NAME)^(3)*({0:h}NAME)^(3))*{0:g}NAME*({0:T}NAME)^(3)*{0:F}NAME(3,{0:\x}NAME) .TXT 13 -44 374 0 0 Cg a71.000000,71.000000,131 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard The chemical potential is obtained from: exp({\f1 m/}k{\dn B}T) = {\f1 x}:\par \tab \tab \tab {\object{\*\objclass \eqn}\rsltpict{ \*\objdata .EQN 88 21 385 0 0 {0:\m}NAME({0:T}NAME,{0:\x}NAME):{0:k.B}NAME*{0:T}NAME*{0:ln}NAME({0:\x}NAME) }}\par \pard The entropy per volume s = S/V is obtained from the Euler equation: } .EQN 12 23 458 0 0 {0:s}NAME({0:T}NAME,{0:\x}NAME):({0:u}NAME({0:T}NAME,{0:\x}NAME))/({0:T}NAME)+({0:p}NAME({0:T}NAME,{0:\x}NAME))/({0:T}NAME)-({0:\m}NAME({0:T}NAME,{0:\x}NAME)*{0:n}NAME({0:T}NAME,{0:\x}NAME))/({0:T}NAME) .TXT 10 -23 429 0 0 Cg a71.000000,71.000000,100 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Consider a gas of density 10{\up 10} particles per cubic meter and calculate the condensation temperature:} .EQN 6 8 420 0 0 {0:T}NAME:10. .EQN 4 -1 419 0 0 {0:T.C}NAME:{0:root}NAME({0:n}NAME({0:T}NAME,1)-(10)^(10),{0:T}NAME) .EQN 4 2 421 0 0 {0:T.C}NAME={0}?_n_u_l_l_ .TXT 3 -8 430 0 0 Cg a70.000000,70.000000,114 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard We compute the fugacity: for T > T{\dn C} it is the root of the equation n(T, {\f1 x}) = 10{\up 10} and for T {0:T.C}NAME,{0:root}NAME({0:n}NAME({0:T}NAME,{0:\x}NAME)-(10)^(10),{0:\x}NAME),1) .EQN 4 3 404 0 0 {0:T}NAME:0.1,0.2;20 .EQN 4 0 405 0 0 {0:\m}NAME({0:T}NAME):{0:k.B}NAME*{0:T}NAME*{0:ln}NAME({0:\x}NAME({0:T}NAME)) .EQN 4 -10 407 0 0 1*(10)^(-21)&&(_n_u_l_l_&_n_u_l_l_)&{0:\m}NAME({0:T}NAME)@20&&({0:T.C}NAME&_n_u_l_l_)&{0:T}NAME 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 56 15 10 0 3 Chemical Potential vs Temperature .EQN 25 1 408 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:p}NAME({0:T}NAME,{0:\x}NAME({0:T}NAME)),(10)^(10)*{0:k.B}NAME*{0:T}NAME@20&&({0:T.C}NAME&_n_u_l_l_)&{0:T}NAME 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 3 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 56 15 10 0 3 Equation of State: p vs T for fixed n .TXT 28 -1 432 0 0 Cg a71.000000,71.000000,68 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Note that at high T the equation of state is the classical: p = nk{\dn B}T} .TXT 3 -2 427 0 0 Cg b73.000000,73.000000,29 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}} .EQN 6 3 410 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:s}NAME({0:T}NAME,{0:\x}NAME({0:T}NAME))@20&&({0:T.C}NAME&_n_u_l_l_)&{0:T}NAME 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 56 15 10 0 3 Entropy vs Temperature .TXT 24 -1 459 0 0 Cg a71.000000,71.000000,83 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Note that at absolute zero s = 0, in agreement with the 3'rd law of thermodynamics.} .EQN 3 1 415 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:u}NAME({0:T}NAME,{0:\x}NAME({0:T}NAME)),3*{0:k.B}NAME*{0:T}NAME*(10)^(10)@20&0&({0:T.C}NAME&_n_u_l_l_)&{0:T}NAME 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 56 15 10 0 3 Energy vs Temperature .TXT 28 1 433 0 0 Cg a69.000000,69.000000,59 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard Note that at high T the energy is the classical: u = 3k{\dn B}Tn } .EQN 4 -1 437 0 0 {0:c.V}NAME({0:T}NAME):{0:T}NAME"{0:u}NAME({0:T}NAME,{0:\x}NAME({0:T}NAME)) .EQN 6 0 434 0 0 &&(_n_u_l_l_&_n_u_l_l_)&{0:c.V}NAME({0:T}NAME),3*{0:k.B}NAME*(10)^(10)@20&&({0:T.C}NAME&_n_u_l_l_)&{0:T}NAME 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 56 15 10 0 3 Isochoric Heat Capacity vs Temperature .TXT 28 1 435 0 0 Cg a69.000000,69.000000,156 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs24 \pard Note the singularity of C{\dn V }at the condensation temperature. It looks like the greek letter {\f1\b l} so this phase transition is sometimes called the {\f1\b l} transition.} .TXT 6 -4 298 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997\par }} .TXT 647 0 282 0 0 Cg b73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs24 \pard {\fs16 COPYRIGHT MIRON KAUFMAN, 1997}{\fs20 \par }}