Lecture Notes 7
1. The Gasoline Engine: Otto Cycle
The Otto cycle is a thermodynamic cycle that describes the functioning of a typical spark
ignition piston engine. It is the most common cycle for car engines. In 1876 the German

engineer Nicolaus Otto built a working four-stroke engine, using gasoline as fuel.

Figure 1: Nicolaus August Otto (1832 — 1891)
was a German engineer who developed the internal combustion engine.

The four steps of the cycle are: 1 to 2 adiabatic compression from v to vz; 2 to 3 isochoric (at

volume Vv7) heating; 3 to 4 adiabatic expansion; 4 to 1 isochoric at volume v cooling.
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Figure 2: Otto cycle
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Step 0-1: a mass of air is isobarically drawn into piston/cylinder arrangement.

Step 1-2: an adiabatic compression of the gas as the piston moves from bottom to top.

Step 2-3: an isochoric heat transfer to the working gas from an external source while the piston
is at top. The fuel-air mixture is ignited. The fuel burns rapidly. Through the combustion of fuel,
heat is added.

Step 3—-4: an adiabatic expansion. This is the power stroke.

Step 4-1: isochoric process in which heat is expelled while the piston is at bottom.

Step 1-0: the mass of air is released to the atmosphere in a isobaric process.

In our simplified analysis we will ignore the 0-1 and 1-0 steps.

We will assume that the working fluid is an ideal van der Waals fluid (see Lecture Notes 5)

characterized by:

RT a

P=0 " 2 1)
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u=~RT -2 (2)

where u is molar energy and v is molar volume. We next calculate the work done on the gas
and the heat added to the gas for each step.

1 to 2. Adiabatic Compression
Qi2=0 (3)

AUy, = N3R(T, — T1) — Na(>-— =) (4)
1 %] 121

We get the heat by using the 1st Law:

Wi, =AU, — Q12 = N%R(Tz —Tq) - Na(% - U_ll) (5)

2 to 3. Isochore v = v»; lgnition and burning of fuel. This is the heating step.

Wy =0 (6)
AUss = NSR(T3 — Ty) (7)
We get the heat by using the 1st Law:

Q23 = AUps — Wys = NZR(T; —Ty) (8)
3 to 4. Adiabatic Expansion. Power stroke.

Q34= 10 (9)

AUsy = NSR(T4 = T3) — Na(—— ) (10)
V1 Uy




We get the heat by using the 1st Law:

Wiy = AUss — Q34 = N3R(Ty —T3) — Na(5-— ) (12)
1 2

4 to 1. Isochore v =vi

Wy, = 0 (12)
AUuy = NSR(Ty — T,) (13)

We get the heat by using the 1st Law:

Qa1 = AUy — Wyy = NR(T; = T,) (14)

The total work done on the gas is: Wit = W12 + W23 + Was + Wa1. We find by using equations:
(5), (6), (11), (12):

Wﬁt=—N%RUH—T2+T3—TQ

Hence the total work done by the gas is:

~Wioe =NZR(Ty =T, + T5 — T,) (15)

The efficiency e of the engine is the ratio of the output work -W;ot to the input heat Q3. Using
equations (11) and (15) we find:

-W; T4—T
e = tot — 1 _ 4 1 (16)
Q23 T3_T2

In Lecture Notes 5, Eq. (19), we derived the relation between v and T along an adiabat. We use it
for the 1-2 and 3-4 adiabatic steps.

2 2
(v, = b)iT, = (v; — b)iTy (17)
2 2
(v, = b)iT3 = (v, — b)iT, (18)
Subtract (17) from (18):
(v, = b)i(T3 = T) = (vy — b)i(T, — Ty) (19)
Or
T4—T1 _ u -1
T, (vl_b)y (20)
wherey -1 =2/i.

The efficiency is obtained from Eqgs. (16) and (20):
— 1 _ (Y2=byy-1
e=1-(G2) (21)



In Computer Lab 4 we studied the Otto cycle assuming the thermodynamic system to be an ideal

gas. Then we set b =0 in Eq. (21) and get:
e=1- (Z—Z)V-l =1—r D (22)

where r = vi/vz is the compression ratio.
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Lecture Notes 8

1. Second Law of Thermodynamics

The British physicist Arthur Eddington wrote in 1915 to his colleagues: “If your theory is found
to be against the second law of thermodynamics | can give you no hope; there is nothing for it

but to collapse in deepest humiliation”. This expresses the confidence physicists have in this

law.

Figure 1: Arthur Eddington (1882-1944), British physicist, astronomer

The second law has several equivalent formulations. We will start with the one in Callen’s
textbook, postulate 2 in chapter 1.

The values assumed by the extensive parameters in the absence of an internal constraint
maximize the entropy over the constrained equilibrium states.

We have seen an example of this in computer lab #0. There we studied the equilibrium of a hot
object and a cold object. The system was constrained: its total energy was fixed. We released an
internal constraint by allowing heat to be exchanged between the two objects. We have seen that
entropy is maximized when the temperatures are equal, which we know empirically is what it
happens.

We next prove that the uniformity of intensive thermodynamic quantities is demanded by the
entropy maximization. In what follows | will write the 1% law as follows:

dS = (1/T)dU + (p/T)dV — (w/T)dN 1)



| Thermal Equilibrium

The two objects have energies U1 and U> respectively. Initially all walls are rigid and adiabatic.
We remove the insulation on the internal wall making it diathermal. As a result, heat is
exchanged. We keep the external constraint that the total energy is fixed.

Ui+ Uz=U )

The entropy is additive. Hence:

S = S1(U1) + S2(U2) = S1(Us) + S2(U-Uy) (3)

We maximize S by setting the derivative of the entropy with respect to energy of object 1 equal

to zero.
95 — (%5 _ (2% -
G, = Go), o~ G, =0 @
Hence, in view of Eq. (1):
UT1=1UTs orT1=To. (5)

Thus thermal equilibrium is achieved when temperature is uniform as demanded by the second
law of thermodynamics.

I1. Thermo-mechanical equilibrium

Initially all walls are adiabatic and rigid. Then we released constrains by making the internal

wall mobile and diathermal.



We keep the constrains that the total energy and the total volume are constants.

U+ Uz2=U (6)
Vi+V=V (7)
The entropy is additive:

S =S1(Uy, V1) + S2(U2, V2) = S1(Us, V1) + Sz(U-Us, V-V1) (8)

We now maximize S by setting the derivatives of entropy with respect to energy and volume

equal to zero.

S\ (s  _ (%) _

G, =G, G, =0 ©)
Y (%) (%) _

&on =Gy~ G, =0 (1)

Hence, in view of equation 1:

UTi=UTs0r T1=T (11)

pu/T1 = pa/T2 0 p1 = p2 (12)

Thus thermal and mechanical equilibrium is achieved when temperature and pressure are
uniform as demanded by the second law of thermodynamics.
Il Thermal and Matter Flow Equilibrium




Initially all walls are adiabatic and impermeable. Then we release constrains by making the
internal wall permeable and diathermal. We keep the constrains that the total energy and the total
number of moles are constants.

Ur+Ux=U (13)

Ni+N2=N (14)

The entropy is additive:
S = S1(U1, N1) + S2(U2, N2) = S1(U1, N1) + S2(U-Uz, N-N1) (15)
We now maximize S by setting the derivatives of entropy with respect to energy and number of

moles equal to zero.

o5) (o) () _
(aul)vle (6U1)V1’N1 (aUZ)Vz,NZ 0 (16)
5) _(am) (%)
(aNl)Ul'Vl (aNl)ULVl (aNZ)Uz,VZ 0 (17)
Hence, in view of equation 1:
UT1=1TorT1=T> (18)
w/Ti=p2/T20rp1=p2 (19)

Thus thermal and matter flow equilibrium is achieved when temperature and chemical potential
are uniform as demanded by the second law of thermodynamics.
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Lecture Notes 9

Second Law of Thermodynamics: Heat Engine, Refrigerator, Air Conditioner,
Heat Pump

1. Heat Engine

In a heat engine heat Qn produced in a heat reservoir (boiler) is transformed by a thermodynamic
system (gas, liquid) into work W done on pistons. Qc (waste heat) is discarded in the cold
reservoir (environment). The two reservoirs are large systems (i.e. large heat capacities), so that
they process heat isothermally at Tw and Tc, respectively.

Qu = —TyASy )

Qc = TcASc 2

ASH is the change in the entropy of the hot reservoir, and ASc is the change in the entropy of
cold reservoir The thermodynamic system acts on a cycle. Hence the state variables, energy and

entropy, do not change:

AU =0 €)
and
AS =0. (4)



The first law of thermodynamics gives: 0 = AU = -W + Qn - Qc. Hence:
Qu=W+0Qc¢ )
The total entropy is the sum of hot reservoir entropy Sw, system entropy S and cold reservoir

entropy Sc. The change in the total entropy must be positive as dictated by the second law.

0 < ASior = ASy + AS + AS. (6)

Since AS=0

0 <2, % )
Ty Tc

Substitute Qc from Eq. (5) into the right hand side of (7):

Qu o Qu=W (8)

Ty Tc
Inequality (8) can be written using the efficiency definition e = W/Qw:
e=—<1-—— 9

Hence the best efficiency one can hope to achieve with a heat engine acting between two

reservoir temperatures is 1-Tc/TH. This is called the Carnot efficiency.

Figure 2: Nicolas Leonard Sadi Carnot (1796-1832),
French engineer and physicist, father of thermodynamics

A statement equivalent to the 2" law is due to Kelvin and Planck. It is impossible to design an
engine that transforms heat Q+ completely into work W.



The engine is supposed to work on cycles: AS = 0.

system cy é

For this hypothetical engine: AStot = ASH + AS = -Qun/Tw < 0. This is forbidden by the 2" law.




2. Refrigerator

A refrigerator uses work W (electric system) to extract heat Qc from the cold reservoir (freezer)
and discard waste heat Qn into the hot reservoir (kitchen). The thermodynamic system (
Freon, ammonia NH3) acts on cycles. Hence AU = AS = 0. The first law gives: 0 =AU =W -

Qn + Qc, which we write as:

Qu=W+0Qc (10)

The second law is:

0 < AS;or = ASy + AS + AS¢ (12)

with AS = 0. The reservoirs act isothermally:

Qu = TyASy (12)

Qc = —TcASc (13)

Using (11), (12), (13) we get:

0<d_& (14)
Ty Tc¢

Substitute Qn from (10) into (14):

e o W (15)

Tc Ty

We define the coefficient of performance (COP) as ratio of output (Qc) to input (W). Using (15)
we get:



cop=%<_Tc_ (16)
w Ty—-Tc

The maximum possible COP is called the Carnot COP. A statement equivalent to the 2" law is
due to Clausius. It is impossible to design a refrigerator that transfers heat Q from a cold

reservoir Tc to a hot reservoir Ty without expending any work W.

Since W =0 the 1’st law gives Qn = Qc = Q. The total entropy change is:
AS,p = ASy +AS +AS; = -2+ 2 <0 17)
Tc Ty
To get (17) T used AS = 0, since we consider the system works in cycles. The last inequality

follows from Ty > Tc > 0, Q > 0. Inequality (17) contradicts the law of entropy (2°nd law).

Hence such a refrigerator cannot be built.



3. Air Conditioner
The air conditioner is used in the summer to transfer heat from inside of the house (cold
reservoir) to outside of house (hot reservoir). It has the same scheme as the refrigerator, Figure 4.
Its COP is defined as output (Qc) divided by input (W) satisfies:

cop=%<_Ic (18)
w Ty—-Tc
4. Heat Pump

Heat pump is used in the winter to transfer heat from a cold place (outside of house) to a hot
place (inside of house). It has the same scheme as the refrigerator, Fig.4. Its coefficient of

performance is ratio of output (heat introduced in hot place) to input (work).

cop=% < _TH_ (18)

W T Tyg-T¢
5. Carnot Cycle
S

s4

51

TC TH

The engine Carnot cycle contains two adiabats and two isotherms at temperatures Tc and T,
respectively. We will next evaluate its efficiency.

On adiabat 1 to 2: Q12 =0.

On isotherm 2 to 3: Q23= TH(S4 - S1). This is the heating step.

On adiabat 3to 4: Q34 =0.

Onisotherm 4 to 1: Q41= Tc(S1— Sa).



The total heat received by the system during the cycle is:

Q=0+TH(Ss-S1) +0+Tc(S1—S4) = (Tu- Tc)(S4 - Sy). (19)

Using the 1’st law for the cycle, we calculate the work: 0 =AU = W + Q. Hence the work done
on pistons during a cycle is: -W = Q = (TH- Tc)(S4 - S1). The efficiency is:
e=-W/Qzxz=1-Tc/TH (20)

We have proved above, Eq. (9), that this efficiency is the highest that the laws of
thermodynamics allow an engine working on cycles to achieve. Moreover, the Carnot cycle
efficiency holds for no matter what thermodynamic system.

Reading
HRW Ch.20
Callen Ch. 4
Problem Set 9



