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Neuendorf 

Structural Equation Modeling 

 

Structural equation modeling is useful in situations when we have a complicated set of 

relationships among variables as specified by theory. Two main methods have been employed to 

assess whether a complex and/or multi-step “causal” model is explained by the data at hand: (1) 

Structural equation modeling (SEM) solves multiple equations simultaneously, an improvement 

over (2) the older, often by-hand process of path analysis. SEM allows for the combining of a 

structural/theoretic model with a measurement model.  As Hair et al. note, SEM is “an extension 

of several multivariate techniques we have already studied, most notably multiple regression and 

factor analysis.”   

 

Model: 

 

In SEM, the researcher literally builds a model!  e.g.,  

 

     
Complex!! (See larger version near end of this handout) 

 

The components of such an SEM model may include: 

 1.  Exogenous latent constructs (ovals with no predictors) 

 2.  Endogenous latent constructs (ovals with predictors) 

 3.  Measured/observed variables (rectangles) 

 4.  Errors of measurement (circles attached to measured variables) 

 5.  Errors of prediction (circles attached to endogenous latent constructs or variables) 

 6.  Causal paths (single-headed straight arrows) 

 7.  Correlational links (double-headed curved arrows) 

 



 

 

2 

Assumptions: 

 

1. Measures are at the I/R level, independent observations, and distributions are normal and 

multivariate normal. 

 

2. Even though SEM allows for multi-step models, theoretic constructs are deemed either 

“exogenous” (similar to independent variables) and “endogenous” (similar to dependent 

variables).  Exogenous means that the construct is not predicted by any other construct; 

endogenous means there's at least one causal predictor of that variable (i.e., there is at 

least one causal path leading to it, a single-headed arrow). 

 

3. SEM allows for both (1) unmeasured, “latent” variables/constructs (structural/theoretic 

model only) and (2) measured, “observed” variables (measurement model or 

structural/theoretic model). In AMOS, the latent variables are diagrammed as ovals, and 

the measured/observed variables are rectangles. These rectangles represent actual 

measured variables in an SPSS data set; when building the model, you must link them up. 

 

4. Relationships among the constructs and variables are linear. 

 

5. Analysis is at the aggregate level. (e.g., In LISREL, the "data" consist of a correlation 

matrix--already aggregated over many respondents.) 

 

6. The model and all its components need to be “identified”--generally, identification is 

related to the number of equations that AMOS needs to solve for the model, and the 

number of coefficients to be estimated. In essence, identification indicates that the 

multiple equations implied by the model are “solvable.” [The attached page from Asher 

uses algebraic equations as a useful analogy.]  The issue of model identification is a very 

complex one--you can't just visually peruse a model and declare it "identified."  Some 

treatments of identification examine two “practical” conditions that test for model 

identification:  The order condition and the rank condition (see attached pages from 

Maruyama). For a fuller discussion, see Asher's Causal Modeling, Blalock's Theory 

Construction or Heise's Causal Analysis. 

 

Decisions to make: 

 

1. Will there be a structural (theoretic) model?  Will there be a measurement model?  Will 

both be included?   

  

 Typically, both a structural/theoretic model and a measurement model will be included. 

An exception would be a structural/theoretic model in which all constructs are each 

measured by a single measure. Another exception would be a measurement model for 

CFA (confirmatory factor analysis), which may have no structural/theoretical causal paths 

specified.   

 

2. What will be the causal paths among the theoretic constructs?  Will there be any 

correlational links specified between exogenous variables?  Any correlational links 

between errors of prediction on the endogenous variables?  Any correlational links 

between measurement errors in the measurement model? 
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3. Will there be any nonrecursive "feedback loops" in the model? 

 

4. What estimation procedure will be used?  LISREL offers maximum likelihood (default), 

two-stage least squares and several other options.  AMOS offers maximum likelihood 

(default), generalized least squares and several other options. 

 

Statistics: 

 

1. Goodness of fit indices (absolute, incremental, or parsimony).  Hair has a fine description 

of the choices on pp. 648-652. Arbuckle and Wothke have formulas and a classification 

scheme. Generally, these goodness of fit indices assess whether the model as a whole is 

"good" (well specified, fitting the data at hand), sort of like R2 in multiple regression but 

here for everything going on in the model.  Some of the more commonly used goodness 

of fit measures are: 

Chi-square:  we want it to be small, nonsig. 

GFI:  absolute goodness of fit index; we want it to be large, near 1 

AGFI:  adjusted GFI; we want it to be large, over .90 

NFI:  normed fit index; an incremental goodness of fit index; a recent “practical 

criterion of choice” (Byrne); we want it to be large, over .90 

CFI:  comparative fit index; an incremental goodness of fit index; like the NFI 

with sample size taken into account; we want it to be large, over .90

RMSEA:  Root mean square error of approximation; avg. correlation among 

residuals; we want it to be small, substantially smaller than the original variable 

intercorrelations in the raw data matrix; Byrne cites several sources and presents 

standards of .05 or smaller as a good fit, .08 or smaller as a reasonable fit, and .08-

.10 as “mediocre fit.” 

 

2. Path coefficients--are essentially like partial regression coefficients; they show the unique 

(partial), unstandardized or standardized contribution of one variable to another's 

variance.  For each coefficient, LISREL also provides a SE and a t-test to test whether it 

differs significantly from 0. AMOS provides a SE and a C.R. (critical ratio), which is 

Estimate/SE, and is equivalent to LISREL’s t.  In both cases, anything greater than 1.96 is 

considered significant. AMOS will show the actual level of p. 

 

3. Multiple R2s--one for each endogenous construct/variable. Indicates the proportion of the 

variance of that variable that is explained by the model.  

 

4. Degrees of freedom = (roughly) # of elements in the correlation matrix - # of parameters 

to be estimated. It cannot be less than zero (if so, the model in total is not identified).  

Notice df is not related to n. 

 

5. Modification indices--for each unspecified potential path or link in a model, LISREL or 
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AMOS can calculate how much the Chi-square goodness of fit indicator will be reduced 

by adding that path or link. If the incremental improvement is significant, you may wish 

to consider adding the path/link and rerunning. In AMOS, you cannot obtain modification 

indices if you have any missing data. 

 

6. IF you have a measurement model--"construct reliabilities" and "average variance 

extracted" may be hand-calculated from loadings (relationships between measured 

variables and structural constructs).  See Hair p. 687 for formulae. 
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From: Asher, H. D. (1983). Causal modeling (2nd ed.). Newbury Park, CA: Sage Publications. 

 

 

http://academic.csuohio.edu/kneuendorf/c63111/ASage.pdf
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From:  Maruyama, G. M. (1998). Basics of structural equation modeling.  Thousand Oaks, CA: 

Sage Publications. 
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From:  Asher, H. D. (1983). Causal modeling (2nd ed.). Newbury Park, CA: Sage Publications. 

 

 

http://academic.csuohio.edu/kneuendorf/c63111/ASage.pdf
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Sample AMOS input. 
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Sample AMOS output. 

 


