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The FAQs on Data Transformation
Edward L. Fink

Although we often hear that data speak for themselves, their voices can be soft and

sly. (Mosteller, Fienberg, & Rourke, 1983, p. 234)

The job of the data analyst, strangely enough, is to find random error (Winer, 1968).

When all systematic variability has been removed from data, the leftover*or residual

or disturbance or error*will be random, without pattern; the analyst knows that the

analysis is complete when random error has been found.1 To find random error, data

often need to be transformed nonlinearly, and this issue is the topic of this paper.

Data transformation has a long history (e.g., Box & Cox, 1964) and was already in

review essays in the 1960s (Kruskal, 1968). Tukey’s (1977) volume on exploratory

data analysis, with its emphasis on data transformation, created new interests in these

techniques; Cohen (1990) stated that ‘‘John Tukey’s (1977) Exploratory Data Analysis

is an inspiring account of how to effect graphic and numeric analyses of the data at

hand so as to understand them’’ (p. 1310, emphasis in original). Yet to some,

exploratory data analysis (EDA), and the data transformations that are an integral

part of EDA, appear illegitimate or novel or exotic.

Having taught this topic many times, I am aware of the questions that typically

arise concerning data transformation. Thus, I have organized this paper around these

questions. So, first:

Why Do We Transform Data?

The Fundamental Link between Measurement and Functional Form

One of the goals of scientific work is to establish relationships between variables.

Consider the simplest case: one independent variable, X, and one dependent variable,

Y. Assume that (1) the metrics for these two variables are conventional (i.e., the

measurement rules are known and they are considered the standard for use by the
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relevant community of scientists), (2) the data are from a relatively large sample, (3)

the variables are measured with high reliability, and (4) there is a wide range of values

of the independent variable. In that case a scattergram should reveal the functional

form of relationship between these two variables, which, if it were hypothesized,

could be tested statistically. However, if the first assumption were not made, so that

measurement decisions do not reflect convention, the scientist is faced with a

daunting task: If the measurement rules for the variables are conventional, the

functional form that best represents the relationship between the variables (i.e., best

by some prespecified criterion) can be discovered; if the functional form is specified

(presumably by strong theory), the metric to express each variable can be discovered,

by transforming one or both of the original variables if necessary. However, if neither

the functional form nor the measurement rules are specified, the analyst must

simultaneously impose both. In the communication discipline the measurement

rules are not conventional (see, e.g., Torgerson, 1958, on the distinction among

fundamental measurement, derived measurement, and measurement by fiat) and

hypotheses are not derived from theoretical principles that require particular

functional forms; as a result, to operationalize a theory the communication scholar

has to engage in successive attempts at harnessing measurement rules and functional

form together. As will be shown below, transforming data encompasses and integrates

the establishment of measurement rules and the discovery of the functional form

between variables.

Transforming for Determining Typical Values

When we analyze data we are interested in two things: description and inference. The

most basic description of data involves three features: location*where a variable is

centered (also called the typical value or the measure of centrality), spread*the

variability of a variable, and association*the relationship between one variable or set

of variables and another variable or set of variables. Conventional measures of

location include the mean, the median, and the mode; conventional measures of

spread include the interquartile range, the standard deviation, and the variance; and

conventional measures of association include Pearson’s product-moment correlation

coefficient (and derivatives, such as the partial correlation, the part correlation, and

the multiple correlation), Spearman’s rho, and regression coefficients (partial or

simple, standardized or unstandardized).

Location*the central tendency in the data*is the most fundamental thing to

observe about a variable Although formulas differ, conceptually the first step in

computing a correlation, a standard deviation, a variance, a regression coefficient, or

a factor loading is the subtraction of the mean, which is assumed to be the typical

value. And we typically assume that the location of a variable is readily summarized

by the mean. Furthermore, we assume, usually implicitly, that our data are well

behaved, which results in the variable’s distribution having the mean, the median,

and the mode at about the same place in the variable’s frequency distribution.2 Now,

let’s examine when that is the case.
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Consider Table 1. Assume that the x-axis for all the graphs in this table is the value

of a variable, and the y-axis is its corresponding frequency. Although the distribution

in Cell 1 need not be normal,3 the mean, median, and mode are all approximately at

the same place. Our notion of the mean as the variable’s location is reasonable in this

case: As we move away from the mean, positively or negatively, the data become less

frequent, as if suggesting that the mean was the ‘‘target’’ and that the departures from

the mean are unsystematic errors or random disturbances. The mean is a reasonable

summary statistic or parameter for these data.

In Cell 2, the mean, median, and mode are at different locations, and it is unclear

whether any single measure of central tendency coincides with our notion of ‘‘typical

value.’’ In Cell 2 each graph represents a skewed variable: The variable is negatively

skewed in 2a and is positively skewed in 2b. If we wish to summarize a single variable

(a ‘‘single batch’’ of data in the parlance of data explorers) by its typical value,

it is suggested that we transform the variable. Thus, one goal of data transformation

is to make the different measures of typical value coincide. The simplest type

of transformation with unimodal and skewed data is the single-bend family of

transformations, as follows:

Table 1 Frequency Distributions of Types of Variables

Symmetry 

Modality Symmetric Asymmetric
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Y *� (Y �k)(l); such that if l�0; Y *� ln(Y �k); and if l" 0;

Y *� (Y �k)l; (1)

where Y is the original variable, Y* is the transformed variable, ln is the natural

logarithm, and k is a constant.4, 5 This transformation is called a single-bend

transformation because when l"1 (i.e., when a nonlinear transformation is

employed), the graph of Y* on Y is monotonic with a single bend (also referred to

as a one-bend transformation in Cohen, Cohen, West, & Aiken, 2003).

The single-bend transformation, also called a power transformation, is a version

of the Box-Cox transformation (Box & Cox, 1964; Fox, 1997; Hutcheson &

Sofroniou, 2006; Montgomery, 2009; Whistler et al., 2004). If data are positively

skewed, a lB1 will typically make the distribution more symmetric, and if the data

are negatively skewed, a l�1 will typically make the distribution more symmetric.

Recall that we are interested in the location of the variable; employing this

transformation creates a new variable (Y*) that is likely to be relatively symmetric, the

mean (or median or mode) becomes a reasonable typical value.

Transforming to Create a Useful Metric

Transformation of a variable reflects something else about it. Let’s consider some

positively skewed variables. (The corresponding argument may be made for

negatively skewed variables.) Examples are personal income, the size of freely

formed social groups, the size of land masses, the number of messages people send

(or receive) each day, and the level of intimacy one has with the members of one’s

social network (assuming our scale was not bound at the upper end, to be

discussed below). Notice that, for all these variables, differences in the variable at

the low end are greater, in a philosophical and practical sense, than the same

differences at the upper end. For example, the change in group processes that

occurs when a group goes from three to four members is greater than when a

group goes from ten to eleven members, although both are one-unit differences.

Similarly, the difference in life style brought about by one’s income going from

$20,000 per year to $40,000 per year is much greater than the difference if one’s

income went from $120,000 per year to $140,000 per year, although both

differences are $20,000. It is generally true that, for positively skewed variables,

differences at the low end have a greater impact than equal unit differences at the

upper end. When we employ a single-bend transformation, in addition to creating

symmetry (thereby making the variable’s location meaningful), it is likely that we

make the unit differences for the transformed variable reflect the variable’s causes

and effects in a more reasonable way. In other words, transforming to create a

reasonable metric helps create a useful functional form of relationship among or

between the variables.

Transforming as Differential Stretching and Shrinking

To show how the single-bend transformation works, consider Table 2. The

hypothetical data are modestly positively skewed (skewness�1.87), but the mean
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and the median are very different: The median is only 30% of the mean, and it is 47%

of a standard deviation from the mean. However, when the variable is transformed by

using the natural logarithm (i.e., in reference to Equation 1, l�0 and k�0), the

skewness becomes close to 0 and the mean and the median are almost the same: The

median is 97% of the mean and it is 3% of a standard deviation from the mean.

To examine how the transformation differentially compresses the data, notice that

on the original scale the difference from 20 0 100 (80 units) is about 4.71 times the

difference from 3 0 20 (17 units), but on the transformed scale the corresponding

differences (3.00 0 4.61 vs. 1.39 0 3.00) are equal. Transformations for positively

skewed data use a lB1, thereby compressing the variable more drastically as the

variable increases. See Bock (1975), McNeil (1977), Mosteller and Tukey (1977), and

Weisberg (1980) for discussion of these transformations.

Returning to Table 1, Cells 3 and 4 indicate different difficulties than found in

Cell 2. The multimodality of the data in these cells may indicate that distinct

populations, with different distributions, have been combined (see Bradley, 1977).

These data require discovering the factor, which may be categorical (e.g., gender;

urban vs. rural; with cell phones vs. without cell phones) or continuous (e.g., number

of friends) that is found to be associated with the multimodality and statistically

removing its effect (e.g., by entering this factor as one or more dummy variables in a

regression, if it is categorical, or entering it as a predictor in a regression, if it is

continuous). This procedure should presumably create unimodal residuals. This type

of transformation is more of a standardization in that the data are made well behaved

using the conventional techniques within the general linear model.

Table 2 Hypothetical Data for a Positively Skewed Variable and the Effect of a

Transformation

Data
Natural logarithm

of the data

0.5 �0.69
1 0.00
2 0.69
3 1.39

10 2.30
20 3.00
50 3.91

100 4.61
Mean (standard deviation) 23.44 (35.11) 1.90 (1.88)
Median (interquartile range) 7.00 (41.25) 1.84 (3.51)
Median/mean 30% 97%
Skewness/(standard error of skewness)�

standardized skewness
1.87/(0.75)�2.49 0.09/(0.75)�0.12

Kurtosis/(standard error of kurtosis)�
standardized kurtosis

3.18/(1.48)�2.14 �1.29/(1.48)��0.87

Computations are to four decimals, but results are rounded to two decimal places.
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Transforming to Create Equality of Spread and for Linearizing Relationships

In addition to transforming data to create symmetry within a single batch, data are

also transformed to create equality of spread for comparing batches, and for

linearizing relationships when conducting analyses within the general linear model

(e.g., a Pearson bivariate, partial, part, or multiple correlation, regression analysis, or

factor analysis). As before, the principal argument here is not about inferential

statistics, but about theory and measurement. For example, if the research goal is to

describe relationships between variables with a line or curve, the line or curve is a

better representation of the relationship if the (vertical) spread around the line or

curve were equal across observed levels of the independent variable, which is evidence

that the line or curve summarizes the relationship well. Similarly, if for theoretical

reasons a linear relationship between independent variables and a dependent variable

is hypothesized, it may be necessary to transform one or more variables to attempt to

create linearity, and then to test whether the linearity of the relationship is a plausible

hypothesis.

Analysis of variance, analysis of covariance, and t-tests, as typically practiced,

assume homoscedastic residuals. If batches of data are to be compared and they have

different degrees of spread, the typical value of each batch is known with different

levels of precision, making the comparisons problematic.

If data make the assumption of equality of spread implausible, many transforma-

tions could be used to fix this problem besides the one indicated by Equation 1. In

addition to the works on exploratory data analysis (e.g., Erickson & Nosanchuk,

1977; McNeil, 1977; Tukey, 1977), most texts on experimental design describe

standard transformations to create batches of data with equal spread (e.g.,

Montgomery, 2009). Focusing on the variance, one measure of spread, there are

standard procedures to ‘‘stabilize the variance’’ (i.e., make the variance of the residual

unassociated with the level of the independent variable).

The single-bend family of transformations (Equation 1) is especially useful to

stabilize the variance when the variances vary as a function of the means of the

batches of data. Based on this relationship, Weisberg (1980) indicated the situations

in which the square root (l�½), the logarithm (l�0), and the reciprocal (l��1)

will tend to create equality of variance (Table 3, below). Chatterjee and Price (1977, p.

38ff) provide additional variance-stabilizing transformations.

Table 4 shows how one can systematically vary the l and k from Equation 1 to find

an optimal transformation to create equality of variance. In Table 4 there are two

batches of data, and the criterion employed to determine the optimal transformation

is the ratio of the larger sample estimate of the population variance to the smaller

sample estimate of the population variance. The original (untransformed) data have a

ratio of 66.98:25.17�2.66:1, but the ideal ratio is 1:1 (i.e., we want these variances to

be equal). This ratio is achieved when l�0 (i.e., a logarithmic transformation) with

k��0.5. In other words, here Y +�ln(Y � .5). Furthermore, notice how system-

atically the ratios in the table change as we vary l and k; this systematic change

provides us with a direction for finding an optimal l and k. Although in this example
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Table 3 Common Variance Stabilizers

Transformation Situation Comments

/

ffiffiffiffi
Y

p
var (ei) 8 E(Yi) The theoretical basis is for counts from the Poisson distribution

/

ffiffiffiffi
Y

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
Y �1

p
As above For use when some Yi s are zero or very small; this is called the Freeman-Tukey (1950) transformation

log Y var (ei) 8 [E(Yi)]2 This transformation is very common; it is a good candidate if the range of Y is very broad, say from
1 to several thousand; all Yi must be strictly positive

log (Y�1) As above Used if Yi�0 for some cases

1/Y var (ei) 8 [E(Yi)]4 Appropriate when responses are ‘‘bunched’’ near zero, but, in markedly decreasing numbers, large
responses do occur; e.g., if the response is a latency or response time for a treatment or a drug, some
subjects may respond quickly while a few take much longer; the reciprocal transformation changes the
scale of time per response to the rate of response, response per unit time; all Yi must be positive

1/(Y�1) As above Used if Yi�0 for some cases

/sin�1(
ffiffiffiffi
Y

p
) var (ei) 8 E(Yi)(1-E(Yi)) For binomial proportions (05Yi51)

From Applied Linear Regression (p. 124), by S. Weisberg, 1980. New York: John Wiley. Copyright 1980 by John Wiley. Reprinted with permission. Note that
‘‘8’’ means ‘‘is proportional to’’ or ‘‘varies as.’’
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we focused on finding one {l, k} combination that works well, there may be others

that work equally well, and theory may provide guidance as to the choice of l and k.

Another way to create equality of spread for batches of data is to use spread versus

level scatterplots as follows: Let lnmed(i)�the logarithm of the median for batch i

and lnrange(i)�the logarithm of the interquartile range for batch i. Regress lnrange

on lnmed. Let a�the slope found from this regression. Assuming that there is a

monotonic relation between the medians and the interquartile ranges, the

transformation to try to equalize the spread is l�1 � a (see Erickson & Nosanchuk,

1977; Montgomery, 2009). Again, note that l�0 corresponds to a logarithmic

transformation.

Double-Bend Transformations

Transformations may be used that are double bend in appearance (i.e., in the graph

of Y* on Y), typically when the variable to be transformed is double bound, that is,

bound at the top and bottom with many cases at the floor (minimum) and ceiling

(maximum). For example, when data are binomial proportions, the arcsin square

root transformation may be used to stabilize the variance of a distribution (see

Table 3); in this situation, the variance of the original variable is greater in the

middle of the distribution and gets smaller as the variable approaches its endpoints,

1 and 0. To see why this is so, recall that the variance of a binomial variable with

probability of success�p and with n trials is np(1 � p), which has a maximum when

p�.5 and approaches 0 as p approaches 0 or 1.

In addition to the arcsin square root transformation, the single-bend family of

transformations may be extended to cases in which a variable is bound at the top and

bottom, such as for a test that goes from 0% to 100%. If the data are bunched near

the floor (the minimum) and ceiling (the maximum) of the distribution, the data can

be stretched by using

Y *� (Y �minimum�k)(l) � (maximum �Y�k)(l); (2)

where Y*, l, Y, and k are defined as in Equation 1. For example, if Y has the values 0

(minimum), 10, 40, 50, 60, 90, and 100 (maximum), and k�0 and l�½, then

Table 4 Example of a Search Space for Finding l and k to Equalize the Variance Between

Two Batches of Data

l

k 2 1 0.5 0 �0.5 �1 �2

1.0 7.64 2.66 1.72 1.21 1.06 1.24 1.43
0.5 8.16 2.66 1.67 1.15 1.12 1.30 1.46
0.0 8.80 2.66 1.60 1.09 1.18 1.36 1.48

�0.5 9.60 2.66 1.52 1.00 1.28 1.42 1.49
�0.99 10.60 2.66 1.36 1.24 1.47 1.50 1.50

Batch 1: {1.00, 1.00, 1.00, 10.16, 10.16}; sample estimate of population variance�25.17. Batch 2:
{1.00, 1.00, 1.00, 1.00, 19.30}; sample estimate of population variance�66.98. Within each cell is the
ratio of the larger variance to the smaller variance, based on the value of l and k. See Equation 1.
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under this transformation 0 becomes �10, 10 becomes �6.32, 40 becomes �1.42, 50

becomes 0, 60 becomes �1.42, 90 becomes �6.32, and 100 becomes �10. The

variable remains symmetric but is stretched more at the tails than at the middle. For

additional insight and methods regarding transformations to stabilize variances and

to create equality of spread, see Erickson and Nosanchuk (1977, pp. 112�114) and

McNeil (1977, chap. 2); McNeil (1977) and Montgomery (2009) also provide

techniques for data transformation in factorial designs.

Because of the utility of the general linear model, transformations often are done to

linearize relationships that are, in the original variables, nonlinear.6, 7 The necessity or

desire to eliminate the nonlinearity may reflect a strong theory that posits (perhaps

by mathematical derivation) that a relationship is linear, or it could reflect finding

that assumptions, such as equality of spread, are violated in the nonlinear form and

therefore one wishes to create a model that meets these assumptions (for theoretical

and descriptive purposes, and not necessarily for inferential purposes). In either case,

linearizing the equation is necessary.

Nonlinearity may be observed in the scattergram of the dependent variable on the

predictor or in the scattergram of regression residuals on the predicted value of the

dependent variable (which, after all, is the linear combination of the independent

variables). Weisberg (1980) has shown some common linearizing transformations

and the situations to which they apply (see Table 5, below). Notice that these

transformations are all within the single-bend family. Additional discussion on

transforming data for linearizing relationships may be found in Chatterjee and Price

(1977), Fox (1997), Hartwig (1979), Johnson and Bhattacharyya (2006), McNeil

(1977, chap. 3), Mosteller and Tukey (1977, chap. 4), and Tufte (1974). Of special

note is Mosteller and Tukey’s (1977, pp. 84�87) ‘‘bulging rule,’’ which assists in

Table 5 Linearizing Transformations

Transformation Simple regression form Multiple regression form

log Y log X /Y �aXb
/Y �aX

b1
1 X

b2
2 � � �X

bp

p

log Y X Y�aebX
/Y �aeabj Xj

Y log X Y�a�b(log X) /Y �a�abj log(Xj)

/

1

Y
/

1

X
/Y �

X

aX � b
/Y �

1

a� a(bj=Xj)

/

1

Y
X /Y �

1

a� bX
/Y �

1

a� abjXj

Y /

1

X
/Y �a�b

1

X

 !
/Y �

1

a� abj

1

Xj

 !

From Applied Linear Regression (p. 125), by S. Weisberg, 1980. New York: John Wiley. Copyright
1980 by John Wiley. Reprinted with permission.
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determining the l to employ for both the predictor and the predicted variable within

a regression model.

Criteria for Transforming Data

To summarize, transformations are typically used to create meaningful typical values

and metrics, equality of spread, and linearity of relationships. However, statistical

tests to evaluate these criteria should be subordinate to the idea that one is seeking to

find an appropriate metric and functional form of relationship for the variables of

interest.

To evaluate the creation of meaningful typical values and metrics, we generally

examine a variable’s skewness and kurtosis, both in terms of their actual values and

relative to their standard errors. The normal distribution provides the standard for

comparison: The normal distribution is symmetric (i.e., skewness�0) and is

mesokurtic (neither peaked with fat tails nor flat with thin tails). SPSS (Norušis,

2005) uses the Lilliefors test, which is a modification of the Kolmogorov-Smirnov

test, and the Shapiro-Wilk’s test to evaluate normality.

There are many statistical tests that may be employed to evaluate equality of spread

(see Kirk, 1968, pp. 61�62). Using the variance to evaluate equality of spread across

batches, one can create a ratio of the largest sample estimate of the population

variance divided by the smallest sample estimate of the population variance, as was

done above; this ratio may be tested with Hartley’s F-max test. Or one can compute

the ratio of the largest sample estimate of the population variance divided by the sum

of all the sample estimates of the population variance, which is Cochran’s C; this test

requires a Cochran’s C table. However, both Hartley’s F-max test and Cochran’s C are

very sensitive to the normality assumption.

There are many other tests that assess equality of spread or equality of variance

(e.g., Bartlett’s test, which uses the x2 distribution; Levene’s test, which uses the F

distribution). O’Brien’s test and the Brown-Forsythe test are less commonly known in

the communication discipline but they are more robust than Levene’s test and

Bartlett’s test (see discussion in and sources cited by Algina, Olejnik, & Ocanto, 1989;

Olejnik & Algina, 1987; Parra-Frutos, in press).

The SHAZAM program (Whistler et al., 2004) tests the skewness and kurtosis of

regression residuals and provides a chi-square test for the normality of residuals that

assumes that the residuals come from a homoscedastic population of residuals.

To evaluate linearity, one can examine the data plot or the residuals plot of the

variables. SPSS (Norušis, 2005) provides several ways of examining the linearity of the

regression model, including tests and graphs regarding the normality and equality of

spread of residuals. The normal probability plot (also called a normal scores plot, a

quantile-quantile plot, a quantile comparison plot, a Q-Q plot, or a rankit plot; see

Bock, 1975; Fox, 1997; Hutcheson & Sofroniou, 2006; Johnson & Bhattacharyya,

2006; Weisberg, 1980) is one way to assess normality of the residuals. In addition,

a Box-Cox analysis could be conducted in SHAZAM (Whistler et al., 2004, pp.

163�164), and the estimated l can be tested against a value of 1, which corresponds

to a linear relationship.
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Finally, it should be noted that these criteria for data transformation are

cumulative: When we compare batches of data (e.g., in ANOVA or in a t-test),

we would like each batch (or, correspondingly, the residuals in each batch) to be

symmetric and unimodal, and, in addition, we would like the batches to have equal

spreads. When we conduct a regression, we would like the spread above and below

the regression line at each value of X to be symmetric and unimodal; the variance at

those locations to be equal; and the graph between the residuals and the linear

combination of the predictors to be without any discernable pattern.

Although transforming data to achieve one criterion may not provide an optimal

transformation based on another criterion, the criteria tend to be optimized jointly;

Hartwig (1979) stated that ‘‘nonnormalty and nonlinearity often go hand in hand and,

because of this, reexpression [transformation] is a useful response to both problems’’

(p. 54, emphases in original). In addition, some procedures for data transformation

use more than one criterion simultaneously. For example, the Box-Cox procedure in

SHAZAM (Whistler et al., 2004) seeks to create regression residuals that are both

normal and homoscedastic.

But Aren’t Our Inferential Tests Robust Anyway?

Often the response to data transformation is that our inferential tests are robust with

regard to violations of their assumptions. The most common assumptions referred to

are those that have already been discussed: normality of population errors,

homoscedasticity of population errors, and patternless errors. The question of the

robustness of inferential tests divides users of statistics into two camps, each with its

own goal.

If the data analyst views the goal of the analytic procedures as properly rejecting or

failing to reject null hypotheses, even complicated null hypotheses, then data

transformation is an unnecessary bother unless the data drastically violate the

statistical assumptions. Based on this goal, the idea of transforming data is mostly a

nuisance. Unfortunately, this frame of mind does not often lead to a careful

examination of the data to determine whether statistical assumptions are met, and

the consequences can be substantial. For example, Anscombe (1973) reported four

bivariate data sets that have the same means and standard deviations for X and Y, the

same correlation between X and Y, the same regression slopes, and the same

regression intercepts. However, the graphs of the four relationships are remarkably

different. As Anscombe stated, ‘‘graphs are essential to good statistical analysis’’

(p. 17). Since Anscombe’s article appeared, statistical packages have added statistical

indicators and tests of violations of assumptions, but the visual examination of one’s

data is still essential. Most importantly, unless the value of a statistical model’s R2 or

h2 is 100%, the proportion of variance explained does not inform us of the

appropriateness of the statistical model employed.

But if the violations of the distributional assumptions are mild and the inferential

tests are robust, does one need to transform data? The second camp of analysts would

say that even in this case the data need to be examined for possible transformation:
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To this camp, the goal is to find the functional form relating the variables and

the metric for each variable. For example, Hamblin (1971a) reported rerunning

Galileo’s inclined plane experiments with the help of his two children, aged 11 and 9.

Using relatively crude methods, the proportion of variance explained rounded to

100% using Galileo’s equation with appropriate transformation (p. 424). Hamblin

commented:

Instead of D�AT2 [where D is distance traveled, A is a constant reflecting

acceleration, and T is time], suppose [Galileo] had blithely assumed that D�A�
T2. The crucial multiplier effect of the accelerating force would have been missed

and his theory would have been grossly inaccurate even though all of the correct

variables would have been included. (p. 446)

Hamblin went on to indicate studies in which the wrong functional form (e.g.,

maintaining a linear form when the evidence indicated that variables should

be transformed) reduced the regression R2s by 3% to 50%. However, the levels of

those R2s in the original, untransformed variables would be considered large by the

standards in most of the social sciences, and the search for a different functional

form, one that comes closer to meeting the model’s assumptions, would be unlikely

to be carried out.

By transforming variables, one is implicitly seeking to find the correct functional

form relating the variables in the statistical model. For example, examination of

regression residuals for linearity can also provide evidence as to whether a

multiplicative effect (an interaction) has been omitted (by observing heteroscedastic

residuals), whether a categorical variable with a main effect has been omitted (by

observing bimodal or multimodal residuals), and whether a relationship is not linear

in the metric of the original variables. In sum, resorting to the robustness of our

statistical tests, even when statistically justified, is not a substitute for examining the

variables and transforming them when necessary.

How Are Forms of Measurement Associated with Types of Data Transformation?

Some measures are counts or amounts, which in principle start at 0 and are unbounded

at the upper end; in addition, there are derived measures that are based on ratios and

differences of counts and amounts. (These ideas are elaborated in Fink, Cai, & Wang,

2006; see also Neuendorf, 2005, pp. 14, 125).8 These measurement types (counts,

amounts, and their derivatives) allow precision, typically evidence high levels of

reliability, are the predominant forms of measurement in the sciences, and, more

relevant to our discussion, assist in the determination of the functional forms for our

variables when assessing our hypotheses. On the other hand, scales that have few

response alternatives are imprecise and often make it difficult to find an effective

transformation, even if the goal is the modest one of meeting inferential assumptions.

This situation is exacerbated when respondents choose few of the scale alternatives. The

conclusion is that better measures assist in determining both optimal functional forms

of relationships among variables as well as the corresponding data transformations.9
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The primary measurement characteristics that help in the choice of a transforma-

tion are their boundedness and continuity (Table 6). It is common for unimodal

single-bound measures, which are likely to be skewed, to be successfully transformed

by the single-bend transformation (Equation 1), and double-bound measures that are

truncated by the bounds at both ends are likely to be successfully transformed by a

double-bend transformation (e.g., Equation 2 and the arcsin square root transforma-

tion). When measures have a limited number of response alternatives, such as a scale

item with response alternatives {1, 2, 3, 4, 5, 6, 7}, and when only a few of these limited

alternatives are actually used, it may be difficult to find an effective transformation.

What Else is Needed to Determine How to Transform Data?

As in all investigations, the ideal is to have measures that are highly reliable. Bauer

and Fink (1983) extended the discussion of data transformation to situations when

the variables are measured with nonadditive error and demonstrated how such error

affects statistical relationships.

In addition, we need to have enough data points (i.e., a large enough sample) so

that it is possible to determine whether and how data should be transformed.

Furthermore, the sample should have data over a wide range of values for any

noncategorical independent variables.

Do Scholars Actually Do This? And How Do I Interpret the Results?

Most scientific work uses units that are transformed. A decibel, for example, is based

on the unit called a bel, and a unit change in bels (i.e., going from b to b�1 bels)

Table 6 Characteristics of Measurements with Examples

Continuity

Boundedness Continuous Discrete

Bound (in principle) at the
bottom only*

an amount such as distance or a
magnitude scale (Lodge, 1981)

a count such as the frequency
of communication between
two people

Bound (in principle) at the
top and bottom

a mark on a line converted to a
number

a score on a true/false test; a
Likert scale item

Not bound (in principle) at
either the top of bottom

the difference between two
amounts, such as change in
weight

the difference between two
counts, such as change in
population

Empirically all scales have a highest value and a lowest value, and therefore are bounded at both the
top and bottom. However, in this table what is referred to is the range that the scale could measure,
not the results of its application. Furthermore, at the most micro level, all scales appear to be
discrete.
*Scales bound (in principle) only at the top are uncommon; they may be treated as bound at the
top by multiplying by �1 or by the subtraction of scale values from the scale’s maximum value.
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reflects a ten-fold increase in the intensity of a sound. Because of the logarithmic scale

used, adding a 60-decibel sound to a 60-decibel sound creates a sound at 63 decibels.

There are many other variables defined logarithmically, such as the bit (see Absolute

Astronomy.com, 2009); these logarithmic variables enter into lawful relationships

with other variables.

In the social sciences, there are many instances in which, for theoretical or

empirical reasons, transformed variables are used. For example, studies that ask

participants to respond to a stimulus may use responses per second or its reciprocal,

seconds per response, which indicates the average interval between responses; if the

data are reported in one metric (say in responses per second), the reciprocal is a

transformation with l��1.

Psychophysical research, relating physical stimuli to psychological responses, has a

long history of data transformation (Fechner, 1860). Steven’s Law proposes that the

logarithms of physical and psychological variables are related linearly (discussed

with much evidence in Hamblin, 1971a, 1971b). Hamblin (1971a, 1971b) reviewed

this literature showing that, with amount (magnitude) measures, Steven’s Law

worked quite well in relating sociological variables such as wages and liking,

education and status, income and status, and, in a multiple regression, vote for

Allende for president of Chile in 1952 as a function of several social variables

describing the Chilean population. Chatterjee and Price (1977) showed that the

regression predicting number of supervisors by number of supervised workers

exhibited heteroscedasticity, and a transformation corrected the problem. Tufte

(1974) gave several examples of relationships that demonstrate the power of data

transformation: He showed that the relationship between parliamentary size and

population size and the relation of population size and number of governmental

employees were linear when the variables appearing in the regression were

logarithmically transformed. In addition, he tested the cube law, an equation that

relates the proportion of votes for a political party to the proportion of legislative

seats won by that party. In this equation the predictor and predicted variable were

transformed by a double-bend transformation, namely

Y *� ln(Y ) � ln(1 � Y ); (3)

where Y is a proportion. Furthermore, he reported the nations for which this model’s

predictions were supported.

The transformation of a variable is specific to the equation or model in which that

variable appears. In the absence of both (1) a theory that specifies the functional form

of a relationship and (2) measurement rules for the variables that are employed, the

transformation used is an empirical matter. In this case the transformation of a

variable provides feedback to theory and measurement: It helps determine the

subsequent form of the theory and its associated measurement rules.

Are the results using transformed variables interpretable? The analyst needs the

theoretical ability to formulate a problem worth studying, skills to measure the

relevant variables, and the judgment to design the data collection process. Similarly,
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the analyst needs the acumen to examine the data visually and statistically and

determine if and how they are to be transformed. If the analyst has all these

proficiencies, then the ability to discuss the square root of number of friends or the

logarithm of network size should be quite straightforward. And, of course, one can

always untransform a transformed variable if that would help create clarity: Square

the square-rooted variable, exponentiate the logarithmically transformed variable,

etc. The SHAZAM program (Whistler et al., 2004, p. 161) has this feature as an

option for its Box-Cox regression routine.

Erickson and Nosanchuk (1977) described the issue this way:

Sometimes there is a sensible interpretation for one of the possible transforms; the

choice becomes easier. . . . If a good interpretation is available, from theory or

from your own thinking about the data, by all means try the transformation

involved. Even if the theoretical transform fails to fit everything perfectly, it will still

be useful. . . . On the other hand, if your choice of transformation is based on

the data then you’ll want to try to come up with an interpretation of your choice.

(p. 115)

Isn’t This Cheating?10

No. On the contrary, analyzing data that fail to meet the inferential assumptions or

not extracting any remaining systematic variability in one’s variables is cheating: It

cheats the community of scholars from understanding what the data could have

revealed. Furthermore, in any specific analysis it is likely to be unclear whether

transforming data will result in a greater proportion of variance explained or greater

likelihood that a null hypothesis will be rejected. Thus, in this limited statistical

sense data transformation is not cheating.

What Should I Tell My Adviser/Dissertation Committee/Editor?

There is a great deal of methodological inertia in academic disciplines. Kuhn (1996),

for instance, suggested that paradigm changes benefit from the departure*whether

by retirement or death or other means*of adherents to the old paradigm, and

the same is true for statistical paradigms. Cohen (1990) reminded his readers that

‘‘these things take time’’ (p. 1311), and that W. S. Gosset ‘‘published the t test a

decade before we entered World War I, and the test didn’t get into the psychological

statistics textbooks until after World War II’’ (p. 1311). This view suggests that

advisers, dissertation committee members, and editors may oppose or be uncomfor-

table with the idea of data transformation, regardless of whether the technique is

justified by empirical necessity or theoretical derivation. If you understand the role of

data transformation in the big picture of developing and testing theories about

human communication, and if you take seriously your role as teacher, then it may

become your job to teach others about the benefits*descriptive, inferential, and

theoretical*of data transformations.
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What Should I Read About This Topic to Be Knowledgeable?

The literature on data transformation is quite extensive and is growing. The

references below are annotated to assist the reader in creating a helpful self-taught

course. And, within reason, I am willing to discuss these matters with readers.

Coda

Scientists are detectives, going from theory to measurement to data and back to

theory. Transforming data is another step in this investigative process, and it is a

valuable step that should not be overlooked: Our job as scientists requires it.

Notes

[1] Technically, residual refers to sample data whereas error refers to population data and,

presumably, the true model. Assumptions apply to errors, but assumptions are evaluated by

examining residuals. This distinction is important when tests of assumptions are discussed.

[2] The idea that a variable is ‘‘well-behaved’’ may refer to one or several aspects of a variable.

One meaning, which is emphasized here, is that the variable of interest has a relatively

symmetric distribution. In other cases the term can refer to a dependent variable that has

homoscedastic residuals in a theoretically sensible linear regression.

[3] Indeed, a variable cannot actually be distributed normally: The tails cannot go to9� and

actual data cannot be absolutely continuous. However, a variable may approximate a normal

distribution.

[4] The transformation here is both more general and more limited than the standard Box-Cox

power transformation (see Box & Cox, 1964; Whistler, White, Wong, & Bates, 2004, p. 155),

because we have added a constant but have not used a function that incorporates l and the

geometric mean to keep the units of measurement constant. In addition, if one wished to

have the transformation correlate positively with the original scores, one can divide the

transformation by l or multiply the transformation by �1 when l is negative. See also

Bauer and Fink (1983) and Fox (1997, p. 322) regarding this matter. In SHAZAM (Whistler

et al., 2004), one may transform (1) the dependent variable only, which is referred to as the

classical Box-Cox model; (2) the dependent variable and the independent variables to the

same value of l, which is referred to as the extended Box-Cox model; (3) the independent

variables only, each to its own value of l, which is referred to as the Box-Tidwell model; and

(4) all variables, independent and dependent, each to its own value of l, which is referred to

as the combined Box-Cox and Box-Tidwell model.

[5] The constant k serves two purposes. First, some values of l will result in Y* being undefined:

For example, the logarithm of Y, if Y5 0, is undefined, as is the square root of a negative

number. Thus, if the transformation requires that all Ys be nonnegative or positive, and some

values violate this condition, then a k can be selected that corrects this problem. Hamblin

(1971a, 1971b) associates this constant with correcting for the origin in ratio scales. Mosteller

and Tukey (1977) call transformations that employ an additive constant ‘‘started’’

transformations, as in ‘‘started logs’’ and ‘‘started roots.’’ Second, in addition to varying l,

k can be varied to search for the optimal single-bend transformation.

[6] Some nonlinear relations may not be able to be converted to linearity by transforming the

original data. Such nonlinear relations are referred to as intractable.

[7] A distinction needs to be made between linear in parameters and linear in variables. For

example, a regression equation is of the form Ŷ�b0�b1X1 � . . .�bkXk, whereŶ is the

predicted value of the dependent variable, b0 is the intercept, and b1, . . . , bk are the
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coefficients of X1, . . . , Xk, respectively. This equation is linear in parameters (the set of

coefficients to be estimated). Note, however, that any given independent variable could be a

variable that is raised to a power (e.g., X2), that is an argument of an arithmetic or statistical

function (e.g., log[X]), that is a nonlinear combination of variables (e.g., Xq�Xp), or of a

form other than a variable to the first power. A regression is linear in variables if the variables

in the methods regression are variables to the first power. The general linear model is

appropriate for equations that are linear in parameters regardless of whether they are linear

in variables.

[8] There are methods to analyze bounded or truncated variables, such as Poisson or negative

binomial regression, tobit regression, probit regression, and ordinal logit regression. They

may be statistically appropriate alternatives to data transformation (Aldrich & Nelson, 1984;

Long, 1997). However, the analyst also needs to consider whether these methods elucidate

the interplay of theory and measurement that is fundamental to the discussion in this paper.

[9] Some of this discussion is taken with little change from Fink et al. (2006).

[10] Many authors of the literature on data transformation pose this same question for their

readers, reflecting in part the social scientist’s lack of familiarity and practice with data

transformation.
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