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Lecture Notes 7 

1. Overview of the canonical ensemble 

The canonical ensemble procedure to determine the thermodynamics of a system is contained in 

the following two equations. First we calculate the partition function, Eq(1),  and then we 

calculate the Helmholtz free energy, Eq. (2): 

𝑍(𝑇, 𝑉, 𝑁) = ∑ 𝑒
−

𝑈𝑗(𝑉,𝑁)

𝑘𝐵𝑇
𝑗         (1) 

F(T,V,N) = -kBTln(Z)         (2) 

 

2. Electromagnetic Radiation 

 

 

Figure 1: Max Karl Ernst Ludwig Planck  (1858 – 1947) was a German theoretical 

physicist who discovered the energy quanta. 
 

Electromagnetic standing waves are contained in a container with metallic walls at a temperature 

T.  According to Planck (1900), this radiation is composed of photons of energy 𝜀 = ℎ𝜐 =  ℎ̅𝜔 , 

where υ is the frequency.  The photon momentum is: |p| =
𝜀

𝑐
=

h

𝜆
=

ℎ̅𝜔

𝑐
,  where λ is wavelength, 

and 
𝑐

𝜐
= 𝜆 . 

The energy of a standing wave, labelled m, is 𝑢𝑚 = 𝑛𝑚ℎ̅𝜔𝑚 where nm = 0, 1, 2… is the number 

of photons. The partition function, given in Eq. (1), can be factorized: 

𝑍 = ∑ 𝑒
−

(𝑢1+𝑢2+⋯ )

𝑘𝐵𝑇 =  ∏ (∑ 𝑒
−𝑛𝑚

ℎ̅𝜔𝑚
𝑘𝐵𝑇 )∞

𝑛𝑚=0𝑚 = ∏ [
1

1−𝑒
−

ℎ̅𝜔𝑚
𝑘𝐵𝑇

𝑚(𝑢1,𝑢2… ) ]   

I used the geometric sum, see Appendix.   

The free energy, from Eq. (2), is: 

https://en.wikipedia.org/wiki/Theoretical_physicist
https://en.wikipedia.org/wiki/Theoretical_physicist
https://en.wikipedia.org/wiki/Quantum_mechanics
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𝐹 =  𝑘𝐵𝑇 ∑ 𝑙𝑛𝑚 [1 − 𝑒
−

ℎ̅𝜔𝑚
𝑘𝐵𝑇 ]        (3) 

The entropy is:   

𝑆 = − (
𝜕𝐹

𝜕𝑇
)

𝑉
= −𝑘𝐵 ∑ 𝑙𝑛𝑚 [1 − 𝑒

−
ℎ̅𝜔𝑚
𝑘𝐵𝑇 ] + 𝑘𝐵 ∑

𝑒
−

ℎ̅𝜔𝑚
𝑘𝐵𝑇

1−𝑒
−

ℎ̅𝜔𝑚
𝑘𝐵𝑇

ℎ̅𝜔𝑚

𝑘𝐵𝑇𝑚    (4)  

or: 

𝑆 = −𝑘𝐵 ∑ 𝑙𝑛𝑚 [1 − 𝑒
−

ℎ̅𝜔𝑚
𝑘𝐵𝑇 ] + 𝑘𝐵 ∑

1

𝑒

ℎ̅𝜔𝑚
𝑘𝐵𝑇 −1

ℎ̅𝜔𝑚

𝑘𝐵𝑇𝑚      (5) 

The energy using Eqs. (3), (5) and U = F + TS is: 

𝑈 = ∑
ℎ̅𝜔𝑚

𝑒

ℎ̅𝜔𝑚
𝑘𝐵𝑇 −1

𝑚          (6) 

Since the energy of a standing wave (mode) is 𝑛ℎ̅𝜔, the average number of photons of 

angular frequency ω is: 

𝑛 =  
1

𝑒

ℎ̅𝜔
𝑘𝐵𝑇−1

          (7) 

This is the Bose-Einstein distribution.   

 

Figure 2: Satyendra Nath Bose (1894 – 1974) was an Indian theoretical physicist who 

discovered the statistics governing integer spin particles.  They are called bosons in his honor.  

The total number of photons from all standing waves is: 

𝑁 = ∑
1

𝑒

ℎ̅𝜔𝑚
𝑘𝐵𝑇 −1

𝑚          (8) 

The sums above can be estimated by using the integral approximation. The validity of this 

approximation will be discussed later in the lecture.  We start with a linear container of 

length L. The standing waves satisfy:  L= mλ/2, m = 1, 2, 3… 

https://en.wikipedia.org/wiki/Physicist
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Then: Δm = 2LΔ(1/λ) = 2(L/h)Δ|p|, where |p| = h/ λ is photon momentum absolute value.  

When we integrate we will consider the vector momentum (positive and negative values of 

p).  Hence we drop the factor of two: Δm = (L/h)Δp.  We next generalize to a container in 

three dimensions: 

Δ𝑚𝑥Δ𝑚𝑦Δ𝑚𝑧 = 𝑔
𝑉

ℎ3
𝑑3𝑝        (9) 

The degeneracy factor is g.  The electromagnetic waves are transverse waves. Hence there 

are g =2 independent directions for the vibrations.  Equation (9) is general and it holds for 

all systems.  The integral approximation is: 

∑ (… ) ≈
𝑔𝑉

ℎ3 ∭ 𝑑3𝑝(… )𝑚𝑥,𝑚𝑦,𝑚𝑧
       (10) 

Using the dispersion equation: |𝑝| =
ℎ̅𝜔

𝑐
  we calculate d3p: 

𝑑3𝑝 = 4𝜋𝑝2𝑑𝑝 =
4𝜋ℎ̅3

𝑐3 𝜔2𝑑𝜔        

Then (10) becomes: 

∑ (… ) ≈ ∫ 𝑑𝑚𝑥,𝑚𝑦,𝑚𝑧
𝜔𝐷(𝜔)(… )       (11) 

where the density of standing waves per angular frequency is: 

𝐷(𝜔) =
𝑉𝜔2

𝜋2𝑐3          (12) 

We apply the integral approximation to the free energy Eq. (3): 

𝐹 =  
𝑘𝐵𝑇𝑉

𝜋2𝑐3 ∫ 𝑑𝜔𝜔2ln (1 − 𝑒
−

ℎ̅𝜔

𝑘𝐵𝑇)
∞

0
       (13) 

We change the variable of integration to 𝑥 =
ℎ̅𝜔

𝑘𝐵𝑇
   and get: 

𝐹 =  
𝑘𝐵𝑇𝑉

𝜋2𝑐3
(

𝑘𝐵𝑇

ℎ̅
)3 ∫ 𝑑𝑥𝑥2ln (1 − 𝑒−𝑥)

∞

0
      (14) 

As we see in Computer Lab 4, the integral on the right hand side of Eq. (14) is equal to: −
𝜋4

45
 

Then Eq (14) can be written as: 

F= - (a/3)VT4          (15)  

The constant a is called the Stefan constant and it is equal to: 

𝑎 =
𝜋2𝑘𝐵

4

15(𝑐ℎ̅)3 = 7.56 ∗ 10−16𝑗/𝑚3𝐾4       (16) 

Exercise: Check that the numerical value of the Stefan constant is 7.56*10-16j/m3K4.   
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Since: dF = -SdT – pdV + μdN, we get: 

𝑆 = − (
𝜕𝐹

𝜕𝑇
)

𝑉,𝑁
=

4𝑎

3
V𝑇3        (17) 

𝑝 = − (
𝜕𝐹

𝜕𝑉
)

𝑇,𝑁
=

𝑎

3
𝑇4         (18)  

𝜇 = (
𝜕𝐹

𝜕𝑁
)

𝑇,𝑉
= 0         (19) 

The energy is: 

𝑈 = 𝐹 + 𝑇𝑆 =  −
𝑎

3
𝑉𝑇4 +

4𝑎

3
V𝑇4 = 𝑎𝑉𝑇4      (20) 

The heat capacity is: 

𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)𝑉 = 4𝑎𝑉𝑇3         (21) 

Equations (17) to (21) were derived in the thermal physics course (lecture 10) starting from the 

assumption that the chemical potential of photons is zero.  The Stefan constant value is found 

here to be determined by the fundamental constants h, c, kB. 

The number of photons, applying the integral approximation to the sum in Eq. (8), is: 

𝑁 =  
𝑉

𝜋2𝑐3 ∫ 𝑑𝜔𝜔2 1

𝑒

ℎ̅𝜔 
𝑘𝐵𝑇−1

=
∞

0

𝑉𝑇3𝑘𝐵
3

𝜋2𝑐3ℎ̅3 ∫ 𝑑𝑥
𝑥2

𝑒𝑥−1
= 2.404

𝑘𝐵
3

𝜋2𝑐3ℎ̅3 𝑉𝑇3∞

0
= 2.026 ∗ 107𝑉𝑇3 (22) 

The numerical evaluation of the integral in Eq. (22) is done in Computer Lab 4.  

Exercise: Check that the numerical constant on the right hand side of Eq. (22) is 

2.026*107(m*K)-3. 

The energy can be written using the integral approximation, Eqs. (6) and (12), as: 

𝑈 =  
𝑉ℎ̅

𝜋2𝑐3 ∫ 𝑑𝜔
𝜔3

𝑒

ℎ̅𝜔
𝑘𝐵𝑇−1

∞

0
        (23) 

The energy per frequency interval 
𝑑𝑈

𝑑𝜔
 is called spectral energy density uω .  

𝑢𝜔 =
𝑉ℎ̅

𝜋2𝑐3

𝜔3

𝑒

ℎ̅𝜔
𝑘𝐵𝑇−1

         (24) 

For high temperatures (classical regime): 
ℎ̅𝜔 

𝑘𝐵𝑇
≪ 1: 

𝑢𝜔 ≈
𝑉𝜔2

𝜋2𝑐3 𝑘𝐵𝑇         (25) 

This formula is obtained in the classical version of statistical mechanics and is called the 

Rayleigh-Jeans law.  Note that integrating this uω   for all frequency gives an infinite value. This 

is known as the ultraviolet catastrophe. It is an artifact of the classical approximation.   
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It shows the need for quantum mechanics to explain electromagnetic radiation.  

For low temperatures (quantum regime) 
ℎ̅𝜔 

𝑘𝐵𝑇
≫ 1 , we get the Wien law: 

𝑢𝜔 ≈
𝑉ℎ̅𝜔3

𝜋2𝑐3 𝑒
−

ℎ̅𝜔

𝑘𝐵𝑇         (26) 

The spectral energy density per wavelength is obtained from: uλ = uω|dω/dλ|: 

𝑢𝜆 =
8ℎ𝑐𝜋𝑉

𝜆5(𝑒

ℎ𝑐
𝜆𝑘𝐵𝑇−1)

          (27) 

uλ exhibits a maximum at a wavelength given by the Wien displacement law:  

λmaxT = 2.898*10-3mK.  This is derived in Computer Lab 4.  We show uλ vs λ in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Validity Range for the Integral Approximation 

The integral approximation, Eqs. (10), (11), is: ∑ (… ) ≈ ∫ 𝑑𝑚𝑜𝑑𝑒𝑠 𝜔𝐷(𝜔)(… ) 

It is valid provided: 

1 ≫  
ℎ̅∆𝜔𝑚𝑜𝑑𝑒

𝑘𝐵𝑇
            (28) 

The standing waves in a cube of size L*L*L have angular frequencies: 

 

Figure 3: Spectral energy vs wavelength for background radiation  

T = 2.7K. Maximum occurs at wavelength of 1mm, in the microwave 

part of the spectrum. 
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𝜔𝑚𝑥,𝑚𝑦,𝑚𝑧
=

𝑐𝜋

𝐿
 √𝑚𝑥

2 + 𝑚𝑦
2 + 𝑚𝑧

2 with mx, my, mz = 1, 2. 3…  We estimate the frequency 

change to be of the order of the fundamental frequency: ∆𝜔𝑚𝑜𝑑𝑒~ 𝜔1,1,1 = 
𝑐𝜋

𝐿
√3 .  Then the 

inequality becomes: 
𝑐𝜋

𝐿
√3 ≪

𝑘𝐵𝑇

ℎ̅
  or 

𝑇𝐿 ≫
𝑐ℎ

𝑘𝐵

√3

2
= 1.25 ∗ 10−2𝐾 ∗ 𝑚       (29) 

Exercise: Check the numerical value on the right hand side of Eq. (29). 

For a cube of volume 1liter, L = 0.1m.  According to Eq. (29), the integral approximation works 

for: T  >> 0.125K.  At room temperature T = 300K, the integral approximation works (according 

to Eq. (29)) for:  L >> 42microns. 

 

Appendix: The geometric sum: ∑ 𝑥𝑛∞
𝑛=0 =  

1

1−𝑥
  if  |𝑥| < 1 .  Indeed: 

(1 − 𝑥) ∑ 𝑥𝑛 =  ∑ 𝑥𝑛∞
𝑛=0 − ∑ 𝑥𝑛∞

𝑛=1
∞
𝑛=0 = 1. 

 

 

 

                                        

Figure 4:   Figure 5:        Figure 6: 

John William Strutt,  James Hopwood Jeans      Wilhelm Wien  

baron Rayleigh   (1877 – 1946)       (1864 – 1928) 

(1842 – 1919),   English physicist.     German physicist. 

English physicist. 

 
 
 
Readings 
Callen Ch. 16 Sec. 8. 
Problem Sets 7. 

Computer Lab 4. 
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Lecture Notes 8 

1. Grand canonical ensemble 

We study a system in contact with a large reservoir. The system and the reservoir exchange heat 

and matter. The total system is insulated. 

 

 

 
Figure 1: The (large) reservoir exchanges energy and matter with the (small) system under 

study. The total system (reservoir plus system) is insulated. 

 
The system microstates are labeled by j. The system energy and number of particles in microstate 

j are respectively Uj and Nj.  Since the total system is insulated: Ures = Utot – Uj, Nres = Ntot – Nj 

Corresponding to the microstate j, the reservoir can occupy a large number of microstates 

Ωres(Utot-Uj, Ntot – Nj).   Since according to the first postulate of statistical mechanics the 

insulated total system microstates are equally probable, the probability for the system under 

study to be in microstate j, without regard to the state of the reservoir, is: 

Pj = Ωres(Utot-Uj, Ntot – Nj)/Ωtot(Utot, Ntot)      (1) 

We then use the second postulate (Boltzmann) to express the number of microstates in terms of 

the entropy: 

Pj = exp[(Sres(Utot-Uj, Ntot – Nj) - Stot(Utot, Ntot))/kB]     (2) 

We use the Taylor expansion for the reservoir entropy.  The small parameters are U – Uj, and    

N – Nj , where U is the average system energy and N is the average system number of particles: 



2 
 

Sres(Utot-Uj, Ntot – Nj) - Stot(Utot, Ntot)≃  Sres(Utot-U, Ntot – N) + (δSres/δUres)(U - Uj) + 

(δSres/δNres)(N - Nj) - Stot(Utot, Ntot)  (3) 

The higher contributions to the Taylor expansion are small in view if the fact that the reservoir is 

huge compared to the system.  Since the entropy is additive:  

Stot(Utot, Ntot) = S(U, N) + Sres(Utot-U, Ntot – N)     (4) 

Furthermore: δSres/ δUres = 1/Tres and δSres/δNres = -μres/Tres ,  At equilibrium Tres = T and μres =  μ.  

Hence, we can now express the microstate probability of Eq. (2) as: 

Pj = exp{[-S + (U – Uj)/T - μ(N – Nj)/T]/kB}= exp(Ω /kBT)exp[-(Uj - μNj)/kBT] (5) 

The grand-canonical thermodynamic potential is: Ω = U –TS - μN.  We denote:                    

exp(Ω /kBT) = 1/Z. Hence: 

Ω = -kBTln(Z)          (6) 

The probabilities add up to unity: 

1 =  ∑ 𝑃𝑗 𝑗 =  
1

𝑍
∑ 𝑒

−
𝑈𝑗−𝜇𝑁𝑗

𝑘𝐵𝑇
𝑗         

Hence the partition function Z is: 

𝑍(𝑇, 𝑉, 𝜇) = ∑ 𝑒
−

𝑈𝑗−𝜇𝑁𝑗

𝑘𝐵𝑇
𝑗         (7) 

Equations (6) and (7) provide a roadmap for determining the thermodynamics of any system.  

Given the energy levels Uj, that depend on the volume, one first computes from Eq. (7) the 

partition function Z(T,V,μ). Then by substituting this on the right hand side of Eq. (6) one gets 

the grand-canonical potential: Ω = Ω(T,V,μ).  This is a fundamental equation and all 

thermodynamic quantities are obtained by using:  

dΩ = -SdT – pdV –Ndμ.        (8) 

 

2. Classical version of the grand canonical ensemble 

Niels Bohr’s correspondence principle states that for large quantum numbers, systems behave 

according to the laws of classical physics.  In the classical physics limit, the sum over 

microstates is replaced by an integral over the phase space.  This is the space spanned by 

positions and momenta.  The Heisenberg uncertainty principle states that the smallest ΔxΔp is of 

the order of the Planck constant h. Then the partition function is: 

 

https://en.wikipedia.org/wiki/Quantum_numbers
https://en.wikipedia.org/wiki/Classical_mechanics
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𝑍 ≈ ∑
𝑒

𝜇𝑁
𝑘𝐵𝑇

𝑁!𝑁 ∫ … ∫
𝑑3𝑥1…𝑑3𝑥𝑁𝑑3𝑝1…𝑑3𝑝𝑁

ℎ
3𝑁𝑗

𝑒
−

𝐻(𝒙𝟏…𝒙𝑁, 𝒑𝟏…𝑝𝑁)

𝑘𝐵𝑇    (9) 

In the case of undistinguishable particles one includes the N! factor in the denominator of Eq. 

(9).  If the particles are distinguishable this factor is not present.  The Hamiltonian H is the 

energy expressed in terms of positions and momenta. 

Application: Classical ideal gas 

The ideal gas is a low density gas whose energy is approximated by its kinetic energy only.  

The Hamiltonian is: 

𝐻 = ∑
𝑝⃗𝑗

2

2𝑚

𝑁
𝑗=1          (10) 

The classical partition function from Eqs. (9) and (4) becomes: 

𝑍 = ∑
𝑒

𝜇𝑁
𝑘𝐵𝑇𝑉𝑁

𝑁!ℎ3𝑁 [∫ 𝑒
−

𝑝2

2𝑚𝑘𝐵𝑇
∞

−∞
𝑑𝑝]

3𝑁

= ∑
𝑒

𝜇𝑁
𝑘𝐵𝑇𝑉𝑁

𝑁!𝜆𝑇
3𝑁

∞
𝑁=0

∞
𝑁=0    (11) 

where the thermal wavelength is:  

𝜆𝑇 =
ℎ

√2𝜋𝑚𝑘𝐵𝑇
         (12) 

The sum on the right hand side of (11) is (see Appendix):  

𝑍 = exp (
𝑉

𝜆𝑇
3 𝑒

𝜇

𝑘𝐵𝑇)        (13) 

Using Eqs. (6) and (13) we get the fundamental equation: 

Ω = −𝑘𝐵𝑇
𝑉

𝜆𝑇
3 𝑒

𝜇

𝑘𝐵𝑇        (14) 

According to the Euler equation the grand canonical potential is: Ω = U – TS – μN = -pV. 

Hence equation (14) becomes: 

𝑝 =
𝑘𝐵𝑇

𝜆𝑇
3 𝑒

𝜇

𝑘𝐵𝑇          (15) 

or 

𝜇 =  𝑘𝐵𝑇𝑙𝑛(
𝑝𝜆𝑇

3

𝑘𝐵𝑇
)        (16) 

Application: Determine the equation of state, by using Eq.(16). 

Since dμ = -sdT +vdp, 𝑣 = (
𝜕𝜇

𝜕𝑝
)𝑇 =

𝑘𝐵𝑇

𝑝
     (17) 

The classical version of statistical physics is applicable provided the quantum (de Broglie) 

thermal wavelength is short compared to the characteristic distance, i.e. the mean distance 
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between atoms: 𝜆𝑇 ≪ (
𝑉

𝑁
)1/3. In view of the equation of state 𝜆𝑇 ≪  (

𝑘𝐵𝑇

𝑝
)1/3, Then by using 

Eq.(16) we find that in the classical limit the chemical potential is negative:𝜇 ≪ 0. 

 

 

 

Appendix: The sum:  ∑
𝑥𝑛

𝑛!
∞
𝑛=0 =  𝑒𝑥  for any x. 

 
 
 
 
 
 
 
 
 
 
Readings 
Callen Ch. 17  
Problem Set 8. 

 


