Neuendorf Dummy Coding and Effect(s) Coding

For a nominal variable with c categories, you may create up to c-1 dummy or effect variables. For all equations below, assume the all-standardized situation.

Imagine a four-group religion variable: All respondents are either self-declared Christian, Muslim, Jewish, or Other. From this single nominal variable, three dummies (or effect coded variables) may be created.

```
DUMMY CODING
```

	\underline{D}_1 \underline{D}_2	\underline{D}_3
Christian Muslim Jewish Other	$\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	0 0 1 0 – [The chosen "reference category"]
Christian	$Y' = \beta_1 D_1 + \beta_2 I$ $= \beta_1 D_1 +$ $= \beta_1 D_1$ $= \beta_1$	$\begin{array}{l} D_2 + \beta_3 D_3 \\ 0 & + & 0 \end{array}$ [because $D_1 = 1$]
Muslim	$Y' = \beta_1 D_1 + \beta_2$ $= 0 + \beta_2 D_2$ $= \beta_2$	$ \beta_2 D_2 + \beta_3 D_3 \beta_2 D_2 + 0 $ [because $D_2 = 1$]
Jewish	$Y' = \beta_1 D_1 + \beta_2 = 0 + \beta_3 D_3 = \beta_3$	$ \begin{array}{l} \beta_2 D_2 \ + \ \beta_3 D_3 \\ 0 \ \ + \ \beta_3 D_3 \end{array} \\ \mbox{[because } D_3 = 1] \end{array} $
Other	$Y' = \beta_1 D_1 + \beta_2$ $= 0 + \beta_1 + \beta_2$ $= 0 + \beta_1 + \beta_2$	$\begin{array}{r} \beta_2 D_2 + \beta_3 D_3 \\ 0 + 0 \end{array}$
Original Category	Expected	ed value (Y')
Christian Muslim Jewish Other	β ₁ β ₂ β ₃ 0	

Hence:

 β_1 is the difference between the expected values of Christian and Other,

 β_2 is the difference between the expected values of Muslim and Other, and

 β_3 is the difference between the expected values of Jewish and Other.

Compare the meaning of the <u>partial</u> regression coefficients with the simple r's between Y and D1, D2, and D3.

EFFECT CODING

	\underline{E}_1	<u>E</u> 2	<u>E</u> ₃		
Christian Muslim Jewish Other	1 0 0 -1	0 1 0 -1	0 0 1 -1	_	[The chosen "reference category"]
Christian Muslim Jewish	Y' = Y' = Y' =	All	three	same	as for dummy coding
Other	$ \begin{array}{l} \mathbf{Y}^{*} &= \boldsymbol{\beta} \\ &= \boldsymbol{\beta} \\ &= 0 \end{array} $	${}_{1}E_{1} + {}_{1}(-1) + {}_{2}\beta_{1}$	$ \beta_2 E_2 \beta_2(-1) - \beta_2 $	$+\beta_3$ $+\beta_3$	E ₃ (-1) - β ₃
Original Category		Expect	ed valu	ue (Y	<u>')</u>
Christian Muslim Jewish Other		$ \begin{array}{c} \beta_1 \\ \beta_2 \\ \beta_3 \\ 0 - \beta_1 \end{array} $	- β2	- β	3

Hence:

- β_1 is $\frac{1}{2}$ the difference between the expected values of Christian and the other three groups (Muslim, Jewish, Other); the sum of the coefficients for those three groups is $-\beta_1$
- β_2 is $\frac{1}{2}$ the difference between the expected values of Muslim and the other three groups (Christian, Jewish, Other); the sum of the coefficients for those three groups is $-\beta_2$
- β_3 is $\frac{1}{2}$ the difference between the expected values of Jewish and the other three groups (Christian, Muslim, Other); the sum of the coefficients for those three groups is $-\beta_3$

Again, compare the meaning of the <u>partial</u> regression coefficients with the simple r's between Y and E1, E2, and E3.

IN SUM, THEN:

1. For dummy coding, each test of a β indicates the difference between the dummy group and the "reference category" (the category/group that got all 0s).

2. For effect coding, each test of a β indicates the difference between the effect group and all other groups combined.

3. Also, to test for the impact of a set of dummies or effect variables, include all as a block and look at the size and significance of the R^2 change.

3/19