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Lecture Notes 10 

1. Brayton Cycle  

 

 
Figure 1: George Brayton (1830-1892) American engineer 

 

Figure 2: Brayton cycle 

 

The Brayton cycle is the used by gas turbines.  It contains two adiabats and two isobars.  The 

fluid is a mixture of air and fuel that we will assume to be an ideal gas. The equation of state is: 

pV = NRT and the energy is:  U = (i/2)NRT, where i is number of degrees of freedom for a 

molecule. 

Step 1 to 2 is adiabatic compression: 

𝑄12 =  0      (1) 
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𝑊12 =  𝑈2 − 𝑈1 − 𝑄12 = 𝑁
𝑖

2
𝑅(𝑇2 − 𝑇1)  (2) 

Step 2 to 3 is isobaric heating (combustion): 

𝑊23 =  −𝑝2(𝑉3 − 𝑉2) = −𝑁𝑅(𝑇3 − 𝑇2)  (3) 

𝑄23 =  𝑈3 − 𝑈2 − 𝑊23 = 𝑁
𝑖+2

2
𝑅(𝑇3 − 𝑇2)  (4) 

Step 3 to 4 is adiabatic expansion: 

𝑄34 =  0      (5) 

𝑊34 =  𝑈4 − 𝑈3 − 𝑄34 = 𝑁
𝑖

2
𝑅(𝑇4 − 𝑇3)  (6) 

Step 4 to 1 is isobaric cooling: 

𝑊41 =  −𝑝1(𝑉1 − 𝑉4) = −𝑁𝑅(𝑇1 − 𝑇4)  (7) 

𝑄41 =  𝑈1 − 𝑈4 − 𝑊41 = 𝑁
𝑖+2

2
𝑅(𝑇1 − 𝑇4)  (8) 

The total work done on the fluid is: W = W12 + W23 + W34 + W41. Using Eqs. (2), (3), (6), and (7) 

we find: 

𝑊 =  𝑁
𝑖

2
𝑅(𝑇2 − 𝑇1 + 𝑇4 − 𝑇3) − 𝑁𝑅(𝑇3 − 𝑇2 + 𝑇1 − 𝑇4) = 𝑁

𝑖+2

2
𝑅(𝑇2 − 𝑇1 + 𝑇4 − 𝑇3) (9) 

The efficiency is e = -W/Q23.  Using Eqs (4) and (9) we find: 

𝑒 = 1 − 
𝑇4−𝑇1

𝑇3−𝑇2
      (10) 

On adiabats we have the Poisson equation: pVγ = constant, where γ = (i+2)/i.  Using the 

equation of state pV/T = constant, we find: Tp(1-γ)/γ  = constant.  For the adiabat 1 to 2: 

𝑇1𝑝1

1−𝛾

𝛾 = 𝑇2𝑝2

1−𝛾

𝛾      (11) 

For the adiabat 3 to 4 we get: 

𝑇3𝑝2

1−𝛾

𝛾 = 𝑇4𝑝1

1−𝛾

𝛾      (12) 

Equations (11) and (12) yield: 

𝑇4−𝑇1

𝑇3−𝑇2
= (

𝑝2

𝑝1
)

1−𝛾

𝛾      (13) 

The efficiency is obtained from (10) and (13): 

𝑒 = 1 − (
𝑝1

𝑝2
)

𝛾−1

𝛾      (14) 

The power in Eq. (14) is equal to: 2/(i+2).   

READING: Set 9: Callen 4.10.3, HRW 20.32.  
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2. Joule Experiment  

 

 

Figure 3: Free expansion experiment 

 

 

Figure 4: James Prescott Joule (1818-1889), English physicist 

 

In the free expansion experiment (Figure 3), the gas is initially on the left compartment.  In the 

right compartment there is vacuum. The gas is allowed to expand freely. Since the external walls 

are rigid and adiabatic, there is no work or heat exchange with external world. Hence the energy 

is conserved.  We assume the fluid to be an ideal van der Waals fluid (see Lecture notes 5). The 

molar energy is: 

𝑢 =  
𝑖

2
𝑅𝑇 −

𝑎

𝑣
      (15) 

and the equation of state is: 

𝑝 =
𝑅𝑇

𝑣−𝑏
−

𝑎

𝑣2
     (16) 

Since in the free expansion the molar energy is conserved, Eq. (15) gives: 

𝑢 =  
𝑖

2
𝑅𝑇𝑖 −

𝑎

𝑣𝑖
=

𝑖

2
𝑅𝑇𝑓 −

𝑎

𝑣𝑓
    (17) 

The change in temperature follows from Eq. (17): 
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𝑇𝑓 − 𝑇𝑖 = −
2𝑎

𝑖𝑅
(

1

𝑣𝑖
−

1

𝑣𝑓
)   (18) 

Since vi < vf, the right hand side of Eq. (18) is negative. Thus for the ideal van der Waals fluid, 

the free expansion experiment results in a drop in temperature: 

𝑇𝑓 < 𝑇𝑖     (19) 

The physical cause for this drop in temperature is the attraction between molecules which is 

proportional to a. For the ideal gas a = 0 so that the temperature remains unchanged Tf = Ti. 

READING: Callen pg. 192; Set 4 Callen 3.4.8. 

 

3. Electromagnetic Radiation 

A container with walls maintained at a temperature T contains electromagnetic radiation which 

can be described as gas of photons. A photon travels with a speed equal to the speed of light and 

has an energy equal to hf, where h is the Planck constant and f is the frequency of the radiation. 

 

Figure 5: Max Planck (1858-1947) German physicist 

 who discovered in 1900 the quantum nature of radiation. 

 

The photons can be created and destroyed without an energetic price. Hence the chemical 

potential μ = 0. The number of photons is fluctuating quantity and it cannot be fixed. The 

fundamental equation in terms of intensive variables is 0 = μ(T,p). Hence the pressure is a 

function of T only: 

𝑝 = 𝑝(𝑇)      (20) 

The gas of photons is an ideal gas Then the energy is expected to be proportional to pV: 

𝑈 = 3𝑝(𝑇)𝑉      (21) 
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The factor of 3 is the spatial dimension. Note the absence of ½ factor present in monatomic ideal 

gas is due to energy-momentum relation being linear ε = pc, in contrast to matter particles that 

have a quadratic dependence ε = p2/2m. 

The first law in differential form, with μ = 0, is: 

dU = TdS – pdV      (22) 

Substitute in (22): dS = (
𝜕𝑆

𝜕𝑇
)𝑣𝑑𝑇 + (

𝜕𝑆

𝜕𝑉
)𝑇𝑑𝑉: 

𝑑𝑈 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑉𝑑𝑇 + (𝑇(

𝜕𝑆

𝜕𝑉
)𝑇 − 𝑝)𝑑𝑉    (23) 

We can evaluate derivatives of U using Eq. (21): 

𝑇(
𝜕𝑆

𝜕𝑇
)𝑉 =  (

𝜕𝑈

𝜕𝑇
)𝑉 = 3

𝑑𝑝

𝑑𝑇
𝑉     (24) 

𝑇(
𝜕𝑆

𝜕𝑉
)𝑇 − 𝑝 =  (

𝜕𝑈

𝜕𝑉
)

𝑇
= 3𝑝     (25) 

It follows: 

(
𝜕𝑆

𝜕𝑇
)𝑉 = 3

𝑑𝑝

𝑑𝑇

𝑉

𝑇
       (26) 

(
𝜕𝑆

𝜕𝑉
)𝑇 = 4

𝑝

𝑇
       (27) 

Use the Maxwell relation:  

𝜕2𝑆

𝜕𝑉𝜕𝑇
=

𝜕2𝑆

𝜕𝑇𝜕𝑉
       (28) 

Calculate the left hand side of (28) by using Eq.(26) and the right hand side of (28) by using 

Eq.(27): 

3

𝑇

𝑑𝑝

𝑑𝑇
=

4

𝑇

𝑑𝑝

𝑑𝑇
−

4𝑝

𝑇2      (29) 

Or 

𝑑𝑝

𝑑𝑇
=

4𝑝

𝑇
       (30) 

Integrate Eq. (30) by separating variables: 

𝑝 =
𝑎

3
𝑇4       (31) 

In Eq. (31) a is a constant, called the Stefan constant. Its value is: a = 7.56*10-16Pa/K4.  Equation 

(31) gives the fundamental equation in terms of intensive variables. 
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Figure 6: Josef Stefan (1835-1893) was a Slovene physicist 

From Eqs.(21) and (31) we get: 

U = aVT4       (32) 

The entropy can be calculated from the Euler equation: U = TS – pV, where I used μ = 0. 

S = (4/3)aVT3       (33)  

Note at T = 0 the entropy is S = 0.  This is a manifestation of the third law of thermodynamics.  

The isochoric heat capacity is: 

𝐶𝑉 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑉 =  (

𝜕𝑈

𝜕𝑇
)𝑉 = 4𝑎𝑉𝑇3    (34) 

The fundamental equation in terms of extensive variables is obtained by eliminating T between 

Eqs. (32) and (33): 

U = aV(3S/4aV)4/3 = (3/4)4/3a-1/3V-1/3S4/3   (35) 
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Lecture Notes 11 

A. Thermodynamic Potentials, Maxwell Relations 

The thermodynamic potentials are Legendre transforms of the energy U. They arise naturally in 

statistical mechanics. 

 

 

Figure 1: Adrien-Marie Legendre (1752 – 1833), French mathematician, (caricature by Boilly) 

 

1. The Helmholtz Free Energy 

 

Figure 2: Hermann von Helmholtz (1821-1894) German physicist and physician 

 

This potential, denoted by F, is defined as: 

F = U – TS       (1) 

To calculate its differential form, I will use the first law of thermodynamics: 
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dU = TdS – pdV + μdN     (2) 

Then: 

dF = dU –TdS – SdT = TdS – pdV + μdN –TdS – SdT  (3) 

or 

dF = -SdT - pdV + μdN     (4) 

Expressing the free energy F as a function of T, V, N is a fundamental equation.   

F = F(T, V, N)       (5) 

Derivatives of F are identified using (4): 

𝑆 = − (
𝜕𝐹

𝜕𝑇
)

𝑉,𝑁
       (6) 

𝑝 = − (
𝜕𝐹

𝜕𝑉
)

𝑁,𝑇
       (7) 

𝜇 = (
𝜕𝐹

𝜕𝑁
)

𝑇,𝑉
       (8) 

We next write the Maxwell relations associated with F.  They follow from the fact that second 

order mixed derivatives are invariant under change of the order of differentiation.   

 

Figure 2: James Clerk Maxwell (1831 – 1879), Scottish physicist. 

 

Using:  

𝜕2𝐹

𝜕𝑇𝜕𝑉
=

𝜕2𝐹

𝜕𝑉𝜕𝑇
       (9) 

we get: 

(
𝜕𝑝

𝜕𝑇
)𝑉,𝑁 = (

𝜕𝑆

𝜕𝑉
)𝑇,𝑁      (10) 

The other Maxwell relations associated with F are:  

(
𝜕𝑝

𝜕𝑁
)𝑉,𝑇 = −(

𝜕𝜇

𝜕𝑉
)𝑇,𝑁      (11) 
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(
𝜕𝜇

𝜕𝑇
)𝑉,𝑁 = −(

𝜕𝑆

𝜕𝑁
)𝑇,𝑉      (12) 

 

2. Enthalpy 

Enthalpy is denoted by H and is defined as: 

H = U + pV       (13) 

The differential of H is: 

dH = dU + pdV + Vdp = TdS + Vdp + μdN   (14) 

To get the last form of Eq. (14), I used the first law of thermodynamics, Eq. (2). 

Using:  

𝜕2𝐻

𝜕𝑝𝜕𝑆
=

𝜕2𝐻

𝜕𝑆𝜕𝑝
       (15) 

We get: 

(
𝜕𝑇

𝜕𝑝
)𝑆,𝑁 = (

𝜕𝑉

𝜕𝑆
)𝑝,𝑁      (16) 

The other two Maxwell relations associated with the enthalpy are: 

(
𝜕𝑇

𝜕𝑁
)𝑝,𝑆 = (

𝜕𝜇

𝜕𝑆
)𝑝,𝑁      (17) 

(
𝜕𝜇

𝜕𝑝
)𝑆,𝑁 = (

𝜕𝑉

𝜕𝑁
)𝑝,𝑆      (18) 

3. Gibbs Potential 

 

Figure 3: Josiah Willard Gibbs (1839 – 1903), American physicist, who developed statistical 

mechanics. 

 

This potential is denoted by G.  

G = U – TS + pV      (19) 

Its differential is obtained using Eqs. (13) and (2): 

dG = dU – TdS – SdT + pdV + Vdp = -SdT + Vdp + μdN (20) 
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The Maxwell relations associated with G are: 

(
𝜕𝑆

𝜕𝑝
)𝑇,𝑁 = −(

𝜕𝑉

𝜕𝑇
)𝑝,𝑁      (21) 

(
𝜕𝑉

𝜕𝑁
)𝑝,𝑇 = (

𝜕𝜇

𝜕𝑝
)𝑇,𝑁      (22) 

(
𝜕𝜇

𝜕𝑇
)𝑝,𝑁 = −(

𝜕𝑆

𝜕𝑁
)𝑝,𝑇      (23) 

 

4. Thermodynamic Identities 

I next sketch the derivation of a couple of thermodynamic identities:  

(a) Cp = Cv + α2VT/kT and (b) kT = kS + α2VT/Cp 

(a) Start with S = S(T,V(T,p)) = S(T,p) and use Maxwell relation Eq.(10). 

(
𝜕𝑆

𝜕𝑇
)𝑝 = (

𝜕𝑆

𝜕𝑇
)𝑉 + (

𝜕𝑆

𝜕𝑉
)𝑇(

𝜕𝑉

𝜕𝑇
)𝑝 = (

𝜕𝑆

𝜕𝑇
)𝑉 + (

𝜕𝑝

𝜕𝑇
)𝑉(

𝜕𝑉

𝜕𝑇
)𝑝   (24) 

But: (
𝜕𝑝

𝜕𝑇
)𝑉 =  −

(
𝜕𝑉

𝜕𝑇
)𝑝

(
𝜕𝑉

𝜕𝑝
)𝑇

, so Eq. (24) becomes: 

(
𝜕𝑆

𝜕𝑇
)𝑝 = (

𝜕𝑆

𝜕𝑇
)𝑉 −

(
𝜕𝑉

𝜕𝑇
)𝑝

2

(
𝜕𝑉

𝜕𝑝
)𝑇

     (25) 

But: 

𝐶𝑝 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑝       (26) 

𝐶𝑉 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑉       (27) 

𝑘𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
      (28) 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)𝑝       (29) 

Using Eqs.(25) to (29) we find: 

Cp = Cv + α2VT/kT      (30) 

(b) Start with V = V(p,S(p,T)) = V(p,T) wnd use Maxwell relation Eq.(16). 

(
𝜕𝑉

𝜕𝑝
)𝑇 = (

𝜕𝑉

𝜕𝑝
)𝑆 + (

𝜕𝑉

𝜕𝑆
)𝑝(

𝜕𝑆

𝜕𝑝
)𝑇 = (

𝜕𝑉

𝜕𝑝
)𝑆 + (

𝜕𝑇

𝜕𝑝
)𝑆(

𝜕𝑆

𝜕𝑝
)𝑇  (31) 

But: (
𝜕𝑇

𝜕𝑝
)𝑆 =  −

(
𝜕𝑆

𝜕𝑝
)𝑇

(
𝜕𝑆

𝜕𝑇
)𝑝

, so Eq. (31) becomes: 

(
𝜕𝑉

𝜕𝑝
)𝑇 = (

𝜕𝑉

𝜕𝑝
)𝑆 −

(
𝜕𝑆

𝜕𝑝
)𝑇

2

(
𝜕𝑆

𝜕𝑇
)𝑝

     (32) 
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Using the Maxwell relation Eq (21),  Eq.(32) becomes: 

(
𝜕𝑉

𝜕𝑝
)𝑇 = (

𝜕𝑉

𝜕𝑝
)𝑆 −

(
𝜕𝑉

𝜕𝑇
)𝑝

2

(
𝜕𝑆

𝜕𝑇
)𝑝

     (33) 

𝑘𝑆 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑆
      (34) 

Using Eqs.(26), (28), (29), (34) and (33) we find:  

kT = kS + α2VT/Cp      (35) 

Application: Using the identities (a) and (b) skow that: Cp/CV = kT/kS 

Treat the two identities, Eqs.(30) and (35) asna system of 2 equations with 2 unknowns: Cp and 

CV . We find: Cp = α2VT/( kT - kS) and CV= (kS/kT)[α2VT/( kT - kS)]. It follows that: 

Cp/CV = kT/kS       (36) 

Application:  Check identities (30), (35), (36) for the ideal gas.   

Use: Cp= N[(i+2)/2]R; CV= N[i/2]R; α = 1/T; kT = 1/p; kS = [i/(i+2)]/p. 
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B. Third Law of Thermodynamics 

 

Figure 4 Walther Nernst (1864-1941), German chemist 

 

The third law of thermodynamics, also known as Nernst postulate, states that at T = 0K the 

entropy is zero S = 0j/K.  This law is related to quantum mechanics. For instance blackbody 

radiation which is an intrinsically quantum mechanical system satisfies this law.  As a 

consequence, the thermal expansion of any material is also zero at T = 0K. Indeed using 

Maxwell relation (21): 𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)𝑝 =  −

1

𝑉
(

𝜕𝑆

𝜕𝑝
)𝑇 . Since S = 0 at T = 0, it follows α = 0. 
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Lecture Notes 12 

1. Phase Transitions 

Water under atmospheric pressure at 0°C undergoes a transition from a solid phase (ice) to a 

liquid phase. At 100°C and under atmospheric pressure water boils transitioning from the liquid 

phase to the gas phase.  The classical explanation of a phase transition involves a violation of 

thermodynamic stability.  We will study this topic by using the van der Waals equation of state 

and the Maxwell construction 

. 

  

Figure 1: Jaohannes Diderik van der Waals (1837-19230 Dutch physicist 

 

Figure 2: James Clerk Maxwell (1831 – 1879), Scottish physicist. 

 

 

The van der Waals equation of state is: 
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(p + a/v2)(v – b) = RT      (1) 

The constants a and b depend on which chemical we study.  The values for water are: 

a = 0.544Pa*m6/mol2 and b = 30.5*10-6m3/mol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Water isotherms. Blue T = 700K, Green T = 500K, Red T = 635.646K (critical 

isotherm). Red symbol critical point pC = 216.6*105Pa, vC = 0.0915*10—3m3/mole. 

Pressure in Pa is on y axis; Molar volume in m3/mole is on x axis. 

 

High temperature isotherms, blue line in Figure 3, exhibit a monotonically decreasing pressure 

vs volume. This is what one expects.  It is needed for thermodynamic stability: the isothermal 

compressibility is positive. 𝑘𝑇 = −
1

𝑣
(

𝜕𝑣

𝜕𝑝
)

𝑇
> 0.  However, on the low temperature isotherm 

(green line) the dependence is not monotonic. The system is unstable for a particular segment 

where the compressibility is negative.  Maxwell interpreted this as the system separates in two 

phases, liquid and gas.   The Maxwell construction is a horizontal segment chosen so that the two 

areas between the horizontal line and the p(v) curve are equal.  This is equivalent to the equality 

of the chemical potential in the liquid and gas phases.  Indeed, since dμ= -sdT + vdp, the equality 

of chemical potentials μL = μG implies ∫ 𝑣𝑑𝑝 = 0, or: 

 0 = ∫ 𝑣
𝑑𝑝

𝑑𝑣
𝑑𝑣 = ∫ [

𝑑𝑝𝑣

𝑑𝑣
− 𝑝] 𝑑𝑣 = 𝑝 ̂ (𝑣𝐺 − 𝑣𝐿) 

𝑣𝐺

𝑣𝐿
− ∫ 𝑝

𝑣𝐺

𝑣𝐿
𝑑𝑣 

𝑣𝐺

𝑣𝐿
. 

 

0 1 10
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
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7


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7


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7


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7


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7


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The first term is area of rectangle under phat between vG and vL and the second term is the area 

under the p(v) curve between vG and vL. Thus, in Figure 4, the area I and are II are equal. 

 

 

 
Figure 4: Maxwell construction: areas I and II are equal. 
 

In between the high and low temperature isotherms is the critical isotherm, red line in Figure 3.  

The critical point is an inflexion point: 

0 =
 𝜕𝑝

𝜕𝑣
=  −

𝑅𝑇

(𝑣−𝑏)2 +
2𝑎

𝑣3       (2) 

0 =
 𝜕2𝑝

𝜕𝑣2
=  

2𝑅𝑇

(𝑣−𝑏)3
−

6𝑎

𝑣4
       (3) 

We solve Eqs (2) and (3) for temperature and volume. Then we substitute those values in the 

equation of state Eq (1) to calculate the pressure. We find: 

vC = 3b; RTC= 8a/(27b); pC = a/(27b2).     (4) 

In view of Eq. (2), at the critical point the isothermal compressibility is infinite: kT = ∞. 

We can rewrite the equation of state (1) by using dimensionless pressure, volume and 

temperature: p` = p/pC; v` = v/vC; T` = T/TC .  We find: 

(p`+3/v`2)(3v`-1) = 8T`       (5) 
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Equation (5) expresses the law of corresponding states. The equation of state (5) written with the 

scaled quantities is universal, independent of chemistry.  

Exercise: Calculate the critical point coordinates for water. 

a = 0.544Pa*m6/mol2 and b = 30.5*10-6m3/mol. We find by substituting a, b in Eqs. (4):  

vC = 9.15*10-5m3/mole; pC = 216.6*105Pa; TC= 635.646K. 

We calculate the isothermal compressibility kT from p` = 8T`/(3v`-1) – 3/v`2 

𝑘𝑇 =  −
1

𝑣`
(

𝜕𝑣`

𝜕𝑝`
)

𝑇
=

−1

𝑣`(
𝜕𝑝`

𝜕𝑣`
)

𝑇`

=
1

6(
4𝑇`𝑣`

(3𝑣`−1)2− 
1

𝑣`2
)
    (6) 

We calculate the thermal expansion α from:  T` = (1/8)(p`+3/v`2)(3v`-1). 

𝛼 =  
1

𝑣`
(

𝜕𝑣`

𝜕𝑇`
)

𝑝`
=

1

𝑣`(
𝜕𝑇`

𝜕𝑣`
)

𝑝`

=
8

3(
8𝑇`𝑣`

3𝑣`−1
−

6

𝑣`
+

2

𝑣`2)
    (7) 

Note at the critical point, v` = T` = 1, Eqs. (6) and (7) give infinite compressibility and thermal 

expansion: kT = α = ∞. 

2. Clausius-Clapeyron Equation 

 

Figure 5: Rudolf Clausius (1822 – 1888), German physicist 

 

Figure 6: Benoit Clapeyron (1799-1864), French physicist 
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The Clapeyron equation relates the slope of the coexistence curve p = p(T) to the jumps in 

entropy and density at the coexistence line.  For sake of being explicit, we will assume the two 

coexisting phases are a liquid and a gas phase.  The second law, entropy maximization, implies 

the equality of the intensive variables in the coexisting phases: 

μG(p,T) = μL(p,T)         (8) 

Equation (8) determines the coexistence curve p = p(T). Then we differentiate (8) with respect to 

T: 

(
𝜕𝜇𝐺

𝜕𝑝
)𝑇

𝑑𝑝

𝑑𝑇
+ (

𝜕𝜇𝐺

𝜕𝑇
)𝑝 = (

𝜕𝜇𝐿

𝜕𝑝
)𝑇

𝑑𝑝

𝑑𝑇
+ (

𝜕𝜇𝐿

𝜕𝑇
)𝑝     (9) 

But the differential of the chemical potential, using the Gibbs-Duhem equation, is:            

dμ= -sdT + vdp.  Hence equation (9) becomes: 

𝑣𝐺
𝑑𝑝

𝑑𝑇
− 𝑠𝐺 = 𝑣𝐿

𝑑𝑝

𝑑𝑇
− 𝑠𝐿       (10) 

Solving equation (10), we get the slope dp/dT: 

𝑑𝑝

𝑑𝑇
=

𝑠𝐺−𝑠𝐿

𝑣𝐺−𝑣𝐿
         (11) 

One defines the latent heat: l = T(sG – sL). This heat is needed to be delivered to the liquid to boil 

into the gas, at fixed pressure and temperature.  

𝑑𝑝

𝑑𝑇
=

𝑙

𝑇(𝑣𝐺−𝑣𝐿)
         (12) 

Equation (12) is the Clausius equation.  A useful approximation of the Clausius equation, due to 

Clapeyron, is valid far from the critical point where vG >> vL and the gas can be treated as an 

ideal gas:  vG = RT/p.  Equation (12) becomes: 

 
𝑑𝑝

𝑑𝑇
≅

𝑙

𝑇𝑣𝐺
≅

𝑙𝑝

𝑅𝑇2        (13) 

Application:  Compute the slope of the coexistence curve dp/dT for water in the following cases: 

(a) boiling under atmospheric pressure T = 100°C, latent heat l = 540cal/g,               vG = 

1.6729l/g, vL = 1.044*10-3l/g; (b) freezing under atmospheric pressure T = 0°C, latent heat l = 

80cal/g, vS = 1.25cm3/g; vL = 1.0cm3/g. 

We use Eq. (11).   

(a) dp/dT = (540*4.184*1000)/[373*(1.6729-0.001044)] =  3.6*103Pa/K. 

(b) dp/dT = (80*4.184*1000)/[273*(0.001-0.00125)] = -4.9*106Pa/K. 

Note the slope of the melting line is negative and it is, in magnitude, much larger than the slope 

of the boiling line. 
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3. Gibbs Phase Rule 

Here is generic phase diagram of a pure chemical substance.  It includes the coexistence lines for 

liquid-gas (boiling), solid-liquid (melting) and solid-gas (sublimation). The intersection of the 

three coexistence line is the triple point. For water it occurs at p =0.00611*105Pa, T = 273.16K. 

 

 
Figure 7: Generic phase diagram 

 

At the triple point the chemical potentials of the 3 phases are equal: μS(T,p) = μL(T,p) = μG(T,p). 

Those are 2 equations with 2 un-knowns: T and p, the triple point coordinates.  

Gibbs has generalized this to a mixture of c chemicals and coexisting in r phases. The 

fundamental equation μc = μc(T, p, μ1,…, μc-1) The equality of the r values of the chemical 

potential μc, μc
(1) = μc

(2)= … = μc
(r), results in r - 1 equations with c + 1 un-knowns.  To have a 

solution the number of equations should be smaller or equal to the number of un-knowns: 

𝑟 − 1 ≤ 𝑐 + 1  or  𝑟 ≤ 𝑐 + 2.  This is the Gibbs phase rule. For a pure substance c = 1 and thus 

𝑟 ≤ 3 . 

 

 

 
 
Reading 
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Lecture Notes 13 

Overview of Thermodynamics 

The first law, the energy conservation law, states that a change in the energy of the system equals 

the sum of the heat added to the system, the work done on the system and the chemical work 

done on the system: ΔU = Q + W + WC  Its differential form is: 

dU = TdS – pdV + μdN      (1) 

The heat capacities measure the heat needed to raise temperature by 1K. 

𝐶𝑝 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑝        (2) 

𝐶𝑉 = 𝑇(
𝜕𝑆

𝜕𝑇
)𝑉        (3) 

The compressibility measures the fractional change in volume when we decrease pressure by one 

unit.  

𝑘𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)𝑇       (3) 

𝑘𝑆 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)𝑆       (4) 

The thermal expansion measures the fractional change in volume when we raise isobarically the 

temperature by 1K. 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)𝑝         (5) 

The second law states that when a constrained is released the system evolves to a state of 

maximum entropy consistent with remaining constrains. The first consequence of the 

maximization of entropy is: in equilibrium the intensive variables, temperature, pressure, 

chemical potential, are uniform.  Mathematically this is the result of setting the first derivative of 

entropy equal to zero.   

The second consequence of the maximization process is that at equilibrium second derivatives of 

entropy are negative.  This results in convexity properties of thermodynamic potentials. This is 

called thermodynamics stability.  The entropy S is concave function of U, V, N.  The energy 

U(S, V, N) is convex function. The Helmholtz free energy F(T, V, N) is concave function of T 

and is convex function V and N.  The enthalpy H(S, p, N) is concave function of p and convex 
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function of S, N. The Gibbs potential G(T, p, N) is concave function of T and p and convex of N.  

Here are some consequences. 

0 ≥ (
𝜕2𝑆

𝜕𝑈2
)𝑉,𝑁 = (

𝜕(
1

𝑇
)

𝜕𝑈
)𝑉,𝑁 =  −

1

𝑇2
(

𝜕𝑇

𝜕𝑈
)

𝑉,𝑁 
=  −

1

𝑇2𝐶𝑉
   (6) 

Hence the isochoric heat capacity is positive. 

0 ≤ (
𝜕2𝑈

𝜕𝑉2)𝑆,𝑁 = − (
𝜕𝑝

𝜕𝑉
)

𝑆,𝑁 
=

1

𝑉𝑘𝑆
      (7) 

Hence the adiabatic compressibility is positive. 

0 ≥ (
𝜕2𝐺

𝜕𝑇2)𝑝,𝑁 = − (
𝜕𝑆

𝜕𝑇
)

𝑝,𝑁 
= −

𝐶𝑝

𝑇
       (8) 

Hence the isobaric heat capacity is positive. 

We have proved the following thermodynamic identities:  

Cp = Cv + α2VT/kT         (9) 

kT = kS + α2VT/Cp        (10) 

Since 𝐶𝑝 ≥ 0 and 𝑘𝑆  ≥ 0 it follows, from Eq. (10), that the isothermal compressibility is 

positive: 𝑘𝑇  ≥ 0. Furthermore, from Eqs. (9), (10), we find: 

𝐶𝑝 ≥ 𝐶𝑉  ≥ 0         (11) 

𝑘𝑇 ≥ 𝑘𝑆  ≥ 0         (12) 

|𝛼| ≤ √
𝑘𝑇𝐶𝑝

𝑉𝑇
         (13) 

The third law (Nernst postulate) states that at absolute zero the entropy is zero:   

𝑇 = 0;  𝑆 = 0         (14) 

The validity of this law is connected to quantum mechanics. Intrinsic quantum systems, such as 

the electromagnetic radiation, satisfy it. 

 

 

 

 

  

 


