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Lecture Notes 1 

1. Overview of Thermodynamics 

The first law, the energy conservation law, states that a change in the energy of the system equals 

the sum of the heat added to the system, the work done on the system and the chemical work 

done on the system: ΔU = Q + W + WC  Its differential form is: 

dU = TdS – pdV + μdN      (1) 

The heat capacities measure the heat needed to raise temperature by 1K. 

𝐶𝑝 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑝        (2) 

𝐶𝑉 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑉        (3) 

The compressibility measures the fractional change in volume when we decrease pressure by one 

unit.  

𝑘𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)𝑇       (3) 

𝑘𝑆 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)𝑆       (4) 

The thermal expansion measures the fractional change in volume when we raise isobarically the 

temperature by 1K. 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)𝑝         (5) 

The second law states that when a constrained is released the system evolves to a state of 

maximum entropy consistent with remaining constrains. The first consequence of the 

maximization of entropy is: in equilibrium the intensive variables, temperature, pressure, 

chemical potential, are uniform.  Mathematically this is the result of setting the first derivative of 

entropy equal to zero.   

The second consequence of the maximization process is that at equilibrium second derivatives of 

entropy are negative.  This results in convexity properties of thermodynamic potentials. This is 

called thermodynamics stability.  The entropy S is concave function of U, V, N.  The energy 

U(S, V, N) is convex function. The Helmholtz free energy F(T, V, N) is concave function of T 

and is convex function V and N.  The enthalpy H(S, p, N) is concave function of p and convex 
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function of S, N. The Gibbs potential G(T, p, N) is concave function of T and p and convex of N.  

Here are some consequences. 

0 ≥ (
𝜕2𝑆

𝜕𝑈2
)𝑉,𝑁 = (

𝜕(
1

𝑇
)

𝜕𝑈
)𝑉,𝑁 =  −

1

𝑇2
(

𝜕𝑇

𝜕𝑈
)

𝑉,𝑁 
=  −

1

𝑇2𝐶𝑉
   (6) 

Hence the isochoric heat capacity is positive. 

0 ≤ (
𝜕2𝑈

𝜕𝑉2)𝑆,𝑁 = − (
𝜕𝑝

𝜕𝑉
)

𝑆,𝑁 
=

1

𝑉𝑘𝑆
      (7) 

Hence the adiabatic compressibility is positive. 

0 ≥ (
𝜕2𝐺

𝜕𝑇2)𝑝,𝑁 = − (
𝜕𝑆

𝜕𝑇
)

𝑝,𝑁 
= −

𝐶𝑝

𝑇
       (8) 

Hence the isobaric heat capacity is positive. 

We have proved the following thermodynamic identities:  

Cp = Cv + α2VT/kT         (9) 

kT = kS + α2VT/Cp        (10) 

Since 𝐶𝑝 ≥ 0 and 𝑘𝑆  ≥ 0 it follows, from Eq. (10), that the isothermal compressibility is 

positive: 𝑘𝑇  ≥ 0. Furthermore, from Eqs. (9), (10), we find: 

𝐶𝑝 ≥ 𝐶𝑉  ≥ 0         (11) 

𝑘𝑇 ≥ 𝑘𝑆  ≥ 0         (12) 

|𝛼| ≤ √
𝑘𝑇𝐶𝑝

𝑉𝑇
         (13) 

The third law (Nernst postulate) states that at absolute zero the entropy is zero:   

𝑇 = 0;  𝑆 = 0         (14) 

The validity of this law is connected to quantum mechanics. Intrinsic quantum systems, such as 

the electromagnetic radiation, satisfy it. 
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2. Phase Transitions 

Water under atmospheric pressure at 0°C undergoes a transition from a solid phase (ice) to a 

liquid phase. At 100°C and under atmospheric pressure water boils transitioning from the liquid 

phase to the gas phase.  The classical explanation of a phase transition involves a violation of 

thermodynamic stability.  We will study this topic by using the van der Waals equation of state 

and the Maxwell construction 

. 

  

Figure 1: Jaohannes Diderik van der Waals (1837-19230 Dutch physicist 

 

Figure 2: James Clerk Maxwell (1831 – 1879), Scottish physicist. 

 

 

The van der Waals equation of state is: 

(p + a/v2)(v – b) = RT      (1) 

The constants a and b depend on which chemical we study.  The values for water are: 

a = 0.544Pa*m6/mol2 and b = 30.5*10-6m3/mol. 
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Figure 3: Water isotherms. Blue T = 700K, Green T = 500K, Red T = 635.646K (critical 

isotherm). Red symbol critical point pC = 216.6*105Pa, vC = 0.0915*10—3m3/mole. 

Pressure in Pa is on y axis; Molar volume in m3/mole is on x axis. 

 

High temperature isotherms, blue line in Figure 3, exhibit a monotonically decreasing pressure 

vs volume. This is what one expects.  It is needed for thermodynamic stability: the isothermal 

compressibility is positive. 𝑘𝑇 = −
1

𝑣
(

𝜕𝑣

𝜕𝑝
)

𝑇
> 0.  However, on the low temperature isotherm 

(green line) the dependence is not monotonic. The system is unstable for a particular segment 

where the compressibility is negative.  Maxwell interpreted this as the system separates in two 

phases, liquid and gas.   The Maxwell construction is a horizontal segment chosen so that the two 

areas between the horizontal line and the p(v) curve are equal.  This is equivalent to the equality 

of the chemical potential in the liquid and gas phases.  Indeed, since dμ= -sdT + vdp, the equality 

of chemical potentials μL = μG implies ∫ 𝑣𝑑𝑝 = 0, or: 

 0 = ∫ 𝑣
𝑑𝑝

𝑑𝑣
𝑑𝑣 = ∫ [

𝑑𝑝𝑣

𝑑𝑣
− 𝑝] 𝑑𝑣 = 𝑝 ̂ (𝑣𝐺 − 𝑣𝐿) 

𝑣𝐺

𝑣𝐿
− ∫ 𝑝

𝑣𝐺

𝑣𝐿
𝑑𝑣 

𝑣𝐺

𝑣𝐿
. 

The first term is area of rectangle under phat between vG and vL and the second term is the area 

under the p(v) curve between vG and vL. Thus, in Figure 4, the area I and are II are equal. 
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Figure 4: Maxwell construction: areas I and II are equal. 
 

In between the high and low temperature isotherms is the critical isotherm, red line in Figure 3.  

The critical point is an inflexion point: 

0 =
 𝜕𝑝

𝜕𝑣
=  −

𝑅𝑇

(𝑣−𝑏)2 +
2𝑎

𝑣3       (2) 

0 =
 𝜕2𝑝

𝜕𝑣2 =  
2𝑅𝑇

(𝑣−𝑏)3 −
6𝑎

𝑣4       (3) 

We solve Eqs (2) and (3) for temperature and volume. Then we substitute those values in the 

equation of state Eq (1) to calculate the pressure. We find: 

vC = 3b; RTC= 8a/(27b); pC = a/(27b2).     (4) 

In view of Eq. (2), at the critical point the isothermal compressibility is infinite: kT = ∞. 

We can rewrite the equation of state (1) by using dimensionless pressure, volume and 

temperature: p` = p/pC; v` = v/vC; T` = T/TC .  We find: 

(p`+3/v`2)(3v`-1) = 8T`       (5) 

Equation (5) expresses the law of corresponding states. The equation of state (5) written with the 

scaled quantities is universal, independent of chemistry.  

Exercise: Calculate the critical point coordinates for water. 

a = 0.544Pa*m6/mol2 and b = 30.5*10-6m3/mol. We find by substituting a, b in Eqs. (4):  
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vC = 9.15*10-5m3/mole; pC = 216.6*105Pa; TC= 635.646K. 

We calculate the isothermal compressibility kT from p` = 8T`/(3v`-1) – 3/v`2 

𝑘𝑇 =  −
1

𝑣`
(

𝜕𝑣`

𝜕𝑝`
)

𝑇
=

−1

𝑣`(
𝜕𝑝`

𝜕𝑣`
)

𝑇`

=
1

6(
4𝑇`𝑣`

(3𝑣`−1)2− 
1

𝑣`2
)
    (6) 

We calculate the thermal expansion α from:  T` = (1/8)(p`+3/v`2)(3v`-1). 

𝛼 =  
1

𝑣`
(

𝜕𝑣`

𝜕𝑇`
)

𝑝`
=

1

𝑣`(
𝜕𝑇`

𝜕𝑣`
)

𝑝`

=
8

3(
8𝑇`𝑣`

3𝑣`−1
−

6

𝑣`
+

2

𝑣`2)
    (7) 

Note at the critical point, v` = T` = 1, Eqs. (6) and (7) give infinite compressibility and thermal 

expansion: kT = α = ∞. 

3. Clausius-Clapeyron Equation 

 

Figure 5: Rudolf Clausius (1822 – 1888), German physicist 

 

Figure 6: Benoit Clapeyron (1799-1864), French physicist 

The Clapeyron equation relates the slope of the coexistence curve p = p(T) to the jumps in 

entropy and density at the coexistence line.  For sake of being explicit, we will assume the two 

coexisting phases are a liquid and a gas phase.  The second law, entropy maximization, implies 

the equality of the intensive variables in the coexisting phases: 

μG(p,T) = μL(p,T)         (8) 
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Equation (8) determines the coexistence curve p = p(T). Then we differentiate (8) with respect to 

T: 

(
𝜕𝜇𝐺

𝜕𝑝
)𝑇

𝑑𝑝

𝑑𝑇
+ (

𝜕𝜇𝐺

𝜕𝑇
)𝑝 = (

𝜕𝜇𝐿

𝜕𝑝
)𝑇

𝑑𝑝

𝑑𝑇
+ (

𝜕𝜇𝐿

𝜕𝑇
)𝑝     (9) 

But the differential of the chemical potential, using the Gibbs-Duhem equation, is:            

dμ= -sdT + vdp.  Hence equation (9) becomes: 

𝑣𝐺
𝑑𝑝

𝑑𝑇
− 𝑠𝐺 = 𝑣𝐿

𝑑𝑝

𝑑𝑇
− 𝑠𝐿       (10) 

Solving equation (10), we get the slope dp/dT: 

𝑑𝑝

𝑑𝑇
=

𝑠𝐺−𝑠𝐿

𝑣𝐺−𝑣𝐿
         (11) 

One defines the latent heat: l = T(sG – sL). This heat is needed to be delivered to the liquid to boil 

into the gas, at fixed pressure and temperature.  

𝑑𝑝

𝑑𝑇
=

𝑙

𝑇(𝑣𝐺−𝑣𝐿)
         (12) 

Equation (12) is the Clapeyron equation.  A useful approximation of the Clapeyron equation, due 

to Clausius, is valid far from the critical point where vG >> vL and the gas can be treated as an 

ideal gas:  vG = RT/p.  Equation (12) becomes: 

 
𝑑𝑝

𝑑𝑇
≅

𝑙

𝑇𝑣𝐺
≅

𝑙𝑝

𝑅𝑇2        (13) 

Application:  Compute the slope of the coexistence curve dp/dT for water in the following cases: 

(a) boiling under atmospheric pressure T = 100°C, latent heat l = 540cal/g, vG = 1.6729l/g,        

vL = 1.044*10-3l/g; (b) freezing under atmospheric pressure T = 0°C, latent heat l = 80cal/g,       

vS = 1.25cm3/g; vL = 1.0cm3/g. 

We use Eq. (12).   

(a) dp/dT = (540*4.184*1000)/[373*(1.6729-0.001044)] =  3.6*103Pa/K. 

(b) dp/dT = (80*4.184*1000)/[273*(0.001-0.00125)] = -4.9*106Pa/K. 

Note the slope of the melting line is negative and it is, in magnitude, much larger than the slope 

of the boiling line. 

4. Gibbs Phase Rule 

Here is generic phase diagram of a pure chemical substance.  It includes the coexistence lines for 

liquid-gas (boiling), solid-liquid (melting) and solid-gas (sublimation). The intersection of the 

three coexistence line is the triple point. For water it occurs at p =0.00611*105Pa, T = 273.16K. 
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Figure 7: Generic phase diagram 

 

At the triple point the chemical potentials of the 3 phases are equal: μS(T,p) = μL(T,p) = μG(T,p). 

Those are 2 equations with 2 un-knowns: T and p, the triple point coordinates.  

Gibbs has generalized this to a mixture of c chemicals and coexisting in r phases. The 

fundamental equation μc = μc(T, p, μ1,…, μc-1) The equality of the r values of the chemical 

potential μc, μc
(1) = μc

(2)= … = μc
(r), results in r - 1 equations with c + 1 un-knowns.  To have a 

solution the number of equations should be smaller or equal to the number of un-knowns: 

𝑟 − 1 ≤ 𝑐 + 1  or  𝑟 ≤ 𝑐 + 2.  This is the Gibbs phase rule. For a pure substance c = 1 and thus 

𝑟 ≤ 3 . 

 

 

 
 
Reading 
Callen Ch. 12; 
Problem Set 1. 
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Lecture Notes 2 

1. Statistical Mechanics: Microcanonical Enseble 

Consider an insulated system. A macrostate is determined by the energy U, the number of 

particles N and the volume V.  Corresponding to this macrostate there are Ω microstates or 

quantum states.  The first postulate states that all microstates are equally probable. The second 

postulate, due to Boltzmann, states that the entropy S associated with the macrostate is: 

 𝑆 = 𝑘𝐵ln(Ω)        (1) 

 
 
Figure 1: Ludwig Boltzmann (1844 – 1906) was an Austrian physicist who discovered the 

statistical interpretation of the entropy and of the second law of thermodynamics. His tombstone 

bears the inscription of the entropy formula.  

The Boltzmann constant is a fundamental constant. Its value is: kB = 1.381*10-23j/T. 

Equation (1) insures the entropy is additive. Indeed, for two subsystems with number of 

microstates Ω1 and Ω2 respectively, the total number of microstates is Ω = Ω1 Ω2. From 

Boltzmann’s formula one gets: S = S1 + S2. 

During a macroscopic measurement, the system undergoes many random transitions among its 

microscopic (quantum) states which are assumed to be equally probable. The ergodic postulate 

of statistical mechanics states that the experimental time average equals the ensemble average. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Austria
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Boltzmann%27s_entropy_formula
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2. Two-state system 

We analyze now a system of N distinguishable particles that can occupy two energy states.  The 

particles are distinguishable by their location.  The magnetic properties of an electron gas (metal) 

will be discussed later in the course when we will account for the indistinguishability of the 

electrons. We consider of an atom that has a spin ½ so in the presence of an external magnetic 

field H its energy is either –ε = –μBH or ε = +μBH.  The Bohr magneton is μB = eh/(4πm) = 

9.27*10-24j/T, where e is the electron’s charge and m is the electron’s mass. 

We have N atoms with a total energy U. N+ have each an energy ε and N- have each an energy    

–ε.  

 

 

Figure 2:  Example of two-state system: N+ = 3 atoms have each energy ε and N- = 4 atoms have 

each energy – ε.  

 

Hence:  

𝑈 = 𝑁+𝜀 + 𝑁−(−ε)  
       (2) 

𝑁 = 𝑁+ +𝑁−  
 

We solve the system of equations (2) to get: 

 

 𝑁+ =
1

2
(𝑁 +

𝑈

𝜀
) 

       (3) 

𝑁− =
1

2
(𝑁 −

𝑈

𝜀
)  

 

The number of microstates is given by the number of combinations of N+ atoms out of the N 

atoms: 

Ω =
𝑁!

𝑁+!𝑁−!
      (4) 

The entropy is obtained by substituting the number of microstates in the right hand side of Eq.1. 

By using the Stirling approximation: lnN!  = NlnN – N, we get: 
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𝑆 = −𝑁𝑘𝐵[
𝑁+

𝑁
ln (

𝑁+

𝑁
) +

𝑁−

𝑁
ln(

𝑁−

𝑁
)]      (5) 

After substituting N+ and N- from Eq.(3) into Eq (5) we get the fundamental equation for 

the two state system: S(U,N): 

𝑆 = −𝑁𝑘𝐵[
1

2
(1 +

𝑈

𝑁𝜀
) ln (

1

2
(1 +

𝑈

𝑁𝜀
)) +

1

2
(1 −

𝑈

𝑁𝜀
) ln (

1

2
(1 −

𝑈

𝑁𝜀
))] (6) 

Next we denote s = S/N and u = U/N.  The temperature is obtained from the first law: 

1

𝑇
=

𝜕𝑠

𝜕𝑢
= −𝑘𝐵 [

1

2𝜀
ln (

1

2
(1 +

𝑢

𝜀
)) −

1

2𝜀
ln (

1

2
(1 −

𝑢

𝜀
))] = −

𝑘𝐵

2𝜀
ln(

1+
𝑢

𝜀

1−
𝑢

𝜀

) (7) 

Solve Eq. (7) for the atomic energy u: 

𝑢 = −𝜀
𝑒

𝜀
𝑘𝐵𝑇−𝑒

−
𝜀

𝑘𝐵𝑇

𝑒

𝜀
𝑘𝐵𝑇+𝑒

−
𝜀

𝑘𝐵𝑇

= −𝜀tanh(
𝜀

𝑘𝐵𝑇
)       (8) 

The isochoric specific heat (per atom) is: 

𝑐 =
𝜕𝑢

𝜕𝑇
= 𝑘𝐵 (

𝜀

𝑘𝐵𝑇
)
2

(1 − (tanh (
𝜀

𝑘𝐵𝑇
))2)     (9) 

Weshowgraphsoftemperature,Tε/kB,dependenceofatomicenergy,u/ε,andof atomic 

specific heat c/kB. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: energy u/ε vs. temperature TkB/ε. 
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Figure 4: specific heat c/kB vs. temperature TkB/ε 

Note the maximum in the specific heat, called Schottky anomaly, occurs at TkB/ε ≃ 0.8 and 

the maximum value is c/kB ≃0.44.   

Appendix: Hyperbolic functions 

sinh(𝑥) =
1

2
(𝑒𝑥 − 𝑒−𝑥) 

cosh(𝑥) =
1

2
(𝑒𝑥 + 𝑒−𝑥) 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 
cosh(𝑥)2 − sinh(𝑥)2 = 1 

 
𝑑 sinh(𝑥)

𝑑𝑥
= cosh(𝑥) 

 
𝑑 cosh(𝑥)

𝑑𝑥
= sinh(𝑥) 

𝑑 tanh(𝑥)

𝑑𝑥
=

1

cosh(𝑥)2
= 1 − tanh(𝑥)2 

𝑑 cotanh(𝑥)

𝑑𝑥
=

−1

sinh(𝑥)2
= 1 − cotanh(𝑥)2 

 
Reading 
Callen Ch. 15; Sec. 1 and 3. 
Computer lab 2. 
Problem Set 2, 4. 
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Lecture Notes 3 

1. Microcanonical Ensemble: Einstein crystal 

For an insulated system we use the microcanonical ensemble, consisting of copies of the system 

uniformly distributed among the microstates corresponding to the macrostate (U, V, N).  The 

system transitions very fast (microscopic time scale) among the microstates (quantum) states 

available. According to the ergodic postulate, the time average of any system property evaluated 

during the (macroscopic) time of the experiment is equal to the ensemble average.   

 
Figure 1: Albert Einstein (1879 – 1955) theoretical physicist who discovered the theory of 

relativity, the photoelectric effect, the thermal properties of solids, the statistics of 

indistinguishable particles. 

The Einstein solid consists of N atoms or 3N independent linear harmonic oscillators.  All 

oscillators are assumed to have the same frequency ω.  When solving the Schrodinger equation 

with appropriate boundary conditions, one finds the possible (quantized) values of the energy of 

a linear harmonic oscillator: 

𝜀 = (𝑛 +
1

2
)ℎ̅𝜔       (1) 

The quantum number n = 0, 1, 2… , and ℎ̅ = ℎ/2𝜋  where the Planck constant h = 6.63*10-34js. 

The N atoms are distinguishable by location. Their total energy is U:  

𝑈 = ∑ (𝑛𝑗 +
1

2
)ℎ̅𝜔3𝑁

𝑗=1        (2) 

Hence: 

∑ 𝑛𝑗 =
𝑈−3𝑁ℎ̅𝜔/2

ℎ̅𝜔

3𝑁
𝑗=1        (3) 

In what follows I denote the energy above the zero-point energy:  

https://en.wikipedia.org/wiki/Physicist
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�̅� = 𝑈 − 3𝑁ℎ̅𝜔/2       (4) 

A microstate is defined by a sequence of 3N quantum numbers: (n1, n2, n3, ..., n3N).  In Figure 2, 

we see an example of a quantum state: n1= 2, n2 = 2, …, n3N = 3. 

 

 

Figure 2:  Example of a microstate (quantum) state: 3N-1 “sticks” for the 3N distinguishable 

linear oscillators and �̅�/ℎ̅𝜔 “marbles” for the indistinguishable quanta. 
 

The number of microstates is given by the number of permutations of all objects (sticks and 

marbles) (3N – 1 + 
�̅�

ℎ̅𝜔
) divided by the number of permutations of the (3N-1) identical “sticks” 

and by the number of permutations of the 
�̅�

ℎ̅𝜔
  identical “marbles”: 

Ω =  
(3𝑁−1+ 

�̅�

ℎ̅𝜔
)!

(3𝑁−1)!(
�̅�

ℎ̅𝜔
)!
      (5) 

The entropy is obtained by substituting the number of microstates from Eq. (5) into the right 

hand side of the Boltzmann entropy formula Eq.6.  

𝑆 = 𝑘𝐵ln (Ω)       (6) 

By using the Stirling approximation: lnN!  = NlnN – N, we get: 

𝑆 = 𝑘𝐵[(3𝑁 − 1 +  
�̅�

ℎ̅𝜔
) ln (3𝑁 − 1 +  

�̅�

ℎ̅𝜔
) − (3𝑁 − 1) ln(3𝑁 − 1) −

�̅�

ℎ̅𝜔
ln (

�̅�

ℎ̅𝜔
)] (7) 

Since N >> 1, we approximate 3N - 1 by 3N.  

We denote atomic entropy s = S/N and atomic energy above zero-point energy �̅� = �̅�/𝑁.  It 

follows from equation (7) that: 

𝑠 = 𝑘𝐵[(3 + 
�̅�

ℎ̅𝜔
) ln (3 +  

�̅�

ℎ̅𝜔
) − 3 ln(3) −

�̅�

ℎ̅𝜔
ln (

�̅�

ℎ̅𝜔
)], (8) 

where: 

�̅� = 𝑢 −
3

2
ℎ̅𝜔        (9). 

Equation (8) is the fundamental equation for the Einstein model.  The temperature is obtained 

from the first law of thermodynamics: 
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1

𝑇
=

𝜕𝑠

𝜕𝑢
=

𝑘𝐵

ℎ̅𝜔
ln (

�̅�+3ℎ̅𝜔

�̅�
)     (10) 

Solve Eq. (10) for the atomic energy above the zero point �̅�.  Then we get u: 

�̅� =
3ℎ̅𝜔

𝑒

ℎ̅𝜔
𝑘𝐵𝑇−1

         (11) 

𝑢 =
3

2
ℎ̅𝜔 +

3ℎ̅𝜔

𝑒

ℎ̅𝜔
𝑘𝐵𝑇−1

        (12) 

From Eq. (11) we get the average quantum number n is: 

𝑛 =
1

𝑒

ℎ̅𝜔
𝑘𝐵𝑇−1

        (13) 

Equation (13) represents the Bose-Einstein distribution of phonons. 

The isochoric specific heat (per atom) is: 

𝑐 =
𝜕𝑢

𝜕𝑇
= 3𝑘𝐵 (

ℎ̅𝜔

𝑘𝐵𝑇
)

2
1

(𝑒

ℎ̅𝜔
2𝑘𝐵𝑇−𝑒

−
ℎ̅𝜔

2𝑘𝐵𝑇)2

     (12) 

The Einstein temperature is the characteristic temperature: 𝑇𝐸 =
ℎ̅𝜔

𝑘𝐵
.  We graph the atomic 

specific heat c/kB  vs. the temperature, T/TE:  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: specific heat c/kB vs. temperature T/TE 

For T<< TE, the specific heat approaches zero. This is a quantum effect related to the third law of 

thermodynamics.  Einstein’s model, published in 1906, is based on the quantization of the 

energy.  It explains this result.  
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For T >> TE , we get the Dulong - Petit law: c = 3kB.  The specific heat for 1 mole of solid is:      

c = 3R = 6cal/mole*°C.  This was discovered experimentally in 1819 by Dulong and Petit who 

have measured specific heat of numerous solids at room temperature. 

 
Figure 4: Pierre Louis Dulong (1785-1838), French physicist. He and Alexis Thérèse Petit 

(1791-1820) measured heat capacities of many solids at room temperature. 
 
Readings 
Callen Ch. 15; Sec. 2. 
Computer lab 3. 
Problem Sets 2, 3. 


