THERMAL PHYSICS PHY474 LAB. \#0 TUTORIAL and ENTROPY MAXIMIZATION

First we learn how to do simple computations with MathCad.
(1) Type: $3 * 4=$ The answer is: 12.

$$
3 \cdot 4=12
$$

(2) Type 24-35= The answer is -11

$$
24-35=-11
$$

(3) Type: $31=$ (this is square root of 3). The answer is 1.73

$$
\sqrt{3}=1.732
$$

(4) Type $2.3^{\wedge} 4.5=$ (this is 2.3 to the power 4.5). The answer is 42.44

$$
2.3^{4.5}=42.44
$$

(5) Type: $(3-4)^{*} 4-6=$ The answer is -10

$$
(3-4) \cdot 4-6=-10
$$

(6) Type: $7 /(2.3-8.6)$ space bar+3=. The answer is: 1.889

$$
\frac{7}{(2.3-8.6)}+3=1.889
$$

We learn next to do symbolic calculations and to graph with MathCad.
Let us consider two objects of temperatures T_{1} and T_{2} and heat capacities C_{1} anc C_{2}. The equilibrium temperature is obtained by equating the heat leaving the hot object 2 to the heat entering the cold object 1 .
$\mathrm{Q}=\mathrm{C}_{1}\left(\mathrm{~T}-\mathrm{T}_{1}\right)=\mathrm{C}_{2}\left(\mathrm{~T}_{2}-\mathrm{T}\right)$. Solve for: $\mathrm{T}=\left(\mathrm{C}_{1} \mathrm{~T}_{1}+\mathrm{C}_{2} \mathrm{~T}_{2}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$. Note: $\mathrm{T}_{1}<\mathrm{T}<\mathrm{T}_{2}$ Since: $d Q=C d T=T d S$ we can calculate the entropy change by integrating: $d S=$ $\mathrm{CdT} / \mathrm{T}$. We use the "evaluate symbolically" operator from "evaluation and boolean palette".

$$
\int_{\mathrm{T}_{1}}^{\mathrm{T}} \frac{\mathrm{C}_{1}}{\mathrm{t}} \mathrm{dt} \rightarrow \left\lvert\, \begin{aligned}
& \mathrm{C}_{1} \cdot\left(\ln (\mathrm{~T})-\ln \left(\mathrm{T}_{1}\right)\right) \text { if } 0>\mathrm{T} \vee \mathrm{~T}_{1}>0 \\
& \text { undefined otherwise }
\end{aligned}\right.
$$

So the entropy change for object 1 is $\Delta \mathrm{S}_{1}=\mathrm{C}_{1} \ln \left(\mathrm{~T} / \mathrm{T}_{1}\right)$ and for object 2 is $\Delta \mathrm{S}_{2}=$ $\mathrm{C}_{2} \ln \left(\mathrm{~T} / \mathrm{T}_{2}\right)$. Note: $\Delta \mathrm{S}_{1}>0, \Delta \mathrm{~S}_{2}<0$. The total entropy change is positive acording to the 2 'nd law: $\Delta \mathrm{S}_{1}+\Delta \mathrm{S}_{2}>0$.
The fact that the two objects equilibrate at the same temperature is required by the 2'nd law of thermodynamics: entropy is at its largest possible value consistent with constraints. We are going to demonstrate this statement. Let us denote T_1 the final temperature of 1 and $T_{-} 2$ final temperature of 2 . From: $Q=C_{1}\left(T_{-} 1-T_{1}\right)=$ $\mathrm{C}_{2}\left(\mathrm{~T}_{2}-\mathrm{T}_{2} 2\right)$ we get: $\mathrm{T}_{-} 2=\mathrm{T}_{2}+\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right)\left(\mathrm{T}_{1}-\mathrm{T}_{-} 1\right)$. We then graph $\Delta \mathrm{S}\left(\mathrm{T}_{-} 1\right)$ and show that the entropy change is largest when: $T_{-} 1=T_{-}=\left(C_{1} T_{1}+C_{2} T_{2}\right) /\left(C_{1}+\right.$ C_{2}).
Object \#1 is a porcelain piece of mass 500 g , specific heat $0.22 \mathrm{cal} / \mathrm{g} * \mathrm{~K}$ and temperature 20C.
Object \#2 is water of mass 1000 g , specific heat $1 \mathrm{cal} / \mathrm{g} * \mathrm{~K}$ and temperature 100 C .

$$
\left.\begin{array}{lll}
\mathrm{C}_{1}:=500 \cdot .22 & \mathrm{C}_{2}:=1000 \cdot 1 & \mathrm{~T}_{1}:=20+273 \\
\mathrm{C}_{1}=110 & \mathrm{C}_{2}=1 \times 10^{3} & \mathrm{~T}_{2}:=100+273 \\
& \mathrm{~T}_{1}=293 & \mathrm{~T}_{2}=373 \\
\Delta \mathrm{~S}\left(\mathrm{~T}_{-} 1\right):=\mathrm{C}_{1} \cdot \ln \left(\frac{\mathrm{~T}_{-} 1}{\mathrm{~T}_{1}}\right)+\mathrm{C}_{2} \cdot \ln \left[\frac{\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \cdot\left(\mathrm{~T}_{1}-\mathrm{T}_{-} 1\right)+\mathrm{T}_{2}}{}\right. \\
\mathrm{T}_{2}
\end{array}\right] \quad .
$$

Note that at the equilibrium temperature: $\mathrm{T}_{\mathrm{m}}:=\frac{\mathrm{C}_{1} \cdot \mathrm{~T}_{1}+\mathrm{C}_{2} \cdot \mathrm{~T}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}, \mathrm{~T}=365.072 \mathrm{Kel}$ $\operatorname{vin} \Delta S$ the entropy increase is largest.
Note that the entropy change for the object \#1 (porcelain) is $\mathrm{C}_{1} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{1}}\right)=24.191$ calories/Kelvin and for object \#2 (water) is
$\mathrm{C}_{2} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{2}}\right)=-21.484$ calories/Kelvin. The total entropy change is positive:
$24.191-21.484=2.707$ calories/Kelvin.

We can show the fact that $\Delta S\left(T_{-} 1\right)$ is maximum when the temperatures are the same by using the symbolic processor. First copy the expression for $\Delta S\left(T _1\right)$.

$$
\mathrm{C}_{1} \cdot \ln \left(\frac{\mathrm{~T}_{-} 1}{\mathrm{~T}_{1}}\right)+\mathrm{C}_{2} \cdot \ln \left[\frac{\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \cdot\left(\mathrm{~T}_{1}-\mathrm{T}_{-} 1\right)+\mathrm{T}_{2}}{\mathrm{~T}_{2}}\right]
$$

Then set the blue marker on T_1 and use Differentiate under Variable under Symbolics.

$$
\frac{\mathrm{C}_{1}}{\mathrm{~T}_{-} 1}-\frac{\mathrm{C}_{1}}{\left[\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \cdot\left(\mathrm{~T}_{1}-\mathrm{T}_{-} 1\right)+\mathrm{T}_{2}\right]}
$$

Next set the above expression equal to zero by using the Boolean Equal from the Evaluation and Boolean palette.

$$
\frac{\mathrm{C}_{1}}{\mathrm{~T}_{-} 1}-\frac{\mathrm{C}_{1}}{\left[\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \cdot\left(\mathrm{~T}_{1}-\mathrm{T}_{-} 1\right)+\mathrm{T}_{2}\right]}=0
$$

Then set the blue marker on T_1 and use Solve under Variable under Symbolics.

$$
\frac{\left(\mathrm{C}_{1} \cdot \mathrm{~T}_{1}+\mathrm{T}_{2} \cdot \mathrm{C}_{2}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}
$$

