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Lecture Notes 1 

1. Basic concepts 

To completely describe a macroscopic material on has to know the position vector and velocity 

vector of a huge number of molecules/atoms.  

Example: 1liter of water H2O has a mass of 1kg.  The number of molecules is:  N = 

1kg/(18*1.66*10-27kg) = 3.3*1025molecules.  Alternative calculation uses the Avogadro number 

which is the number of molecules in 1 mole of material:  NA = 10-3kg/1.66*10-27kg = 

6.02*1023mole-1. One mole of water has a mass of 18g. Then the number of moles in 1kg of 

water is (1/18*10-3) = 55.6moles.  Then the number of molecules is number of moles times the 

Avogadro number: 55.6*6.02*1023 = 3.3*1025molecules. 

Clearly a complete description of a system with so many degrees of freedom is not feasible. 

Fortunately, the time scale for our measurements is much larger than the time scale for molecular 

processes. The same is true with respect to spatial scales. 

Example: Time scale for molecular processes can be estimated using the Heisenberg uncertainty 

principle: t ~ h/E = 6.63*10-34/(13.6*1.6*10-19) = 3*10-16s.  I used for energy the ionization 

energy of Hydrogen 13.6eV. The time scale from a camera shutter is about 10-3 s which is much 

longer. The length scale for atomic processes is 10-10 m which is much shorter than measurement 

scale 10-7 m (visible light wavelength).  As a result, the measurements provide an average of 

many atomic configurations. Thermodynamics deals with those averages of various quantities. 

A complete determination of positions and velocities of all molecules represents a microstate.  

Many microstates correspond to a macrostate which could be out of equilibrium or in 

equilibrium. There is no apparent, macroscopic, motion in equilibrium. However, at the 

microscopic level molecules move and thus there are many microstates corresponding to the 

equilibrium macrostate.  Our course focuses on equilibrium thermodynamics. 

The time it takes for a particular system to reach an equilibrium state is called the relaxation 

time.  For example, by moving the piston to the left increases the density of gas molecules in the 

immediate neighborhood of the piston. After a time of the order of:  l/v = 1m/(300m/s) = 0.003s 

the molecules rearrange themselves so that the distribution is uniform. Here I took the length of 

the piston l~1m and sound velocity v ~300m/s.  The evolution towards the quiescent equilibrium 

state can be relatively fast, as in the example above, or in some cases, such as for glassy 

materials, very slow.  
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An equilibrium state is characterized by a few extensive quantities in contrast with the huge 

number of degrees of freedom needed to specify a microstate. The extensive variable, that are 

proportional to the size of the thermodynamic system, are: the energy U, the volume V, the 

number of molecules of species #1 N1, the number of molecules of species #2 N2, etc. and the 

entropy S. The entropy quantifies the complexity of that macrostate as it depends on the number 

of microstates. 

 

2. Work, Pressure, Volume 

The gas molecules in the cylinder move in hit the piston thus acting with some force F. The area 

of the piston is A. The pressure is P = F/A. The SI unit of pressure is called Pascal: Pa = N/m2.   

 

Figure 1: Work done on gas by piston on the gas: dW = -Fdx =-pAdx = -pdV 

 

In figure 1 we move the piston with force F to the left. The work we do on the gas is F(-dx) since 

dx < 0. Assuming to be in equilibrium during the time it takes to move the piston, the force is 

related to the pressure exerted by the gas molecules on the piston F = pA.  Since the change in 

volume is dV = Adx, it follows that the work on the gas is: 

dW = -pdV        (1) 

 

3. Hydrostatic Equilibrium 

Consider a fluid (liquid or gas) in equilibrium in the presence of gravity. The force exerted by 

the fluid above the slab is (p+dp)A. The force from fluid below the slab is pA, and the slab 
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weight is 𝜌Adzg.  Here we denote the mass density by 𝜌.    

  

Figure 2: Hydrostatic equilibrium: The force from fluid above (p+dp)A and the slab weight 

𝜌𝐴𝑑𝑧𝑔 are balanced by the force from fluid below pA 

(p+dp)A +  𝜌Adzg = pA   where g is gravitational acceleration. 

It follows that: 

𝑑𝑝

𝑑𝑧
= −ρg                                                                   (2) 

 

4. Application:  Incompressible Fluid, Buoyancy Force  

Most liquids, have a constant density ρ, independent of z. They are incompressible fluids.   

By integrating equation (2) above we get: 

p = p0 – ρgz                                                                 (3) 

where p0 is pressure at z = 0. 

If a solid of height h is immersed inside a liquid there is a net force due to the pressure difference  

𝛥𝑝 = ρgh  which is pointing upwards.  It is equal to: 

Fbuoyancy = 𝛥𝑝𝐴 =  gρhA = g𝜌V,                                 (4) 

where V is volume of the immersed solid and 𝜌 is the fluid density.   

Hence Eq. (4) states that the buoyancy force is equal to the weight of the fluid displace by the 

solid.  

This is Archimedes’ principle.  This was discovered by the Greek physicist Archimedes 

(287BC –  212 BC). 
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Figure 3: Sculpture of Archimedes in bathtub demonstrating the  

buoyance force. At the discovery moment he yelled Eureka (I found it). 

The Israel Science Museum in Haifa. 

 

Exercise 

 

Figure 4: Cork immersed in water and tied to vessel bottom 

A small piece of cork of density 𝜌cork = 200kg/m3 is submerged in water of density 𝜌water = 

1000kg/m3.  

The cork volume is 3cm3and it is tied to the bottom of the vessel with a string.  

(a) What is tension in the string. (b) If the string is cut what is the cork’s acceleration? 

 

(a) T + V 𝜌corkg = V 𝜌waterg 

T = V(𝜌water - 𝜌cork)g = 0.0235N 

(b) Newton’s 2’nd law 

Fbuoyancy – mg = ma 

V𝜌waterg -  V𝜌corkg = V𝜌corka 

a = g(𝜌water/𝜌cork  -1) = 39.24m/s2 
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5. Atmospheric Pressure, Torricelli barometer 

Evangelista Torricelli, a collaborator of Galileo, has measured the atmospheric pressure. Here is 

the principle of this experiment. 

 

 

Figure 5: Evangelista Torricelli (1608-1647) and his barometer. 

 

In an inverted test tube in a dish of mercury the mercury rises to a height of 0.76m.  

The atmospheric pressure is balanced by the pressure from the weight of mercury in the tube.  

patm = 𝜌Hggh = 13.6*103*9.8*0.76 = 1.01*105 Pa 

1atm is atmospheric pressure at sea level.  Other unit for pressure is torr: 1atm = 760torr = 

1.01*105 Pa. 

 

6. Fluid Dynamics 

Consider a liquids flowing in a tube. The mass conservation is expressed in the continuity 

equation.   

The mass flowing per unit time, mass rate flow, is: 

∆𝑚

∆𝑡
= 𝐴𝑣𝜌 
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Assuming the mass flow rate to be constant and also assuming an incompressible fluid,  

constant density, it follows: 

Av = constant      (4) 

The conservation of energy per unit volume in an incompressible and inviscid flow (the absence 

of heat losses due to viscosity) is expressed in the equation stated by Daniel Bernoulli, 

 

 

Figure 6a: Daniel Bernoulli (1700-1782)  

Swiss physicist, mathematician. 

 

𝜌𝑣2/2 + 𝜌𝑔ℎ + 𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    (5) 

 

 

Figure 7b 
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The first term in the Bernoulli equation (5) is the kinetic energy per unit volume. The second 

term is the gravitational potential energy per unit volume. The last term represents the work per 

unit volume (see Eq.(1)) to push the fluid through the pipe. 

 

7. Heat, Temperature, Entropy 

Heat is a form of energy, denoted by Q.  For example, by running a current I through a wire of 

resistance R during a time t we generate an amount of heat Q = RI2t. 

Related to heat, as pressure is to work, is the temperature T. The analog of volume in equation 

(1) is the entropy S. 

dQ = TdS.                                                                    (6) 

Temperature, like pressure, is an intensive quantity. By putting in contact two objects of different 

temperatures after a while the two temperatures become equal to each other.  The entropy on the 

other hand is extensive as the volume is also.  The entropy provides a quantification of the 

degree of disorder.  This abstract concept will be further explored in the Statistical Physics 

course. 

Devices that measure temperatures are called thermometers.  One of the simplest is the 

Florentine thermometer that uses the thermal expansion of a fluid like alcohol or mercury. 

Other thermometers are: electric resistance thermometer uses the temperature dependence of 

Ohmic resistance and constant volume gas thermometer uses the fact that pressure is 

proportional to temperature in a process that keeps the gas volume constant. 

 

 

Figure 7: Florentine thermometer 

Temperature scale used in this course are: 
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1. Celsius scale. Temperature is 100°C when water boils and it is 0°C when water freezes. 

2. Fahrenheit scale related to Celsius scale through: TF = (9/5)TC + 32. 

3. Kelvin or absolute scale:  T = TC + 273. 

The SI (international system) unit for temperature is the Kelvin. The temperature T in Kelvins is 

for most thermodynamic systems positive. In Statistical Physics course we will discuss a special 

system of nuclear spins that exhibits negative absolute temperatures. 

Exercise 

Under atmospheric pressure water freezes at 0°C and boils at 100°C.  Compute those 

temperatures in degrees Fahrenheit and in Kelvins. 

Freezing   TF = 32°F, T = 273K. 

Boiling     TF = [(9/5)*100 + 32]°F = 212°F,  T = 373K. 

 

 

 

 

Figure 8:  Lord Kelvin, William Thomson,  

published in Philosophical Magazine in 1848  

the article On an Absolute Thermometric Scale. 

 

8. Ideal Gas 

An ideal gas is a low density gas. The typical distance between molecules is much larger than the 

range of interactions. As a result, the whole energy is the kinetic energy associated with the 

molecular motion.  
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The equation of state relates pressure, p, volume, V, and temperature, T.  It was discovered 

experimentally in the seventeenth century.   

1

2
 

Figure 9a: Robert Boyle (1627 – 1691)  

was an English chemist, physicist.  

 

 

Figure 9b: Edme Mariotte, (1620 -1684),  

was a French physicist, plant physiologist. 

 

The Boyle-Mariotte law states that for a fixed amount of gas undergoing an isothermal process: 

pV = constant. 

Gay-Lussac law states that for a fixed amount of gas undergoing an isochoric process: p/T = 

constant. 

https://en.wikipedia.org/wiki/Chemist
https://en.wikipedia.org/wiki/Physicist
https://www.britannica.com/plant/plant
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Figure 10: Joseph Louis Gay-Lussac (1778 - 1850), French physicist, chemist. 

 

 

Figure 11: Jacques Charles (1746 – 1823) was a French physicist. 

Charles` law states that for a fixed amount of gas undergoing an isobaric process: 

V/T = constant. 

Those three empirical laws are included in the equation of state of ideal gases: 

pV = NkBT                                                       (7) 

N is the number of molecules. kB is a fundamental constant of nature called the Boltzmann 

constant. kB = 1.381*10-23j/K. 

https://en.wikipedia.org/wiki/French_people
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Figure 12a: Ludwig Boltzmann (1844 – 1906) was  

an Austrian physicist who discovered Statistical Mechanics. 

 

Figure 12b: Amedeo Avogadro (1776 – 1856) was  

an Italian physicist. 

 

Since 1 mole of material contains Avogadro number of molecules NA = 6.02*1023mole-1 it 

follows that for 𝒩 moles the number of molecules is N = 𝒩NA. The equation of state Eq (7) 

becomes: 

pV =  𝒩RT                                                                          (8) 

where R = NA*kB = 8.31j/(K*mol) is called the universal gas constant.  

Application: 

Compute the volume of 1mole of ideal gas under standard conditions: temperature 0°C and 

pressure 1atm = 1.01*105Pa.  

V = 𝒩RT/p = 1*8.31*273/(1.01*105) = 22*10-3m3 = 22liters. 

 

https://en.wikipedia.org/wiki/Austria
https://en.wikipedia.org/wiki/Physicist


12 
 

9. Barometric Formula 

Determines the drop in atmospheric pressure, p, with altitude, h.   We assume the 

atmosphere to be in hydrostatic equilibrium. We further assume to be described by 

the ideal gas equation of state. Hence: 

𝑑𝑝

𝑑ℎ
= −ρg       (9) 

The density is mass/volume: 

𝜌 =  
𝒩M

𝑉
=

𝑀𝑝

𝑅𝑇
       (10) 

M stands for molar mass.  To get the right hand side of eq. (10) I used the equation 

of state (8). 

Combining (9) and (10) we find: 

𝑑𝑝

𝑑ℎ
= −

𝑀𝑔

𝑅𝑇
𝑝       (11) 

We next assume the atmosphere to be isothermal. This is only an approximation.  Departures 

from this assumption are discussed in computer labs 1, 7, 8.  We now can integrate equation (11) 

by separating the variables: 

∫
𝑑𝑝

𝑝

𝑝

𝑝0
=  −

𝑀𝑔

𝑅𝑇
ℎ      (12) 

The integral on the left hand side is equal to ln(p/p0), where p is pressure at altitude h and p0 is 

pressure at h = 0.  By exponentiating the two sides of equation (12) we get: 

𝑝 = 𝑝0𝑒−−
𝑀𝑔

𝑅𝑇
ℎ
      (13) 

Equation (13) is the barometric formula. 

Application: The atmospheric pressure at sea level is p0 = 1atm = 1.01*105Pa = 

760torr. Calculate the atmospheric pressure in Cleveland, h = 250m, and in 

Denver, h = 1600m. 

The molar mass for air is M = 29g/mol = 29*10-3Kg/mol; g = 9.8*m/s2, T = 273K. 

Substitute numerical values in eq. (13). 

For h = 250m, p = 737torr. For h = 1600m, p = 622torr. 
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10.  Mechanical Equivalent of Heat 

 

Figure 13. Joule's apparatus for measuring the mechanical equivalent of heat.  

 

 

Figure 14. James Prescott Joule (1818-1889) English physicist. 

 

Joule found experimentally that 4.187j of mechanical work are needed to raise the temperature 

of 1g of water by 1°C. 

Heat unit: 1cal = 4.187j. 

Heat Q applied to a material of mass m and specific heat c raises the temperature by ΔT.  

Q = mc ΔT      (14) 

Hence the specific heat of water is c = 4.187*103j/(Kg*°C) 
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Application: One BTU, British thermal unit, is the heat needed to raise the temperature of 

1pound of water by 1°F. Compute how many joules are in 1Btu. 

m = 1lb = 0.454kg; ΔT = 1°F = 0.555°C, c = 4.187*103j/(Kg*°C). 

Q = 0.454*0.555*4.187*103 = 1055j = 1BTU. 

 

11.  Chemical Work, Chemical Potential, Number of Moles 

The chemical work WC stands for the energy change when changing the amount of material in 

the absence of heat exchange or mechanical work.  By analogy with eqs. (1) and (6) for 

mechanical work and heat, we write:    

dWC = μdN      (15) 

The chemical potential μ is measured in j or in j/mole if N is expressed in moles.  The chemical 

potential like temperature and pressure is an intensive variable.  The number of molecules N, on 

the other hand is extensive as the entropy and the volume are also.   

 

12. Mathematics for Thermodynamics 

Consider a function of several variables: f(x, y) 

If we ask for the change in f when we change slightly the independent variables x, y we use the 

Taylor expansion: 

f(x+dx, y+dy) = f(x, y) + df +  (1/2)d2f + ,,,  (16) 

df is the first differential. It is given by: 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦     (17) 

d2f is the second differential. It is given by: 

𝑑2𝑓 =  
𝜕2𝑓

𝜕𝑥2 𝑑𝑥2 +  2
𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑓

𝜕𝑦2 𝑑𝑦2  (18) 

Note that for mixed derivatives the order of differentiation is not important. 

𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑓

𝜕𝑦𝜕𝑥
      (19) 

This mathematical result translates in thermodynamics in the important Maxwell relations. 

 

READINGS:  

Halliday, Resnick, Walker, Ch14: Fluids 

Callen, Ch.1: The problem and the postulates 

Problem Set 1 
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Lecture Notes 2 

1. Energy of Ideal Gas 

An ideal gas has only kinetic energy as the molecules are so far apart one from the other that the 

interaction energy is neglected. 

U = Σmv2/2 

Assuming elastic collisions with the wall, a molecule hits surface ΔA (in plane yz) with a force 

2mvx/Δt. Assuming also uniform distribution of molecules in the container of volume V the 

fraction of all molecules hitting the wall is: (½)ΔxΔA/V. The ½ factor signifies that half of those 

molecules move away from the wall 

Then: ΔF = pΔA= Σ[(½)ΔxΔA/V][2mvx/Δt] = Σmvx
2[ΔA/V] = (2/3)U[ΔA/V] 

Here we also assumed isotropy, i.e. all directions equivalent. This explains the 1/3 factor. 

It follows: U = (3/2)pV. 

Here we considered an ideal gas of monatomic molecules. Diatomic and polyatomic ideal gases 

will be discussed in future lectures. 

 

2. van der Waals Equation of State 

The ideal gas equation of state works for low density gases so that the distance between 

molecules is much larger than the range of interactions. As a result, the ideal gas has only the 

kinetic energy of the molecules. 

:  

Figure 1: Johannes Diderik van der Waals (1837-1923), 

Dutch physicist who discovered the equation of state of gases and liquids. 

 

This equation is a modification of the equation of state of ideal gases.   
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It accounts for the minimum volume obtained under large pressure by replacing in the ideal gas 

equation of state volume by V – 𝒩b.  Here 𝒩 is number of moles and b is volume of 1 mole 

under huge compression.  

It also accounts for the attraction between molecules which reduces the pressure. So in the 

equation of state of ideal gases we replace the pressure by p + (𝒩/V)2a.  Here we 

estimated the number of pairs of molecules that interact N(N-1)/2 ≃ N2/2 for large N. The 

constant a which estimates the strength of the attraction incorporates the ½ factor. 

The van der Waals equation of state is: 

(p + (𝒩/V)2a)(V – 𝒩b) = 𝒩RT 

The constants a and b depend on which chemical we study.  For example the values for 

water are: 

a = 0.544Pa*m6/mol2   

b = 30.5*10-6m3/mol 

 

Exercise: Compute pressure needed to apply to 1 mole of water vapor at 27°C to get a 

volume of 10l. Use the van der Waals and ideal gas equations of state. 

p = 𝒩RT/(V - 𝒩b) – (𝒩/V)2a = 8.31*300/(0.01 - 30.5*10-6) - (1/0.01)2*0.544    

p = 2.45*105Pa 

pideal = 𝒩RT/V = 8.31*300/0.01 = 2.49*105Pa 

 
Reading 
HRW Ch.19 Sec 4. 
Callen Ch 3, Sec 5 
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Lecture Notes 3 

1. First Law of Thermodynamics 

The internal energy of a material, denoted by U, is a state variable meaning that it depends solely 

on the state of the system and it is independent of the process that lead to that state.  The entropy 

S, the volume V, the number of molecules N and are also state variables. The equation relating 

these variables is a fundamental equation, as it contains all the information about the considered 

material. 

U = U(S, V, N)       (1) 

The first law is the energy conservation law.  It states that adding to the material heat dQ = TdS, 

doing mechanical work dW = -pdV on the material, and doing chemical work dWC  =  μdN 

changes the energy of the material: 

dU = dQ + dW + dWC = TdS – pdV + μdN    (2) 

On the other hand the differential of U is: 

𝑑𝑈 =
𝜕𝑈

𝜕𝑆
𝑑𝑆 +

𝜕𝑈

𝜕𝑉
𝑑𝑉 +

𝜕𝑈

𝜕𝑁
𝑑𝑁     (3) 

Comparing (2) and (3) we find: 

𝑇 = (
𝜕𝑈

𝜕𝑆
)
𝑉,𝑁

        (5) 

𝑝 = −(
𝜕𝑈

𝜕𝑉
)
𝑁,𝑆

        (6) 

𝜇 = (
𝜕𝑈

𝜕𝑁
)
𝑆,𝑉

        (7) 

 

2. Extensive and Intensive Variables 

When the size of a system increases by a factor λ the extensive variables U, S, V, N increase by 

the same factor λ: 

U(λS, λV, λN) = λU       (8) 

Equation (8) states that energy is a homogeneous function of first degree of entropy, volume and 

number of molecules.  The temperature T, the pressure p and the chemical potential μ are 

intensive variables as they do not change when the size of the system changes by the factor λ, see 

Eqs. 5, 6, 7. 
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3. Euler Equation 

This relation characterizes homogeneous functions.  

 

Figure 1: Leonard Euler (1707 – 1783)  

was a Swiss mathematician. 

 

Take derivative with respect to λ on both sides of Eq. (8). Then set λ = 1. In view of Eqs. 5, 6, 7, 

we get the Euler Equation: 

TS – pV + μN = U       (9) 

Equation (9) can be rewritten by using molecular energy u = U/N, molecular entropy s = S/N, 

and molecular volume v = V/N: 

u = Ts – pv + μ        (10) 

 

4. Molecular Form of 1st Law 

By substituting λ = 1/N in equation (8) we get u = u(s, v), where u = U/N, s = S/N, v = V/N.  We 

write the 1st law using the molecular energy, entropy and volume: 

d(Nu) = Td(Ns) – pd(Nv) + μdN     (11) 

Ndu + udN = TNds + TsdN – pNdv – pvdN + μdN   (12) 

In view of Eq. (10) the terms having a factor dN cancel out. Then Eq. 12 reduces to: 

du = Tds – pdv       (13) 

Equation (13) is the molecular form of the 1st Law. 
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5. Gibbs – Duhem Equation 

 

Figure 2: Josiah Willard Gibbs (1839 – 1903)  

was an American physicist, professor at Yale.  

He developed the foundations of statistical mechanics. 

 

Substitute U, as given in Eq. 9, into the left hand side of the 1st Law, Eq.2: 

d(TS –pV+ μN) = TdS – pdV + μdN     (14) 

Since: d(TS) = TdS + SdT; d(pV) = pdV +Vdp; d(μN) = μdN + Ndμ, 

Eq. (14) reduces to the Gibbs-Duhem equation: 

SdT – Vdp+ Ndμ = 0       (15) 

Solving for differential of chemical potential we get: 

dμ = -sdT + vdp       (16) 

where s = S/N is molecular entropy and v = V/N is molecular volume. 

The fundamental equation using only intensive variables is:   

μ = μ(T, p) 

and according to (16): 

𝑠 = −(
𝜕𝜇

𝜕𝑇
)
𝑝
        (17) 

𝑣 = (
𝜕𝜇

𝜕𝑝
)
𝑇
        (18) 

 

6. Specific Heats, Compressibilities, Thermal Expansion 

Heat capacity C measures the amount of heat needed to raise temperature by 1K.  
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C = dQ/dT = TdS/dT. When we divide C by size of the system N we get the specific heat            

c = C/N. For gases it is important to specify whether the heating process is isobaric (constant 

pressure) or isochoric (constant volume). 

𝑐𝑝 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑝        (19) 

𝑐𝑣 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣        (20) 

The compressibility measures the fractional change in volume when we decrease pressure by one 

unit. For gases the compressibilities depend on the process: isothermal or adiabatic. 

𝑘𝑇 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)𝑇       (21) 

𝑘𝑠 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)𝑠        (22) 

The strength of solids and liquids are often characterized by the bulk modulus B = 1/k. 

The thermal expansion measures the fractional change in volume when we raise isobarically the 

temperature by 1K. 

𝛼 =
1

𝑉
(
𝜕𝑉

𝜕𝑇
)𝑝         (23) 

Application:  

For ideal gas we calculate the thermal expansion and isothermal compressibility.  We use the 

equation of state: pV = NkBT. 

𝛼 =
1

𝑉
(
𝜕𝑉

𝜕𝑇
)𝑝 =

1

𝑉
(
𝜕(𝑁𝑘𝐵𝑇/𝑝)

𝜕𝑇
)𝑝 =

𝑁𝑘𝐵

𝑝𝑉
=

1

𝑇
    (24) 

𝑘𝑇 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)
𝑇
= −

1

𝑉
(
𝜕(

𝑁𝑘𝐵𝑇

𝑝
)

𝜕𝑝
)
𝑇

=
𝑁𝑘𝐵𝑇

𝑝2𝑉
=

1

𝑝
   (25) 

For ideal gas we calculate the isochoric specific heat by using u = (3/2)pv = (3/2)kBT. From the 

1st Law in molecular form, Eq. 13, du = Tds – pdv = Tds since dv=0 because v is constant. 

Hence: 

𝑐𝑣 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣 =

𝑑𝑢

𝑑𝑇
=

3

2
𝑘𝐵      (26) 

This specific heat per molecule. The molar specific heat is: 

𝑐𝑣 =
3

2
𝑅        (27) 

Reading 
HRW Ch.19  
Callen Ch. 2, Sec 1, 2; Ch. 3 
Problem Set 2, 3 


