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Neuendorf 

Multiple Regression 
  

The Model 
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Assumptions: 

 

1. Multivariate normal distributions 

 

 a- For individual IVs, or pairs of IVs, look at scatterplots 

 

2. Linearity (i.e., linear relationships) 

 

 a- For individual IVs, check scatterplots and/or theory 

 

 b- For entire prediction/equation (i.e., multiple IVs), check residual plot 

 

 c- See Hair et al. Ch. 2 and additional COM 631 handouts for data transform 

   ideas 

 

3. No extreme multicollinearity (intercorrelations among IVs) 

 

 a- Check a correlation matrix among IVs (provided under the Statistics  

Descriptives option in the Linear Regression procedure in SPSS). . . values above 

about .80 are problematic 

 

 b- Check tolerances (unique IV variance proportions--e.g., a TOL of .80 indicates 

that 20% of that variable’s variance is shared by other IVs, and 80% is unique to 

that variable/not shared) and VIFs (variance inflation factors, 1/TOL). . . must 

request these from Linear Regression. . . you want higher tolerances (p. 204 of 

Hair et al. indicates that a .10 or higher is generally OK) and lower VIFs 

 

 c- Inspect condition index and regression coefficient variance-decomposition matrix. 

. . this gives the multivariate picture with regard to multicollinearity (TOL and 

VIF both assess multicollinearity one IV at a time). . . the process of using 

condition indexes to assess multicollinearity is well-described in the 5th edition of 

Hair et al. (but dropped from later editions), which is available on our class web 

site. 
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d- Problem?  High multicollinearity leads to unstable partial coefficients.  Solutions?  

(a) Put variables in scale(s), (b) drop some IVs that are redundant, or (c) include 

all as a block and ignore the partials (for that block, look only at R2 change and 

not the betas). 

 

4. Homoscedasticity of residuals 

  

 a- Visual inspection--look at residuals plot (To generate this type of residuals plot, 

you must ask for Plot within Linear Regression in SPSS, then specify *ZRESID 

as Y and *ZPRED as X; this will give you a graph like that in Figure 4.10 of Hair 

et al.) 

 

 b- Statistical test--the SPSS procedure Explore has the Levene test for  homogeneity 

of variance, but this would require the somewhat involved process of saving both 

the residuals and the predicted values of Y (*ZRESID and *ZPRED), and then 

conducting analyses on them 

 

 c- Data transformations due to heteroscedasticity of residuals? See Hair et al. chapter 

2 and the COM 631 handout on transformations for suggestions 

 

5. Residuals (errors of prediction) should be random (independent) and normal  

 

 a- Visual inspection--see residual plots from SPSS procedure Linear Regression 

(Under “Plots,” click on “Histogram” and “Normal Probability Plot”; see Hair et 

al. Figure 4.5 to compare) 

 

 b- Statistical tests--the SPSS procedure Explore can give the normal probability plot 

for residuals, and provide Kolmogorov-Smirnov and Shapiro-Wilk statistics that 

test for deviations from normality; again, this requires saving your residuals and 

then running those through Explore 
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Decisions to make: 

 

1. Entry of Variables 

 

 a- Forced Simultaneous (SPSS calls it “enter”) 

 

 b- Forced Hierarchical (SPSS refers to “blocks” using “enter”) 

 

 c- Stepwise Forward (SPSS: “forward”) 

 

 d- Backward Elimination (SPSS: “backward”) 

 

 e- Mixed Stepwise Forward and Backward Elimination 

  (SPSS: “stepwise”–the most common) 

 

 f- Combinations of the above, block by block 

 

 

2. Dummy or Effect(s) Coding?  (Also, see separate Neuendorf handout on 

  Dummy/Effects coding) 

 

 a- Need c-1 dummies, where c = # of values/categories on a nominal IV. . . if you 

use c rather then c-1, you'll have perfect multicollinearity in that groups of 

variables and SPSS will not be happy 

 

 b- If there is a single dummy for a nominal IV (e.g., FEMALE, where 0=male and 

1=female), then the partial regression coefficient (b or β) and its corresponding F 

test assess the difference between the "1" group and the “0” group (e.g., the 

difference between female and male) 

 

 c- For Dummy coding where there are two or more dummies representing the 

nominal variable, each partial regression coefficient (b or β) and its corresponding 

F test assess the difference between the "1" group and the referent/comparison (all 

"0") group 

 

 c- For Effect(s) coding where there are two or more effects codes representing the 

nominal variable, each partial regression coefficient (b or β) and its corresponding 

F test assess the difference between the "1" group and the average of all other 

groups 

 

3. Interactions? 

 

 a- See Hair et al. p. 377 for examples of the notion of interactions. . . Linear 

Regression doesn't discriminate between ordinal and disordinal interactions 

 

 b- To include an interaction, use a multiplicative term (e.g., X4=X1c*X2c, where X4 
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here stands for the interaction term for X1 and X2).  Generally, we wish to 

“center” the two independent variables when their interaction is calculated; note 

that they bear the subscript “c”.  Centering involves simply subtracting a 

variable’s mean from all the sample’s scores on that variable (e.g., COMPUTE  

X1c = X1 – 4.32). 

  

 c- Can test for sig. contribution by F of the interaction’s R2 change:   

  R2
Y.1234 - R

2
Y.123 , where X4=X1c*X2c. . . that is, X4 becomes just like any other 

contributor 

 

 d- A sig. interaction does not tell the whole story, though. . . need to take 

"representative values" of IVs and see DV values to find the pattern 

 

4. Repeated Measures Design? 

 

 a- Control for subject ID (dummy coded--you need n-1 dummy variables!) 

 

Statistics: 

 

Other than the various statistical tests of assumptions described in the first section of this 

handout, the important statistics are few. . . a “parsimonious” view: 

 

1. Multiple squared correlations (R2s)--indicate the proportion of the variance of Y that is 

explained by a set of IVs.  This may be incremental (as in an R2 change for a single step 

of a stepwise model or a block in a hierarchical model) or total (the variance explained by 

the final, full regression model).  An incremental R2 is referred to by SPSS as “R2 

change”.  (Careful--the output gives you the “total” R2 after each step in a model; this is 

neither the incremental R2 nor the final, total R2–it’s the total up to that point.)  There is 

also an “adjusted R2" reported, which reduces the “inflation” that occurs with a large 

number of IVs (see separate handout on adjusted R2).  Each R2 is tested with an F test.  

 

2. Partial regression coefficients--unstandardized (b) and standardized (β, beta) coefficients 

indicate the unique contribution of each IV.  Each is a partial slope--the change in Y for a 

unit change in X, controlling for the other Xs in the equation.  The significance of each 

partial regression coefficient is tested with an F, which will be the same for 

unstandardized and standardized. 

 

3. Standard errors and confidence intervals for the prediction and for the partial regression 

coefficients. The SEE (standard error of the estimate) is the standard deviation of the 

residuals, from which one might calculate a confidence interval for any given case’s 

predicted value of Y.  And, the SE of each βallows one to establish a CI (confidence 

interval) around the β coefficient. 
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