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Lecture Notes 11 

Bose-Einstein Condensation 

In Lecture 10 we obtained the following formulas for N and U: 

𝑁 = 𝐹 / (𝜉)          (1) 

𝑈 = 𝑘 𝑇𝐹 / (𝜉)          (2) 

The thermal (de Broglie) wavelength is: 𝜆 =   and  

𝐹 (𝜉) =
( )

∫ 𝑑𝑥         (3) 

Since U = (3/2)pV we get from Eq.(2): 

𝑝 = 𝐹 / (𝜉)          (4) 

Einstein observed in 1925 that if the number of particles is conserved, the ideal gas will undergo 

a phase transition at low enough temperatures. We fix the number of bosons per volume N/gV, 

while lowering temperature and thus increasing the thermal wavelength. In Figure 1 we show 

NλT
3/gV vs fugacity ξ: 

 

Figure 1: (N/gV)λT
3 = F(3/2, ξ) vs ξ 
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For NλT
3/gV < ζ(3/2) = 2.612 the fugacity is ξ < 1. For NλT

3/gV >  ζ(3/2) the fugacity is 

equal to unity ξ = 1, or the chemical potential equals zero µ = 0. At these low temperatures 

the gas condenses in the ground state: n0/V is finite. Equation 1 is modified to fix this 

breakdown of the integral approximation: 

= 𝐹 / (1)         (5) 

At the condensation temperature: 

= 𝐹 / (1) =  𝜁(3/2)        (6) 

Divide Eq. (5) by Eq. (6): 

=            (7)  

Using the definition for thermal wavelength: 

= 1 − ( ) /           (8) 

Hence at T = 0K:  n0/N = 1 because all bosons are in the ground state. At T = TC: n0/N = 0 as 

the fraction of all bosons in any state is negligible. 

The phase diagram in the temperature, pressure plane is obtained by substituting ξ = 1and     

T = TC in Eq. (4): 

𝑝 = 𝐹 / (1) = 𝜁(5/2)                       (9) 

where ζ(5/2) = 1.341. 

In the condensate, T ≤ TC, the energy is obtained by substituting ξ =1 in Equation (2): 

𝑈 = 𝑘 𝑇𝐹 / (1) =  𝑘 𝑇𝜁(5/2)      (10) 

We calculate energy per boson by dividing Eq. (10) by Eq. (6): 

= 𝑘 𝑇 ( ) /          (11) 

The isochoric heat capacity is obtained by differentiating Eq. (11) at fixed V and N: 

𝐶 =  = 1.925𝑁𝑘 ( ) /         (12) 

Note that at the condensation temperature CV = 1.925NkB > 1.5NkB, the high temperature, 

classical, heat capacity. 
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Appendix 

We study the special functions Fm(ξ) introduced in Eq.(12). 

𝐹 (𝜉) =
( )

∫ 𝑑𝑥         (23) 

We can rewrite Eq (23) as: 

𝐹 (𝜉) =  ∑           (26) 

In the classical limit, ξ << 1, and Fm(ξ) ≃ ξ, as we have already shown to be the case in Eq.(19). 

In the quantum limit, where Bose-Einstein condensation occurs, ξ = 1: 

𝐹 (1) =  ∑ = 𝜁(𝑚)         (27) 

Here we introduced the Riemann zeta function ζ(m). The zeta function of real variable was used 

first by Euler.  Here are a couple of values that are used in the study of Bose condensation:   

ζ(3/2) = 2.612375, ζ(5/2) = 1.341488.  The zeta function ζ (m) is finite for m > 1.  It diverges as 

m approaches 1: 
 

Figure 2: Riemann zeta function ζ(m) diverges as m approaches unity from above. 
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