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Lecture Notes 7 

1. The Gasoline Engine: Otto Cycle 
The Otto cycle is a thermodynamic cycle that describes the functioning of a typical spark 

ignition piston engine. It is the most common cycle for car engines.  In 1876 the German 

engineer Nicolaus Otto built a working four-stroke engine, using gasoline as fuel.  

 

 

 

Figure 1: Nicolaus August Otto (1832 – 1891)  

was a German engineer who developed the internal combustion engine. 

 
The four steps of the cycle are: 1 to 2 adiabatic compression from v1 to v2; 2 to 3 isochoric (at 

volume v2) heating; 3 to 4 adiabatic expansion; 4 to 1 isochoric at volume v1 cooling. 

 

Figure 2: Otto cycle 

 

https://en.wikipedia.org/wiki/Thermodynamic_cycle
https://en.wikipedia.org/wiki/Spark_ignition_engine
https://en.wikipedia.org/wiki/Spark_ignition_engine
https://en.wikipedia.org/wiki/Piston_engine
https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/wiki/Engineer
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Step 0–1: a mass of air is isobarically drawn into piston/cylinder arrangement. 

Step 1–2: an adiabatic compression of the gas as the piston moves from bottom to top. 

Step 2–3: an isochoric heat transfer to the working gas from an external source while the piston 

is at top. The fuel-air mixture is ignited. The fuel burns rapidly. Through the combustion of fuel, 

heat is added. 

Step 3–4: an adiabatic expansion. This is the power stroke. 

Step 4–1: isochoric process in which heat is expelled while the piston is at bottom. 

Step 1–0: the mass of air is released to the atmosphere in a isobaric process. 

In our simplified analysis we will ignore the 0-1 and 1-0 steps. 

We will assume that the working fluid is an ideal van der Waals fluid (see Lecture Notes 5) 

characterized by: 

𝑝 =
𝑅𝑇

𝑣−𝑏
−

𝑎

𝑣2,         (1) 

𝑢 =  
𝑖

2
𝑅𝑇 −

𝑎

𝑣
         (2) 

where u is molar energy and v is molar volume. We next calculate the work done on the gas 

and the heat added to the gas for each step. 

1 to 2. Adiabatic Compression  

𝑄12 =  0         (3) 

∆𝑈12 = 𝑁
𝑖

2
𝑅(𝑇2 − 𝑇1) − 𝑁𝑎(

1

𝑣2
−

1

𝑣1
)      (4) 

We get the heat by using the 1st Law: 

𝑊12 = ∆𝑈12 − 𝑄12 =  𝑁
𝑖

2
𝑅(𝑇2 − 𝑇1) − 𝑁𝑎(

1

𝑣2
−

1

𝑣1
)    (5) 

2 to 3. Isochore v = v2; Ignition and burning of fuel. This is the heating step. 

𝑊23 =  0         (6) 

∆𝑈23 = 𝑁
𝑖

2
𝑅(𝑇3 − 𝑇2)        (7) 

We get the heat by using the 1st Law: 

𝑄23 = ∆𝑈23 −  𝑊23 =  𝑁
𝑖

2
𝑅(𝑇3 − 𝑇2)      (8) 

3 to 4. Adiabatic Expansion. Power stroke.  

𝑄34 =  0         (9) 

∆𝑈34 = 𝑁
𝑖

2
𝑅(𝑇4 − 𝑇3) − 𝑁𝑎(

1

𝑣1
−

1

𝑣2
)      (10) 
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We get the heat by using the 1st Law: 

𝑊34 = ∆𝑈34 − 𝑄34 =  𝑁
𝑖

2
𝑅(𝑇4 − 𝑇3) − 𝑁𝑎(

1

𝑣1
−

1

𝑣2
)    (11) 

4 to 1. Isochore v = v1  

𝑊41 =  0         (12) 

∆𝑈41 = 𝑁
𝑖

2
𝑅(𝑇1 − 𝑇4)        (13) 

We get the heat by using the 1st Law: 

𝑄41 = ∆𝑈41 −  𝑊41 =  𝑁
𝑖

2
𝑅(𝑇1 − 𝑇4)      (14) 

The total work done on the gas is: Wtot = W12 + W23 + W34 + W41.  We find by using equations: 

(5), (6), (11), (12): 

𝑊𝑡𝑜𝑡 = −𝑁
𝑖

2
𝑅(𝑇1 − 𝑇2 + 𝑇3 − 𝑇4) 

Hence the total work done by the gas is:  

−𝑊𝑡𝑜𝑡 = 𝑁
𝑖

2
𝑅(𝑇1 − 𝑇2 + 𝑇3 − 𝑇4)      (15) 

The efficiency e of the engine is the ratio of the output work -Wtot to the input heat Q23. Using 

equations (11) and (15) we find: 

𝑒 =
−𝑊𝑡𝑜𝑡

𝑄23

= 1 −
𝑇4−𝑇1

𝑇3−𝑇2
        (16) 

In Lecture Notes 5, Eq. (19), we derived the relation between v and T along an adiabat. We use it 

for the 1-2 and 3-4 adiabatic steps.  

(𝑣2 − 𝑏)
2

𝑖 𝑇2 = (𝑣1 − 𝑏)
2

𝑖 𝑇1       (17) 

(𝑣2 − 𝑏)
2

𝑖 𝑇3 = (𝑣1 − 𝑏)
2

𝑖 𝑇4       (18) 

Subtract (17) from (18): 

(𝑣2 − 𝑏)
2

𝑖 (𝑇3 − 𝑇2) = (𝑣1 − 𝑏)
2

𝑖 (𝑇4 − 𝑇1)     (19) 

Or 

𝑇4−𝑇1

𝑇3−𝑇2
= (

𝑣2−𝑏

𝑣1−𝑏
)𝛾−1        (20) 

where γ - 1 = 2/i. 

The efficiency is obtained from Eqs. (16) and (20):  

𝑒 = 1 − (
𝑣2−𝑏

𝑣1−𝑏
)𝛾−1        (21) 
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In Computer Lab 4 we studied the Otto cycle assuming the thermodynamic system to be an ideal 

gas. Then we set b = 0 in Eq. (21) and get: 

𝑒 = 1 − (
𝑣2

𝑣1
)𝛾−1 = 1 − 𝑟−(𝛾−1)      (22) 

where r = v1/v2 is the compression ratio. 
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Lecture Notes 8 

1. Second Law of Thermodynamics 

The British physicist Arthur Eddington wrote in 1915 to his colleagues: “If your theory is found 

to be against the second law of thermodynamics I can give you no hope; there is nothing for it 

but to collapse in deepest humiliation”.  This expresses the confidence physicists have in this 

law. 

 

Figure 1: Arthur Eddington (1882–1944), British physicist, astronomer    

 

The second law has several equivalent formulations. We will start with the one in Callen’s 

textbook, postulate 2 in chapter 1.   

The values assumed by the extensive parameters in the absence of an internal constraint 

maximize the entropy over the constrained equilibrium states.   

We have seen an example of this in computer lab #0. There we studied the equilibrium of a hot 

object and a cold object. The system was constrained: its total energy was fixed. We released an 

internal constraint by allowing heat to be exchanged between the two objects. We have seen that 

entropy is maximized when the temperatures are equal, which we know empirically is what it 

happens.  

We next prove that the uniformity of intensive thermodynamic quantities is demanded by the 

entropy maximization. In what follows I will write the 1st law as follows: 

dS = (1/T)dU + (p/T)dV – (μ/T)dN     (1) 
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I Thermal Equilibrium 

 

The two objects have energies U1 and U2 respectively. Initially all walls are rigid and adiabatic. 

We remove the insulation on the internal wall making it diathermal. As a result, heat is 

exchanged. We keep the external constraint that the total energy is fixed. 

U1 + U2 = U        (2) 

The entropy is additive. Hence: 

S = S1(U1) + S2(U2) = S1(U1) + S2(U-U1)    (3) 

We maximize S by setting the derivative of the entropy with respect to energy of object 1 equal 

to zero. 

(
𝜕𝑆

𝜕𝑈1
)
𝑉,𝑁

= (
𝜕𝑆1

𝜕𝑈1
)
𝑉1,𝑁1

− (
𝜕𝑆2

𝜕𝑈2
)
𝑉2,𝑁2

= 0    (4) 

Hence, in view of Eq. (1): 

1/T1 = 1/T2, or T1 = T2.      (5) 

Thus thermal equilibrium is achieved when temperature is uniform as demanded by the second 

law of thermodynamics.  

II. Thermo-mechanical equilibrium 

Initially all walls are adiabatic and rigid.  Then we released constrains by making the internal 

wall mobile and diathermal. 
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We keep the constrains that the total energy and the total volume are constants.  

U1 + U2 = U        (6) 

V1 + V2 = V        (7) 

The entropy is additive: 

S = S1(U1, V1) + S2(U2, V2) = S1(U1, V1) + S2(U-U1, V-V1)  (8) 

We now maximize S by setting the derivatives of entropy with respect to energy and volume 

equal to zero. 

(
𝜕𝑆

𝜕𝑈1
)
𝑉1,𝑁1

= (
𝜕𝑆1

𝜕𝑈1
)
𝑉1,𝑁1

− (
𝜕𝑆2

𝜕𝑈2
)
𝑉2,𝑁2

= 0    (9) 

(
𝜕𝑆

𝜕𝑉1
)
𝑈1,𝑁1

= (
𝜕𝑆1

𝜕𝑉1
)
𝑈1,𝑁1

− (
𝜕𝑆2

𝜕𝑉2
)
𝑈2,𝑁2

= 0    (10) 

Hence, in view of equation 1:  

1/T1 = 1/T2 or T1 = T2       (11) 

p1/T1 = p2/T2 or p1 = p2      (12) 

Thus thermal and mechanical equilibrium is achieved when temperature and pressure are 

uniform as demanded by the second law of thermodynamics.  

III Thermal and Matter Flow Equilibrium 
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Initially all walls are adiabatic and impermeable.  Then we release constrains by making the 

internal wall permeable and diathermal. We keep the constrains that the total energy and the total 

number of moles are constants.  

U1 + U2 = U        (13) 

N1 + N2 = N        (14) 

 

The entropy is additive: 

S = S1(U1, N1) + S2(U2, N2) = S1(U1, N1) + S2(U-U1, N-N1)  (15) 

We now maximize S by setting the derivatives of entropy with respect to energy and number of 

moles equal to zero. 

(
𝜕𝑆

𝜕𝑈1
)
𝑉1,𝑁1

= (
𝜕𝑆1

𝜕𝑈1
)
𝑉1,𝑁1

− (
𝜕𝑆2

𝜕𝑈2
)
𝑉2,𝑁2

= 0    (16) 

(
𝜕𝑆

𝜕𝑁1
)
𝑈1,𝑉1

= (
𝜕𝑆1

𝜕𝑁1
)
𝑈1,𝑉1

− (
𝜕𝑆2

𝜕𝑁2
)
𝑈2,𝑉2

= 0    (17) 

Hence, in view of equation 1:  

1/T1 = 1/T2 or T1 = T2       (18) 

μ1/T1 = μ 2/T2 or μ 1 = μ 2      (19) 

Thus thermal and matter flow equilibrium is achieved when temperature and chemical potential 

are uniform as demanded by the second law of thermodynamics.  
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Lecture Notes 9 

Second Law of Thermodynamics: Heat Engine, Refrigerator, Air Conditioner, 

Heat Pump 

1. Heat Engine 

 

 

Figure 1: Heat Engine 

 

In a heat engine heat QH produced in a heat reservoir (boiler) is transformed by a thermodynamic 

system (gas, liquid) into work W done on pistons. QC  (waste heat) is discarded in the cold 

reservoir (environment). The two reservoirs are large systems (i.e. large heat capacities), so that 

they process heat isothermally at TH and TC, respectively.  

𝑄𝐻 =  −𝑇𝐻∆𝑆𝐻      (1) 

𝑄𝐶 =  𝑇𝐶∆𝑆𝐶       (2) 

ΔSH is the change in the entropy of the hot reservoir, and ΔSC is the change in the entropy of 

cold reservoir The thermodynamic system acts on a cycle. Hence the state variables, energy and 

entropy, do not change:  

ΔU = 0        (3)  

and  

ΔS = 0.       (4)  
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The first law of thermodynamics gives: 0 = ΔU = -W + QH  - QC.  Hence: 

𝑄𝐻 = 𝑊 + 𝑄𝐶       (5) 

The total entropy is the sum of hot reservoir entropy SH, system entropy S and cold reservoir 

entropy SC. The change in the total entropy must be positive as dictated by the second law. 

0 ≤ ∆𝑆𝑡𝑜𝑡 = ∆𝑆𝐻 + ∆𝑆 + ∆𝑆𝐶    (6) 

Since ΔS = 0 

0 ≤ −
𝑄𝐻

𝑇𝐻
+

𝑄𝐶

𝑇𝐶
      (7) 

Substitute QC from Eq. (5) into the right hand side of (7): 

𝑄𝐻

𝑇𝐻
≤

𝑄𝐻−𝑊

𝑇𝐶
       (8) 

Inequality (8) can be written using the efficiency definition e = W/QH: 

𝑒 =
𝑊

𝑄𝐻
≤ 1 −

𝑇𝐶

𝑇𝐻
      (9) 

Hence the best efficiency one can hope to achieve with a heat engine acting between two 

reservoir temperatures is 1-TC/TH.  This is called the Carnot efficiency. 

 

 

Figure 2: Nicolas Leonard Sadi Carnot (1796-1832),  

French engineer and physicist, father of thermodynamics 

 

A statement equivalent to the 2nd law is due to Kelvin and Planck.  It is impossible to design an 

engine that transforms heat QH completely into work W.   
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Figure 3: Max Planck (1858-1947), German physicist,  

father of quantum mechanics 

 

The engine is supposed to work on cycles:  ΔS = 0. 

 

 

Figure 4: Impossible Heat Engine 

For this hypothetical engine: ΔStot = ΔSH + ΔS = -QH/TH < 0.  This is forbidden by the 2nd law.  
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2. Refrigerator 

 

 

Figure 5: Refrigerator 

 

A refrigerator uses work W (electric system) to extract heat QC from the cold reservoir (freezer) 

and discard waste heat QH into the hot reservoir (kitchen). The thermodynamic system ( 

Freon, ammonia NH3) acts on cycles. Hence ΔU = ΔS = 0.  The first law gives: 0 = ΔU = W - 

QH + QC, which we write as: 

𝑄𝐻 = 𝑊 + 𝑄𝐶         (10) 

The second law is: 

0 ≤ ∆𝑆𝑡𝑜𝑡 = ∆𝑆𝐻 + ∆𝑆 + ∆𝑆𝐶      (11) 

with ΔS = 0.  The reservoirs act isothermally: 

𝑄𝐻 =  𝑇𝐻∆𝑆𝐻         (12) 

𝑄𝐶 =  −𝑇𝐶∆𝑆𝐶         (13) 

Using (11), (12), (13) we get:  

0 ≤
𝑄𝐻

𝑇𝐻
−

𝑄𝐶

𝑇𝐶
         (14) 

Substitute QH from (10) into (14): 

𝑄𝐶

𝑇𝐶
≤

𝑄𝐶+𝑊

𝑇𝐻
         (15) 

We define the coefficient of performance (COP) as ratio of output (QC) to input (W). Using (15) 

we get: 
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𝐶𝑂𝑃 =
𝑄𝐶

𝑊
≤

𝑇𝐶

𝑇𝐻−𝑇𝐶
       (16) 

The maximum possible COP is called the Carnot COP. A statement equivalent to the 2nd law is 

due to Clausius.  It is impossible to design a refrigerator that transfers heat Q from a cold 

reservoir TC to a hot reservoir TH without expending any work W.   

 

Figure 6: Rudolph Clausius (1822-1888), 

German physicist, founder of thermodynamics. 

 

 

Figure 7: Impossible Refrigerator 

 

Since W = 0 the 1’st law gives QH = QC = Q.  The total entropy change is: 

∆𝑆𝑡𝑜𝑡 = ∆𝑆𝐻 + ∆𝑆 + ∆𝑆𝐶 =  −
𝑄

𝑇𝐶
+

𝑄

𝑇𝐻
< 0     (17) 

To get (17) I used ΔS = 0, since we consider the system works in cycles.  The last inequality 

follows from TH > TC  >  0, Q > 0. Inequality (17) contradicts the law of entropy (2’nd law). 

Hence such a refrigerator cannot be built. 
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3. Air Conditioner 

The air conditioner is used in the summer to transfer heat from inside of the house (cold 

reservoir) to outside of house (hot reservoir). It has the same scheme as the refrigerator, Figure 4. 

Its COP is defined as output (QC) divided by input (W) satisfies: 

𝐶𝑂𝑃 =
𝑄𝐶

𝑊
≤

𝑇𝐶

𝑇𝐻−𝑇𝐶
        (18) 

 

4. Heat Pump 

Heat pump is used in the winter to transfer heat from a cold place (outside of house) to a hot 

place (inside of house). It has the same scheme as the refrigerator, Fig.4. Its coefficient of 

performance is ratio of output (heat introduced in hot place) to input (work). 

𝐶𝑂𝑃 =
𝑄𝐻

𝑊
≤

𝑇𝐻

𝑇𝐻−𝑇𝐶
        (18) 

5. Carnot Cycle 

 

Figure 8: Carnot cycle 

 

The engine Carnot cycle contains two adiabats and two isotherms at temperatures TC and TH, 

respectively.  We will next evaluate its efficiency. 

On adiabat 1 to 2: Q12 = 0. 

On isotherm 2 to 3:  Q23 = TH(S4 - S1).  This is the heating step. 

On adiabat 3 to 4: Q34 = 0. 

On isotherm 4 to 1:  Q41 = TC(S1 – S4). 



7 
 

The total heat received by the system during the cycle is: 

Q = 0 + TH(S4 - S1) + 0 + TC(S1 – S4) = (TH - TC)(S4 - S1).   (19) 

Using the 1’st law for the cycle, we calculate the work: 0 =ΔU = W + Q. Hence the work done 

on pistons during a cycle is: -W = Q = (TH - TC)(S4 - S1). The efficiency is: 

e = -W/Q23= 1 - TC/TH       (20) 

We have proved above, Eq. (9), that this efficiency is the highest that the laws of 

thermodynamics allow an engine working on cycles to achieve. Moreover, the Carnot cycle 

efficiency holds for no matter what thermodynamic system. 
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