ENVIRONMENTAL PHYSICS COMPUTER LAB \#4: BLACKBODY RADIATION

EARTH RADIATION

We will use SI units throughout this worksheet. To speed up the computations we will not use the MathCad built-in units.

$$
\begin{array}{ll}
\lambda:=10^{-6}, 2 \cdot 10^{-6} . .30 \cdot 10^{-6} & \text { Wavelength range } \\
\mathrm{k}_{\mathrm{B}}:=1.381 \cdot 10^{-23} & \text { The Boltzmann constant } \\
\mathrm{c}:=3.0 \cdot 10^{8} & \text { Speed of light } \\
\mathrm{h}:=6.63 \cdot 10^{-34} & \text { The Planck constant }
\end{array}
$$

$$
\mathrm{I}(\lambda, \mathrm{~T}):=\frac{2 \cdot \pi \cdot \mathrm{~h} \cdot \mathrm{c}^{2}}{\lambda^{5} \cdot\left(\mathrm{e}^{\left.\frac{\mathrm{h} \cdot \mathrm{c}}{\lambda \cdot \mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}-1\right)}\right.}
$$

$$
\lambda_{\max }(\mathrm{T}):=\frac{2.898 \cdot 10^{-3}}{\mathrm{~T}}
$$

According to the Wien Law the maximum in the curve occurs for a wavelength which is inversely proportional to the temperature.

Earth's average temperature is 288 K . The maximum in the spectral intensity occurs in the infrared part of the spectrum. The graphs for 288 K and 312 K show: (a) when T increase the maximum shifts to lower λ; (b) when T increases the area under the curve (intensity) increases. To demonstrate the second statement mathematically we are going to compute the area under the curve by integrating numerically the spectral intensity.

$$
\begin{aligned}
& \int_{10^{-7}}^{10^{-1}} \mathrm{I}(\lambda, 288) \mathrm{d} \lambda=389 \\
& \sigma:=5.67 \cdot 10^{-8}
\end{aligned}
$$

$$
\sigma \cdot 288^{4}=390
$$

We compare this to the theoretical result: $\sigma \mathrm{T}^{4}$ where σ is the Stefan constant. The integral should be evaluated from 0 to infinity. To avoid overflow and underflow we chose an appropriate integration range.

SUN'S BLACK-BODY RADIATION

$$
\lambda:=10^{-8}, 2 \cdot 10^{-8} . .200 \cdot 10^{-8} \quad \text { The wavelength range }
$$

The Sun's surface temperature is 5762K [Source: M.P.Thekaekara et al., Applied Optics, 8, 1713-1732(1969)].

The graph shows the visible range of the spectrum: 400 nm to 700 nm . The wavelength giving the maximum spectral intensity is in the visible part of the spectrum: $\lambda_{\max }(5762)=5 \times 10^{-7}$

The fraction of all the Sun radiation in the visible part of the spectrum is:

$$
\frac{\int_{4 \cdot 10^{-7}}^{7 \cdot 10^{-7}} \mathrm{I}(\lambda, 5762) \mathrm{d} \lambda}{\sigma \cdot 5762^{4}}=0.365
$$

