Lecture Notes 11

Bose-Einstein Condensation

In Lecture 10 we obtained the following formulas for N and U:
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Since U = (3/2)pV we get from Eq.(2):
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Einstein observed in 1925 that if the number of particles is conserved, the ideal gas will undergo
a phase transition at low enough temperatures. We fix the number of bosons per volume N/gV,
while lowering temperature and thus increasing the thermal wavelength. In Figure 1 we show

NAr/gV vs fugacity &:
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Figure 1: (N/gV)ir’ = F(3/2, &) vs &



For NAr*/gV < {(3/2) = 2.612 the fugacity is & < 1. For NAr*/gV > {(3/2) the fugacity is
equal to unity § = 1, or the chemical potential equals zero p = 0. At these low temperatures
the gas condenses in the ground state: no/V is finite. Equation 1 is modified to fix this
breakdown of the integral approximation:
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At the condensation temperature:
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Divide Eq. (5) by Eq. (6):
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Using the definition for thermal wavelength:
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Hence at T = OK: no/N = 1 because all bosons are in the ground state. At T = Tc: no/N =0 as
the fraction of all bosons in any state is negligible.

The phase diagram in the temperature, pressure plane is obtained by substituting & = 1land
T=Tcin Eq. (4):
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where {(5/2) = 1.341.
In the condensate, T < Tc, the energy is obtained by substituting § =1 in Equation (2):
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We calculate energy per boson by dividing Eq. (10) by Eq. (6):
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The isochoric heat capacity is obtained by differentiating Eq. (11) at fixed V and N:
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Note that at the condensation temperature Cy = 1.925Nkg > 1.5Nkg, the high temperature,

classical, heat capacity.



Appendix
We study the special functions Fiy(&) introduced in Eq.(12).
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We can rewrite Eq (23) as:
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In the classical limit, £ << 1, and Fin(§) = &, as we have already shown to be the case in Eq.(19).

In the quantum limit, where Bose-Einstein condensation occurs, & = 1:
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Here we introduced the Riemann zeta function {(m). The zeta function of real variable was used
first by Euler. Here are a couple of values that are used in the study of Bose condensation:

{(3/2) =2.612375, {(5/2) = 1.341488. The zeta function { (m) is finite for m > 1. It diverges as

m approaches 1:
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Figure 2: Riemann zeta function {(m) diverges as m approaches unity from above.
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