ENDIX A

MATRIX ALGEBRA: AN INTRODUCTION

Matrix algebra is one of the most useful and powerful branches of mathemat-
ics for conceptualizing and analyzing psychological, sociological, and educa-
tional research data. As research becomes more and more multivariate, the
need for a compact method of expressing data becomes greater. Certain prob-
lems require that sets of equations and subscripted variables be written. In
many cases the use of matrix algebra simplifies and, when familiar, clarifies the
mathematics and statistics. In addition, matrix algebra notation and thinking fit
in nicely with the conceptualization of computer programming and use.

This chapter provides a brief introduction to matrix algebra. The emphasis is
on those aspects that are related to subject matter covered in this book. Thus
many matrix algebra techniques, important and useful in other contexts, are
omitted. In addition, certain important derivations and proofs are neglected.
Although the material presented here should suffice to enable you to follow the
applications of matrix algebra in this book, it is strongly suggested that you
expand your knowledge of this topic by studying one or more of the following
texts: Dorf (1969), Green (1976), Hohn (1964), Horst (1963), and Searle (1966).
In addition, you will find good introductions to matrix algebra in the books on
multivariate analysis that were cited in Chapter 17.

BASIC DEFINITIONS

A matrix is an n-by-k rectangle of numbers or symbols that stand for numbers.
The order of the matrix is #n by k. It is customary to designate the rows first and
the columns second. That is, # is the number of rows of the matrix and k the
number of columns. A 2-by-3 matrix called A might be

1 2 3

114 7 5

A=, [6 6 J
Elements of a matrix are identified by reference to the row and column that
they occupy. Thus, a,, refers to the element of the first row and first column of
A, which in the above example is 4. Similarly, a.; is the element of the second
row and third column of A, which in the above example is 3. In general, then a;;

refers to the element in row i and column j.

The transpose of a matrix is obtained simply by exchanging rows and col-
umns. In the present case, the transpose of A, written A’, is

773



774 -+ Appendix A

A/

Il
wn Qs
)

If n = k, the matrix is square. A square matrix can be symmetric or asym-
metric. A symmetric matrix has the same elements above the principal diagonal
as below the diagonal except that they are transposed. The principal diagonal is
the set of elements from the upper left corner to the lower right corner. Sym-
metric matrices are frequently encountered in multiple regression analysis and
in multivariate analysis. The following is an example of a correlation matrix,
which is symmetric:

1.00 70 .30
R= |.70 1.00 .40
.30 .40 1.00

Diagonal elements refer to correlations of variables with themselves, hence
the 1’s. Each off-diagonal element refers to a correlation between two variables
and is identified by row and column numbers. Thus, r;, = ry; = .70; Foy = rgs =
.40. And similarly for other elements.

A column vector is an n-by-1 array of numbers. For example:

8.0
b = 1.3
-2.0

A row vector is a 1-by-n array of numbers:
b'=[80 13 -.20]

b’ is the transpose of b. Note that vectors are designated by lowercase
boldface letters, and that a prime is used to indicate a row vector.

A diagonal matrix is frequently encountered in statistical work. It is simply a
matrix in which some values other than zero are in the principal diagonal of the
matrix, and all the off-diagonal elements are zeros. Here is a diagonal matrix:

2.759 0 0
0 1.643 0 °
0 0 879

A particularly important form of a diagonal matrix is an identity matrix, I,
which has 1’s in the principal diagonal:

L]

I
o e
o = o
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MATRIX OPERATIONS

The power of matrix algebra becomes apparent when we explore the operations
that are possible. The major operations are addition, subtraction, multiplica-
tion, and inversion. A large number of statistical operations can be done by
knowing the basic rules of matrix algebra. Some matrix operations are now
defined and illustrated.

Addition and Subtraction

Two or more vectors can be added or subtracted provided they are of the
same dimensionality. That is, they have the same number of elements. The
following two vectors are added:

-V SRV N
+
[ =2l SN N )
O

Similarly, matrices of the same dimensionality may be added or subtracted.
The following two 3-by-2 matrices are added:

6 4 7 4 13 8
S 6| + |7 4] = |12 10
9 5 1 3 10 8

C

Now, B is subtracted from A:

6 4 7 4 -1 0
5 6/ — |7 4| =1|-2 2
9 5 1 3 8 2

A B C

Multiplication

To obtain the product of a row vector by a column vector, corresponding
elements of each are multiplied and then added. For example, the multiplica-
tion of a’ by b, each consisting of three elements, is:

b,

la, a; as] |by| = a;b; + asby + ashy
bs
a’ b

Note that the product of a row by a column is a single number called a scalar.
This is why the product of a row by a column is referred to as the scalar product
of vectors.
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Here is a numerical example:

1
4 1 3112 =@0D+M2 -+ =21
5

Scalar products of vectors are very frequently used in statistical analysis. For

example, to obtain the sum of the elements of a column vector it is premultip-
lied by a unit row vector of the same dimensionality. Thus,

2X: [t 1 1 1 1]

NV SN
I
—
[o)}

The sum of the squares of a column vector is obtained by premultiplying the
vector by its transpose.

X% r 4 1 3 17 76

R I VC RV N
Il

Similarly, the sum of the products of X and Y is obtained by multiplying the
row of X by the column of Y, or the row of Y by the column of X.

2XY: [t 4 t 3 7] 71=-11

Scalar products of vectors are used frequently in this book, particularly in
Chapters 17 and 18.

Instead of multiplying a row vector by a column vector, one may multiply a
column vector by a row vector. The two operations are entirely different from
each other. It was shown above that the former results in a scalar. The latter
operation, on the other hand, results in a matrix. This is why it is referred to as
the matrix product of vectors. For example,

3 3 12 3 9 21
-5 -5 —20 -5 —15 35
7001 4 1 3 7)=| 7 28 7 21 49
2 2 8 2 6 14
-1 -1 -4 -1 -3 -7

Note that each element of the column is multiplied, in turn, by each element
of the row to obtain one element of the matrix. The products of the first element
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of the column by the row elements become the first row of the matrix. Those of
the second element of the column by the row become the second row of the
matrix, and so forth. Thus, the matrix product of a column vector of £ elements
and a row vector of k elements is a k X k matrix.

Matrix multiplication is done by multiplying rows by columns. An illustration
is easier than verbal explanation. Suppose we want to multiply two matrices, A
and B, to produce the product matrix, C:

—_— N '

3 1 17 9 14
4 1 4

5 1|X = |25 11 22
5 6 2

2 4 28 26 16

A B C

Following the rule of scalar product of vectors, we multiply and add as follows
(follow the arrows):

BH+M® =17 GD+MO =9 OW+DHQ2) =14
G@H+M® =25 EGDH+MEO =11 A + (D) =22
D@+ @) =28 QM +@O) =2 @+ HQ2) =16

From the foregoing illustration it may be discerned that in order to multiply
two matrices it is necessary that the number of columns of the first matrix be
equal to the number of rows of the second matrix. This is referred to as the
conformability condition. Thus, for example, an n-by-k matrix can be multi-
plied by a k-by-m matrix because the number of columns of the first (k) is equal
to the number of rows of the second (k). In this context, the k’s are referred to
as the ‘‘interior’’ dimensions; n and m are referred to as the ‘‘exterior’’ dimen-
sions.

Two matrices are conformable when they have the same ‘‘interior’’ dimen-
sions. There are no restrictions on the ‘‘exterior’” dimensions when two mat-
rices are multiplied. It is useful to note that the ‘‘exterior’’ dimensions of two
matrices being multiplied become the dimensions of the product matrix. For
example, when a 3-by-2 matrix is multiplied by a 2-by-5 matrix, a 3-by-5 matrix
is obtained:

(3-by-2) x (2-by-5) = (3-by-5)

In general,

(n-by-k) x (k-by-m) = (n-by-m)

A special case of matrix multiplication often encountered in statistical work
is the multiplication of a matrix by its transpose to obtain a matrix of raw score,
or deviation, Sums of Squares and Cross Products (SSCP). Assume that there
are n subjects for whom measures on & variables are available. In other words,
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assume that the data matrix, X, is an n-by-k. To obtain the raw score SSCP
calculate X’X. Here is a numerical example:

k
n 1 2 2
1 4 1 3 7] |4 3 5 l>76 71 67
kK12 3 3 4 6\n|1 3 1|=171 74 64
2 05 1 3 5| (3 4 3| |67 64 o4
7 6 5
X/ X X'X

In statistical symbols, X'X is

EXZI 2X1X2 2)(1)(3
XX = | 3X.X, 2X3 2 X, X5
3X. X, 3X;X, 2X3

Using similar operations one may obtain deviation SSCP matrices. Such
matrices are used frequently in this book (see, in particular, Chapters 4, 17,
and 18).

A matrix can be multipled by a scalar: each element of the matrix is multi-
plied by the scalar. Suppose, for example, we want to calculate the mean of
each of the elements of a matrix of sums of scores. Let N = 10. The opera-
tion is

20 48 20 4.8
1130 40| =1[30 40
10
35 39 3.5 39
Each element of the matrix is multiplied by the scalar !/10.

A matrix can be multiplied by a vector. The first example given below is
premultiplication by a vector, the second is postmultiplication:

7 3
6 S5 21|17 2| =[8 30]
4 1
6
7 7 4 85
5| = <
3 2 1 30
2

Note that in the latter example, (2-by-3) x (3-by-1) becomes (2-by-1). This sort
of multiplication of a matrix by a vector is done frequently in multiple regres-
sion analysis (see, for example, Chapter 4).

Thus far, nothing has been said about the operation of division in matrix
algebra. In order to show how this is done it is necessary first to discuss some
other concepts, to which we now turn.
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DETERMINANTS

A determinant is a certain numerical value associated with a square matrix.
The determinant of a matrix is indicated by vertical lines instead of brackets.
For example, the determinant of a matrix B is written

4 2
detB = |B| =
: 1
B

The calculation of the determinant of a 2 X 2 matrix is very simple: it is the
product of the elements of the principal diagonal minus the product of the re-
maining two elements. For the above matrix,

4 2
|B| = =@B - =20-2=18
1 5
or, symbolically,
bll b12
|B| = = b11b22 - b12b21
bzl b22

The calculation of determinants for larger matrices is quite tedious, and will
not be shown here (see references cited in the beginning of the chapter). In any
event, matrix operations are most often done with the aid of a computer. The
purpose here is solely to indicate the role played by determinants in some ap-
plications of statistical analysis.

Applications of Determinants

To give the flavor of the place and usefulness of determinants in statistical
analysis, we turn first to two simple correlation examples. Suppose we have
two correlation coefficients, r,, and r,,, calculated between a dependent vari-
able, Y, and two variables, 1 and 2. The correlations are r,, = .80 and r,, =
.20. We set up two matrices that express the two relations, but this is done
immediately in the form of determinants, whose numerical values are calcu-
lated:

1 y
1.00 .80
= (1.00)(1.00) — (.80)(.80) = .36
.80  1.00

and
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2 y
1.00 .20
= (1.00)(1.00) — (.20)(.20) = .96
20 1.00

The two determinants are .36 and .96.
Now, to determine the percentage of variance shared by y and 1 and by y and
2,.square the r’s:

2, = (802 = .64
1l = (200 = .04

Subtract each of these from 1.00: 1.00 — .64 = .36, and 1.00 — .04 = .96. These
are the determinants just calculated. They are 1 — 2, or the proportions of the
variance not accounted for.

As an extension of the foregoing demonstration, it may be shown how the
squared multiple correlation, R2, can be calculated with determinants:

R
Rﬁ.m...k =1- l l
IR, |

where |R| is the determinant of the correlation matrix of al the variables, that
is, the independent variables as well as the dependent variable; Rx| is the
determinant of the correlation matrix of the independent variables. From the
foregoing it can be seen that the ratio of the two determinants indicates the
proportion of variance of the dependent variable, Y, not accounted by the in-
dependent variables, X’s. (See Study Suggestions 6 and 7 at the end of this
Appendix.)

The ratio of two determinants is also frequently used in multivariate analyses
(see the sections of Chapters 17 and 18 dealing with Wilks’ A).

Another important use of determinants is related to the concept of linear
dependencies, to which we now turn.

Linear Dependence

Linear dependence means that one or more vectors of a matrix, rows or
columns, are a linear combination of other vectors of the matrix. The vectors a’
=[3 1 4]andb’ =[6 2 8]aredependentsince 2a’ =b’'. If one vector is a
function of another in this manner, the coefficient of correlation between them
is 1.00. Dependence in a matrix can be defined by reference to its determinant.
If the determinant of the matrix is zero it means that the matrix contains at least
one linear dependency. Such a matrix is referred to as being singular. For
example, calculate the determinant of the following matrix:

3 1

=32 - (1) =0
6 2
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The matrix is singular, that is, it contains a linear dependency. Note that the
values of the second row are twice the values of the first row.

A matrix whose determinant is not equal to zero is referred to as being non-
singular. The notions of singularity and nonsingularity of matrices play very
important roles in statistical analysis. For example, in Chapter 8 issues regard-
ing multicollinearity are discussed in reference to the determinant of the corre-
lation matrix of the independent variables. As is shown below, a singular matrix
has no inverse.

We turn now to the operation of division in matrix algebra, which is pre-
sented in the context of the discussion of matrix inversion.

MATRIX INVERSE

Recall that the division of one number into another number amounts to multi-
plying the dividend by the reciprocal of the divisor:

SR
S| =

For example, 12/4 = 12(1/4) = (12)(.25) = 3. Analogously, in matrix algebra,
instead of dividing a matrix A by another matrix B to obtain matrix C, we
multiply A by the inverse of B to obtain C. The inverse of B is written B~1.
Suppose, in ordinary algebra, we had ab = ¢, and we wanted to find b. We
would write

20

In matrix algebra, we write
B=A"1C

(Note that C is premultiplied by A~! and not postmultiplied. In general, A~'C #
CA™L)

The formal definition of the inverse of a square matrix is: Given A and B, two
square matrices, if AB = I, then A is the inverse of B.

Generally, the calculation of the inverse of a matrix is very laborious and,
therefore, error prone. This is why it is best to use a computer program for such
purposes (see below). Fortunately, however, the calculation of the inverse of a
2 X 2 matrix is very simple, and is shown here because: (1) it affords an illustra-
tion of the basic approach to the calculation of the inverse; (2) it affords the
opportunity of showing the role played by the determinant in the calculation of
the inverse; (3) inverses of 2 X 2 matrices are frequently calculated in some
chapters of this book (see, in particular, Chapters 4, 17, and 18).

In order to show how the inverse of a 2 X 2 matrix is calculated it is neces-
sary first to discuss briefly the adjoint of a such a matrix. This is shown in
reference to the following matrix:
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The adjoint of A is:
adj A =

Thus, to obtain the adjoint of a 2 X 2 matrix interchange the elements of its
principal diagonal (a and d in the above example), and change the signs of the
other two elements (b and ¢ in the above example).!

Now the inverse of a matrix A is:

aiA_ 1 gia

MU T T

where | A| is the determinant of A.
The inverse of the following matrix, A, is now calculated.

6 2
A =
8 4
First, calculate the determinant of A:
6 2
|A] = = (6)4) — (2)®) =8
8 4
Second, form the adjoint of A:
4 2
adj A =
-8 6

Third, multiply the adj A by the reciprocal of IAI to obtain the inverse of A:

| | 4 -2 S0 —-.25
=——adjA =~ =
A "9 7%
-8 6 —1.00 75

A-l

'For a general definition of the adjoint of a matrix, see references cited in the beginning of this
chapter. Adjoints of 2 X 2 matrices are used frequently in Chapters 17 and 18.
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It was said above that A~'A = 1. For the present example,

500 —.25 6 2 1.00 0
A_lA = =
—1.00 75 8 4 0 1.00
A A I

It was said above that a matrix whose determinant is zero is singular. From
the foregoing demonstration of the calculation of the inverse it should be clear
that a singular matrix has no inverse. Although one does not generally en-
counter singular matrices in social science research, an unwary researcher may
introduce singularity in the treatment of the data. For example, suppose that a
test battery consisting of five subtests is used to predict a given criterion. If,
under such circumstances, the researcher uses not only the scores on the five
subtests but also a total score, obtained as the sum of the five subscores, he or
she has introduced a linear dependency (see above), thereby rendering the
matrix singular. Similarly, when one uses scores on two scales as well as the
differences between them in the same matrix. Other situations when one should
be on guard not to introduce linear dependencies in a matrix occur when coded
vectors are used to represent categorical variables (see Chapter 9).

CONCLUSION

It is realized that this brief introduction to matrix algebra cannot serve to dem-
onstrate its great power and elegance. To do this, it would be necessary to use
matrices whose dimensions are larger than the ones used here for simplicity of
presentation. To begin to appreciate the power of matrix algebra it is suggested
that you think of the large data matrices frequently encountered in behavioral
research. Using matrix algebra one can manipulate and operate upon large mat-
rices with relative ease, when ordinary algebra will simply not do. For example,
when in multiple regression analysis only two independent variables are used, it
is relatively easy to do the calculations by ordinary algebra (see Chapter 3). But
with increasing numbers of independent variables, the use of matrix algebra for
the calculation of multiple regression analysis becomes a must. And, as is
amply demonstrated in Parts 3 and 4 of this book, matrix algebra is the language
of linear structural equation models and multivariate analysis. In short, to un-
derstand and be able to intelligently apply these methods it is essential that you
develop a working knowledge of matrix algebra. It is therefore strongly
suggested that you do some or all the calculations of the matrix operations
presented in the various chapters, particularly those in Chapter 4, and in Parts 3
and 4 of the book. Furthermore, it is suggested that you learn to use computer
programs when you have to manipulate relatively large matrices. Of the various
computer programs for matrix manipulations, one of the best and most versatile
is the MATRIX program of the SAS package. Examples of applications of this
program are given in Chapters 8 and 15.
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STUDY SUGGESTIONS

1. You will find it useful to work through

some of the rules of matrix algebra.
Use of the rules occurs again and again
in multiple regression, factor analysis,
discriminant analysis, canonical corre-
lation, and multivariate analysis of var-
iance. The most important of the rules
are as follows:

(1), ABC = (AB)C = A(BC)

This is the associative rule of matrix
multiplication. It simply indicates that
the multiplication of three (or more)
matrices can be done by pairing and
multiplying the first two matrices and
then multiplying the product by the re-
maining matrix, or by pairing and mul-
tiplying the second two and then multi-
plying the product by the first matrix.
Or we can regard the rule in the follow-
ing way:

AB = D, then DC
BC = E, then AE

2)A+B=B+A
That is, the order of addition makes no
difference. And the associative rule

applies:

A+B+C=(A+B)+C
=A+®B+0)

(3) AB + C) = AB + AC

This is the distributive rule of ordinary
algebra.

(4) (AB)' = B'A’

The transpose of the product of two
matrices is equal to the transpose of
their product in reverse order.

(5) (AB)'=B'A"!

This rule is the same as that in (4),
above, except that it is applied to mat-
rix inverses.

6) AAl=A"A=1
This rule can be used as a proof that the

calculation of the inverse of a matrix is
correct.

(7) AB # BA

This is actually not a rule. It is included
to emphasize that the order of the mul-
tiplication of matrices is important.

Here are three matrices, A, B, and C.
2 3 3 4 0 2
1 2 0 1 5 3
A B C

(a) Demonstrate the associative rule
by multiplying:

A X B; then AB X C
B X C; then A X BC

(b) Demonstrate the distributive rule
using A, B, and C of (a), above.

(c) Using B and C, above, show that
BC # CB.

. What are the dimensions of the matrix

that will result from multiplying a 3-by-
6 matrix A by a 6-by-2 matrix B?

. Given:
1.26 —.73 4.11 1.12
A=|212" 134 | B=
4.61 —.31 —-2.30 -.36
What is AB?

. When it is said that a matrix is singular,

what does it imply about its deter-
minant?

. Calculate the inverse of the following

matrix:



6.

7.

15 -

6 12
In a study of Holtzman and Brown
(1968), the correlations among mea-
sures of study habits and attitudes,

scholastic aptitude, and grade-point
averages were reported as follows:

SHA SA GPA
SHA 1.00 32 .55
SA .32 1.00 .61
GPA .55 .61 1.00

The determinant of this matrix is .4377.
Calculate R? for GPA with SHA and
SA. (Hint: You need to calculate the
determinant of the matrix of the inde-
pendent variables, and then use the two
determinants for the calculation of R2.)
Liddle (1958) reported the following
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correlations among intellectual ability,
leadership ability, and withdrawn mal-
adjustment:

IA LA WM
IA 1.00 .37 -.28
LA 37 1.00 —-.61
WM -.28 —-.61 1.00

The determinant of this matrix is .5390.

Calculate:

(a) the proportion of variance of WM
not accounted for by IA and LA.

(b) R?% of WM with IA and LA.

(c) using matrix algebra, the regression
equation of WM on IA and LA.
(See Chapter 4 for matrix equa-
tion.)

. It is strongly suggested that you study

one or more of the references cited in
the beginning of this Appendix.

ANSWERS
1. (@)
55 45
ABC =
30 24
(b)
21 24
AB+C) =
13 14
©
20 18 0 2
BC = CB =
5 3 15 23
2. 3-by-2
3.
6.8576  1.6740
AB = | 56312 1.8920
19.6601  5.2748

4. The determinant is zero.



