Neuendorf
Transforming Data

General guidelines:

1. Data transformations are used primarily for: (@) correcting the distribution of a variable that
is not normal, (b) correcting for heteroscedasticity, or (c) linearizing a nonlinear relationship.

2. Transformations should be applied to the IV except in the case of heteroscedasticity. This is
particularly true for multivariate situations, such as multiple regression (Fox, 1997).

3. As Fox (1997) says, an effective transformation can be selected analytically or by trial and
error. (“It’s a creative process” some have said.)

4. As noted by Hair et al. (2006), for a noticeable effect from transformations, the ratio of a
variable’s mean to its standard deviation should be less than 4.0. When the transformation may
be performed on either of two variables, select the variable with the smallest such ratio.

5. Always remember that a transformed variable is now a new variable, and needs to be
interpreted as such. (See Figure D below.)

6. Always check the effect of the transform before proceeding with further analyses.

Types of transformation:

l. Transforming data to correct for deviations from normality in a univariate distribution.
As noted by Fox, descending the ladder of powers (e.g., to the square root of X or log X)
tends to correct a positive skew; ascending the ladder of powers (e.g., to X2 or X3) tends
to correct a negative skew.
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Problem Remedy
Positive skew take a root (e.g., square root) or logarithm

(e.g., In, log, ): from less extreme to more
extreme, they are: square root, In, log, ,

Negative skew use an exponent (e.g., square, cube): from less
extreme to more extreme, they are: square,
cube, exp (¢¥), 10*

Positive kurtosis (lepto, “pointy”)  ??—in search of a good transform

Negative kurtosis (platy, “flat™) take the inverse (1/X or 1/Y)

Transforming data to correct for heteroscedasticity (DV exhibits unequal variance across
the range of an IV). As Hair et al. note, heteroscedasticity is also due to the
distribution(s) of the variable(s); hence, the first step is to check for non-normality of
each of the variables, and transform accordingly.

Transforming data to correct for heteroscedasticity of residuals in multiple regression
(residuals exhibit unequal variance of residuals (errors of prediction) across the range of
the predicted DV). Hair et al. offer the following:

Problem Remedy
Cone opens to the right take the inverse (1/X)
Cone opens to the left take a root (e.g., square root of X)

Transforming data to linearize a nonlinear relationship. (See Figures A through D
below.)

*The introduction of nonlinear components in a multiple regression model—polynomials.
For example, X2 and X2 are both polynomial versions of X that may be included in a
regression model.

*Monotonic vs. non-monotonic relationships
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Figure A: An example of linearizing a monotonic, nonlinear relationship
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Figure 4.4. How a power transformation of ¥ or X can make a simple monotone
nonlinear relationship linear. Panel (2) shows the refationship ¥ = 1 X*. In panel

(b), Y is replaced by the transformed value ¥' = Y'2_ Tn panel {c), X is replaced by the
transformed value X = X°.



Figure B: Examples of monotonic and non-monotonic nonlinear relationships
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Figure 4.5. (4) A simple monorone relationship between Y and X: () a monotone
relationship that is not simple; (¢) a relationship that is simple but not monotone. A
power transformation of ¥ or X can straighten (a), bur net (&} or (¢}.




Figure C: The “bulging rule” for transforming nonlinear, monotonic relationships
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Figure 4,6. Tukey and Mosteller’s “bulging rule™: The direction of the “bulge” indicates

the direction of the power transformation of ¥ andfor X to straighten the relationship
between them.

Simple monotone nonlinearity can often be corrected by a power
transformation of X, of ¥, or of both variables. Mosteller and
Tukey’s “bulging rule” assists in the selection of a transformation.




Figure D: An application of the bulging rule. . . that also addressed positive
skewness in both variables
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Figure 4.9. Scatterplor of infant mortality rate versus income in U.S. dollars, for 101
natians ¢iréa 1970, The nonparametric regression shawn on the plot was calculated by
robust local regression. Several outlying observations are flagged.

Snarree of Data: Leinhardr and Wasserman (1978
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Figure 4.10. Scatterplot of log,, infant mortality rate versus log,, per-capita income for
101 nations. The solid line was calculated by least-squares linear regression, omitting
Saudi Arabia and Libva; the broken line was calculated by robust local regression.



