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Lecture Notes 4 

1. The Ideal Gas 

The ideal gas is a low density gas for which we can ignore the interaction potential energy.  We 

have shown in Lecture Notes 2 that for a monatomic ideal gas U = (3/2)pV.  This formula is 

generalized to diatomic and polyatomic molecules as: U = (i/2)pV where i is the number of 

degrees of freedom for a molecule. For monatomic gases such as noble gases (He, Ne, Ar, Kr, 

Xe, Rn) i =3 counting the 3 coordinates. For diatomic gases, such as N2, O2, H2, i = 5, counting 

the 3 coordinates of the center of mass and the 2 angles that give the direction of the molecular 

axis. For polyatomic molecules, such as H2O, i = 6.    

Since the energy is only kinetic we can estimate the root mean square velocity of such a 

molecule. For a monatomic gas:  U = (3/2)pV = (3/2)NkBT = Nm<v2>/2, so:  

vrms=  <v2>1/2
= (3kBT/m) ½=(3RT/M) ½, where M is molar mass. 

Example: Compute the rms velocity for Argon at room temperature. 

Molar mass is M = 40g/mole and temperature is T = 300K. 

vrms = (3*8.3*300/40*10-3)1/2= 432m/s. 

 

2. The Ideal Gas: Fundamental Equation 

The ideal gas equation of state relating pressure, volume, temperature and number of molecules 

is: 

pV = NkBT or pv = kBT      (1) 

The internal energy is: 

U = (i/2)pV =  (i/2) NkBT or u =  (i/2)kBT   (2) 

In (1) and (2) u = U/N, v = V/N.  We start from the molecular form of the 1’st law: 

du = Tds – pdv       (3) 

Next we substitute  on right hand side of equation (3): ds = (
𝜕𝑠

𝜕𝑇
)𝑣𝑑𝑇 + (

𝜕𝑠

𝜕𝑣
)𝑇𝑑𝑣: 

𝑑𝑢 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣𝑑𝑇 + (𝑇(

𝜕𝑠

𝜕𝑣
)𝑇 − 𝑝)𝑑𝑣     (4) 

It follows that: 

𝑐𝑣 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣 = (

𝜕𝑢

𝜕𝑇
)𝑣 =

𝑖

2
𝑘𝐵      (5) 

𝑇(
𝜕𝑠

𝜕𝑣
)𝑇 − 𝑝 = (

𝜕𝑢

𝜕𝑣
)

𝑇
= 0      (6) 
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To get the and right hand side of (5) and (6) I used Eq. (2). We rewrite Eq. (6) by using the 

equation of state Eq. (1): 

 (
𝜕𝑠

𝜕𝑇
)𝑣 =

𝑖

2

𝑘𝐵

𝑇
        (7) 

(
𝜕𝑠

𝜕𝑣
)𝑇 =

𝑝

𝑇
=

𝑘𝐵

𝑣
       (8) 

We integrate (7) and (8) to get: 

𝑠 − 𝑠0 =
𝑖

2
𝑘𝐵 ln (

𝑇

𝑇0
) + 𝑘𝐵 ln (

𝑣

𝑣0
)     (9) 

The constants of integration represent the values of entropy, molecular volume and temperature 

in a reference state.   In Statistical Physics the integration constants are determined in terms of 

the fundamental constants: Planck constant h, Boltzmann constant kB, and molecular mass.  We 

can use the equation of state, v ~ T/p, to express s as a function of the intensive variables T and 

p: 

𝑠 − 𝑠0 =
𝑖+2

2
𝑘𝐵 ln (

𝑇

𝑇0
) −𝑘𝐵 ln (

𝑝

𝑝0
)     (10) 

Application: Isobaric Specific Heat 

Differentiate both sides of Eq. (10) with respect to T at fixed p: 

𝑐𝑝 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑝 =  

𝑖+2

2
𝑘𝐵       (11) 

The isochoric specific heat is given in Eq. (5): 

𝑐𝑣 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣 =  

𝑖

2
𝑘𝐵       (12) 

Note cp > cv > 0.  Those inequalities hold true for any material, as they are required by the 2nd 

Law of Thermodynamics.  The ratio of the two specific heats, using Eqs. (11) and (12) is: 

𝛾 =
𝑐𝑝

𝑐𝑣
=  

𝑖+2

𝑖
        (13) 

We solve for temperature in Eq. (9): 

𝑇

𝑇0
= (

𝑣

𝑣0
)

−
2

𝑖
exp (

2

𝑖

(𝑠−𝑠0)

𝑘𝐵
)      (14) 

We get the fundamental equation of the ideal gas by substituting the temperature from Eq. (14) 

into the energy Eq. (2): 

𝑢 = 𝑢0 (
𝑣

𝑣0
)

−
2

𝑖
exp (

2

𝑖

(𝑠−𝑠0)

𝑘𝐵
)      (15) 

We scale up and get the fundamental equation U = U(S, V, N): 
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𝑈 = 𝑈0 (
𝑉

𝑉0
)

−
2

𝑖
(

𝑁

𝑁0
)

𝑖+2

𝑖
exp (

2

𝑖

1

𝑘𝐵
(

𝑆

𝑁
−

𝑆0

𝑁0
))    (16) 

 

Application: Adiabatic Process, Poisson Equation 

In an adiabatic process the entropy and the amount of material are unchanged: S = S0 and N = N0, 

and hence s = s0.  From Eq. (14) we find: 

𝑇

𝑇0
= (

𝑣

𝑣0
)

−
2

𝑖
        (17) 

or: 

𝑇𝑣𝛾−1 = 𝑐𝑜𝑛𝑠𝑡.       (18) 

where 𝛾 − 1 =
2

𝑖
. (see Eq. (13). 

In view of the equation of state T/v ~ p, Eq. (18) can be written as: 

𝑝𝑣𝛾 = 𝑐𝑜𝑛𝑠𝑡.        (19) 

𝑝𝑇−𝛾/(𝛾−1) = 𝑐𝑜𝑛𝑠𝑡.       (20) 

 

Figure 1: Simeon Denis Poisson (1781-1840), 

French physicist, mathematician who contributed 

to many areas of mathematical physics. 

 

Equation (19) is known as the Poisson equation.   

Application: Adiabatic Compressibility 

For adiabatic process we have the Poisson equation. Differentiate both sides of Eq (19) with 

respect to p: 

𝑣𝛾 + 𝑝𝛾𝑣𝛾−1(
𝜕𝑣

𝜕𝑝
)𝑆 = 0  

𝑘𝑠 = −
1

𝑣
(

𝜕𝑣

𝜕𝑝
)

𝑠
=  

1

𝛾𝑝
       (21) 
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Remember in Lecture Notes 3 we proved: kT = 1/p.  Note kT > ks > 0.  Those inequalities hold 

true for any material, as they are required by the 2nd Law of Thermodynamics.  The ratio of the 

two compressibilities equals the ratio of the specific heats (this is true for any material): 

𝑘𝑇

𝑘𝑠
=

𝑐𝑝

𝑐𝑣
=  𝛾 =

𝑖+2

𝑖
       (22) 

Application: The Speed of Sound 

Sound propagates in a material with a speed determined by the strength of the material (bulk 

modulus) and  its density: 𝑣sound =  √
𝐵

𝜌
  The bulk modulus is the inverse of compressibility:     

B = 1/k.  For ideal gases: BT = p and BS = γp.  The sound propagates fast enough that the process 

is adiabatic rather than isothermal, as discovered by Laplace. The density is:  

𝜌 = 𝒩M/V = pM/RT. Then: 

𝑣sound =  √
𝐵𝑆

𝜌
= √

𝛾𝑅𝑇

𝑀
 We estimate the speed of sound in air at room temperature:  

T = 300K, M = 29*10-3kg/mole, R = 8.3j/K*mole, γ = 1.4. We find vsound = 346m/s in agreement 

with the measured value. 

 

Figure 2: Pierre-Simon Laplace (1749-1827), 

French physicist, mathematician who contributed 

to many areas of mathematical physics. 

 

Interesting enough, Newton calculated the speed using the isothermal bulk modulus. As a 

consequence of this assumption, that estimate was about 20% lower than the experimental value. 
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Figure 3: Isaac Newton (1642-1727), 

English physicist, mathematician who  

discovered the laws of mechanics and calculus. 

 

Application: Adiabatic Atmosphere 

We consider a model of the atmosphere in hydrostatic equilibrium and undergoing adiabatic 

processes. 

𝑑𝑝

𝑑ℎ
=  −𝜌𝑔         (23) 

The air density is: 𝜌 = 𝒩M/V = pM/RT. Hence Eq. (23) becomes: 

𝑑𝑙𝑛(𝑝)

𝑑ℎ
=  −

𝑀𝑔

𝑅𝑇
        (24) 

For adiabatic processes p and T are related by Eq.(20): p = p0(T/T0)γ/(γ-1),  

and γ/(γ-1) = (i+2)/2.  Then: ln(p) = ln(p0) + [(i+2)/2]ln(T/T0). We differentiate ln(p) 

with respect to h to get the left hand side of Eq.(24): 

𝑖+2

2

1

𝑇

𝑑𝑇

𝑑ℎ
=  −

𝑀𝑔

𝑅𝑇
       (25) 

𝑑𝑇

𝑑ℎ
=  −

𝑀𝑔

𝑅
𝑖+2

2

        (26) 

But according to Eq. (11) the molar isobaric specific heat is 𝑐𝑝 =
𝑖+2

2
𝑅. The quantity on the right 

hand side of Eq.(26) is called the dry adiabatic lapse rate 𝛤: 

𝛤 =
𝑀𝑔

𝑐𝑝
        (27) 

Exercise: Air is a diatomic gas i = 5 with molar mass M = 29g/mol. Compute the dry adiabatic 

lapse rate. 
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Γ= 29*10-3*9.8/(8.3*3.5) = 9.8*10-3 °C/m.  Hence going up in altitude for 100m, the temperature 

drops by 1°C. 

Integrate Eq. (26): 

T = T0 – Γh        (28) 

Pressure dependence on altitude becomes: 

p = p0(1- Γh/T0)(i+2)/2       (29) 

Density dependence on altitude is obtained by substituting Eqs. (28), (29) into 𝜌 = pM/RT: 

 ρ = 𝜌0(1 −
𝛤

𝑇0
ℎ)

𝑖

2       (30) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trace 1 isothermal model; 
trace 2 adiabatic model 
 
 
 
 
 
 
 
 
 
 

Readings 
HRW Ch.19  
Callen Ch. 3, Sec 4;  
Problem Set 4 
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Lecture Notes 5 

1. The Ideal Gas: Fundamental Equation in Terms of Intensive Variables 

We derive the ideal gas fundamental equation relating chemical potential, temperature, and 

pressure. We start with the equation of state: 

pv = kBT        (1) 

The internal energy is: 

u = (i/2)kBT        (2) 

The molecular entropy is (see Lecture Notes 4, Eq.10) 

𝑠 − 𝑠0 =
𝑖+2

2
𝑘𝐵 ln (

𝑇

𝑇0
) −𝑘𝐵 ln (

𝑝

𝑝0
)     (3) 

In (1), (2), and (3): u = U/N, v = V/N, s = S/N.  We substitute (1), (2), (3) into the molecular 

form of the Euler equation: 

u = Ts – pv + μ       (4) 

We calculate the chemical potential: 

𝜇 =  
𝑖

2
𝑘𝐵𝑇 − 𝑇𝑠0 −

𝑖+2

2
𝑘𝐵𝑇 ln (

𝑇

𝑇0
) + 𝑘𝐵𝑇 ln (

𝑝

𝑝0
) + 𝑘𝐵𝑇  (5) 

In the reference state: 

𝜇0 =  
𝑖

2
𝑘𝐵𝑇0 − 𝑇0𝑠0 + 𝑘𝐵𝑇0      (6) 

Combining Eqs (5) and (6) we get: 

𝜇 =  
𝜇0

𝑇0
𝑇 −

𝑖+2

2
𝑘𝐵𝑇 ln (

𝑇

𝑇0
) + 𝑘𝐵𝑇 ln (

𝑝

𝑝0
)    (7) 

Equation (7) is the fundamental equation of the ideal gas in terms of the intensive variables.  All 

the information about this thermodynamic system is contained in this equation.  To calculate 

entropy, volume we need to remember the Gibbs-Duhem equation (see Lecture Notes 3, Eq. 16) : 

dμ = -sdT + vdp       (8) 

Application:  

Compute s(T,p) and v(T,p) starting from Eqs. (7) and (8): 

𝑠 = − (
𝜕𝜇

𝜕𝑇
)

𝑝
=  −

𝜇0

𝑇0
+

𝑖+2

2
𝑘𝐵 ln (

𝑇

𝑇0
) +

𝑖+2

2
𝑘𝐵 − 𝑘𝐵 ln (

𝑝

𝑝0
) = 𝑠0 +

𝑖+2

2
𝑘𝐵 ln (

𝑇

𝑇0
) − 𝑘𝐵 ln (

𝑝

𝑝0
)(9) 

𝑣 = (
𝜕𝜇

𝜕𝑝
)

𝑇
=  

𝑘𝐵𝑇

𝑝
       (10) 

Eq (9) is the same as Eq. 10 of Lecture Notes 4 and Eq (10) is the ideal gas equation of state. 
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2. Van der Waals Fluid 
 
The equation of state is: 

𝑝 =
𝑘𝐵𝑇

𝑣−𝑏
−

𝑎

𝑣2        (11) 

The molecular form of the 1’st law: du = Tds – pdv becomes after substituting 

ds = (
𝜕𝑠

𝜕𝑇
)𝑣𝑑𝑇 + (

𝜕𝑠

𝜕𝑣
)𝑇𝑑𝑣: 

𝑑𝑢 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣𝑑𝑇 + (𝑇(

𝜕𝑠

𝜕𝑣
)𝑇 − 𝑝)𝑑𝑣     (12) 

Now we use: 
𝜕2𝑢

𝜕𝑣𝜕𝑇
=

𝜕2𝑢

𝜕𝑇𝜕𝑣
: 

𝑇
𝜕2𝑠

𝜕𝑣𝜕𝑇
= (

𝜕𝑠

𝜕𝑣
)𝑇 + 𝑇

𝜕2𝑠

𝜕𝑇𝜕𝑣
− (

𝜕𝑝

𝜕𝑇
)𝑣     (13) 

We get the following Maxwell relation: 

(
𝜕𝑠

𝜕𝑣
)𝑇 = (

𝜕𝑝

𝜕𝑇
)𝑣        (14) 

The right hand side of Eq. (14) is obtained from the equation of state Eq (11): 

(
𝜕𝑠

𝜕𝑣
)𝑇 =

𝑘𝐵

𝑣−𝑏
        (15) 

Integrating (15) with respect to v we get: 

𝑠 =  𝑘𝐵 ln(𝑣 − 𝑏) + Φ(𝑇),      (16) 

where Φ(𝑇) is unknown function of temperature.  Using Eq(16) we get the isochoric specific 

heat: 

𝑐𝑣 = 𝑇(
𝜕𝑠

𝜕𝑇
)𝑣 = 𝑇

𝑑Φ

𝑑𝑇
       (17) 

We thus conclude that the isochoric specific heat of van der Waals fluid is a function of 

temperature only. 

Application: The ideal van der Waals fluid 

We assume next that the isochoric heat  is the same as for the ideal gas:  𝑐𝑣 =
𝑖

2
𝑘𝐵.  It follows 

that: Φ(𝑇) =
𝑖

2
𝑘𝐵ln (𝑇) + constant.  The entropy equation (16) can be written as: 

𝑠 −  𝑠0 =  𝑘𝐵 ln (
𝑣−𝑏

𝑣0−𝑏
) +

𝑖

2
𝑘𝐵ln (

𝑇

𝑇0
),    (18) 

For adiabatic process s = s0 and Eq. (18) gives: 

(𝑣 − 𝑏)𝑇
𝑖

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (19) 

Substituting T from the equation of state in Eq. (19), we get the analog of the Poisson equation: 
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(𝑝 +
𝑎

𝑣2) (𝑣 − 𝑏)
𝑖+2

𝑖 = 𝑐𝑜𝑛𝑠𝑡      (20) 

We next derive the energy of the ideal van der Waals fluid. We start with the differential du of 

Eq.(12), and substitute s from Eq.(18) and p from equation of state (11).  We find: 

(
𝜕𝑢

𝜕𝑇
)𝑣 =

𝑖

2
𝑘𝐵        (21) 

(
𝜕𝑢

𝜕𝑣
)

𝑇
=

𝑎

𝑣2        (22) 

Integrating Eq (21) and (22) we get the molecular energy: 

𝑢 =  
𝑖

2
𝑘𝐵𝑇 −

𝑎

𝑣
       (23) 

The contribution term (i/2)kBT represents the kinetic energy and  -a/v is the potential energy 

associated with the long-range attraction between molecules. 

Application: Thermal Expansion and Isothermal Compressibility (Callen problem 3.9.3) 

To calculate the thermal expansion we need only the equation of state: T = (p + a/v2)(v-b)/kB 

𝛼 =
1

𝑣
(

𝜕𝑣

𝜕𝑇
)𝑝 =

1

𝑣(
𝜕𝑇

𝜕𝑣
)𝑝

=  
𝑘𝐵

𝑣[−
2𝑎

𝑣3(𝑣−𝑏)+𝑝+
𝑎

𝑣2]
=

𝑘𝐵

𝑝𝑣+
𝑎

𝑣2(−𝑣+2𝑏)
   (24) 

For the isothermal compressibility, we start with the equation of state: p = kBT/(v-b) – a/v2 

𝑘𝑇 = −
1

𝑣
(

𝜕𝑣

𝜕𝑝
)

𝑇
=  

−1

𝑣(
𝜕𝑝

𝜕𝑣
)

𝑇

=  
−1

𝑣[
−𝑘𝐵𝑇

(𝑣−𝑏)2+
2𝑎

𝑣3]
=  

1

(𝑝+
𝑎

𝑣2)
𝑣

𝑣−𝑏
−

2𝑎

𝑣2

==
𝑣−𝑏

𝑝𝑣+
𝑎

𝑣2(−𝑣+2𝑏)
(25) 

Note that for a = b = 0, α = 1/T and kT = 1/p, which are the ideal gas thermal expansion and 

isothermal compressibility. 

 

 

 

 

 

 

Readings 
Callen Ch. 3, Sec 4, 5;  
Problem Sets 4, 5 



Lecture Notes 6 

1. The Stirling Engine 
The Stirling engine is an external combustion engine. It is also called the hot air engine.  In the 

19th century it was used to run printing engines. It is also used to generate power from solar 

energy and in submarines because they are quiet.  It was invented and patented in 1860 by 

Reverend Dr. Robert Stirling. 

 

Figure 1: Robert Stirling (1790 – 1878)  

was a Scottish clergyman and engineer. 

 
The four steps of the cycle are: 1 to 2 isothermal (at temperature TL) compression; 2 to 3 

isochoric (at volume v2) heating; 3 to 4 isothermal (at temperature TH) expansion when the gas 

absorbs heat from an external source; 4 to 1 isochoric (at volume v1) cooling. 

 

 

Figure 2: Stirling cycle 

 



We will assume that the working fluid is an ideal van der Waals fluid (see Lecture Notes 5) 

characterized by: 

𝑝 =
𝑅𝑇

𝑣−𝑏
−

𝑎

𝑣2,         (1) 

𝑢 =  
𝑖

2
𝑅𝑇 −

𝑎

𝑣
         (2) 

where u is molar energy and v is molar volume. We next calculate the work done on the gas 

and the heat added to the gas for each step. 

1 to 2. Isotherm T = TL  

𝑊12 =  −𝑁 ∫ 𝑝𝑑𝑣 = −𝑁𝑅𝑇𝐿 ln (
𝑣2−𝑏

𝑣1−𝑏
) − 𝑁𝑎(

1

𝑣2
−

1

𝑣1
)

𝑣2

𝑣1
    (3) 

∆𝑈12 = −𝑁𝑎(
1

𝑣2
−

1

𝑣1
)        (4) 

We get the heat by using the 1st Law: 

𝑄12 = ∆𝑈12 − 𝑊12 =  𝑁𝑅𝑇𝐿 ln (
𝑣2−𝑏

𝑣1−𝑏
)      (5) 

2 to 3. Isochore v = v2  

𝑊23 =  0         (6) 

∆𝑈23 = 𝑁
𝑖

2
𝑅(𝑇𝐻 − 𝑇𝐿)        (7) 

We get the heat by using the 1st Law: 

𝑄23 = ∆𝑈23 −  𝑊23 =  𝑁
𝑖

2
𝑅(𝑇𝐻 − 𝑇𝐿)      (8) 

3 to 4. Isotherm T = TH. This is the gas heating step.  

𝑊34 =  −𝑁 ∫ 𝑝𝑑𝑣 = −𝑁𝑅𝑇𝐻 ln (
𝑣1−𝑏

𝑣2−𝑏
) − 𝑁𝑎(

1

𝑣1
−

1

𝑣2
)

𝑣1

𝑣2
    (9) 

∆𝑈34 = −𝑁𝑎(
1

𝑣1
−

1

𝑣2
)        (10) 

We get the heat by using the 1st Law: 

𝑄34 = ∆𝑈34 −  𝑊34 =  𝑁𝑅𝑇𝐻 ln (
𝑣1−𝑏

𝑣2−𝑏
)      (11) 

4 to 1. Isochore v = v1  

𝑊41 =  0         (12) 

∆𝑈41 = 𝑁
𝑖

2
𝑅(𝑇𝐿 − 𝑇𝐻)        (13) 

We get the heat by using the 1st Law: 

𝑄41 = ∆𝑈41 −  𝑊41 =  𝑁
𝑖

2
𝑅(𝑇𝐿 − 𝑇𝐻)      (14) 



The total work done on the gas is: Wtot = W12 + W23 + W34 + W41.  We find by using equations: 

(3), (6), (9), (12): 

𝑊𝑡𝑜𝑡 = −𝑁𝑅𝑇𝐿 ln (
𝑣2 − 𝑏

𝑣1 − 𝑏
) − 𝑁𝑅𝑇𝐻 ln (

𝑣1 − 𝑏

𝑣2 − 𝑏
) 

Hence the total work done by the gas is:  

−𝑊𝑡𝑜𝑡 = 𝑁𝑅(𝑇𝐻 − 𝑇𝐿) ln (
𝑣1−𝑏

𝑣2−𝑏
)      (15) 

The efficiency e of the engine is the ratio of the output work -Wtot to the input heat Q34. Using 

equations (11) and (15) we find: 

𝑒 =
−𝑊𝑡𝑜𝑡

𝑄34

=
𝑇𝐻−𝑇𝐿

𝑇𝐻
         (16) 

In coming lectures we will discuss the second law of thermodynamics which determines the 

maximum efficiency of a heat engine, the Carnot cycle efficiency. It so happens that it is equal to 

the efficiency given above in Eq. (16). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Readings 
Callen Ch. 3, Sec. 5;  
HRW Ch. 20; 
Problem Sets 4, 5, 6. 
 


