Neuendorf Post Hoc Tests–A Primer

(So many to choose from. . .)

Post hoc tests ("after the fact" tests) allow assessments of comparisons among IV groups, after the overall ANOVA-type test of a given effect (main effect or interaction) has been executed.

 Cumulative Type I Error (α) Acknowledges that Type I error can accumulate across tests within a single analysis plan.

PC (per comparison) error-traditional α , assumes tests are independent vs. FW (familywise) error:

 $\alpha_{\rm FW} = 1 - (1 - \alpha)^{\rm C}$

0.FW - (- 0.)

where C = # of orthogonal comparisons (the calculation for nonorthogonal comparisons is more complex)

2. Planned contrasts vs. Post hocs

Planned contrasts:

A priori Asks "Is this particular difference significant?" Part of the design α_{FW} is typically ignored; α is used, sometimes with a Bonferroni adjustment Maximum #? Keppel says there is no agreement on this... $\sim df_{A}$... theory

Post hocs:

A posteriori (actually another name for post hocs...) Asks "Which differences are significant?" Not part of the design-often unexpected findings α_{FW} controlled via special evaluation procedures Maximum #? See p. 167 Keppel for a simple formula.

- 3. Post hoc "Types"
 - A. Unrestricted comparisons after screening via "omnibus F" If F is significant, then may proceed Criticized by many, because it doesn't really control α_{FW} The other types at least try–Keppel calls them "alpha-adjusted techniques"

Example stat procedure–**Fisher's LSD** (as described above– omnibus F followed by unrestricted comparisons)

B. All comparisons, pairwise and complex

Example stat procedure–Scheffe's test

Uses regular F, with "special" critical value:

 $F_s = (k - 1)F_{crit}$ where k = # of group means

C. Total set of pairwise comparisons Possible # = (a)(a-1)/2

Example stat procedure-**Tukey test** (one of Tukey's many contributions)

Finds the minimum pairwise difference between means that must be exceeded to be significant with the Tukey test:

$$\overline{d}_T = q_T \sqrt{\frac{MS_{S/A}}{n}}$$

where q_T = an entry in the table of the studentized range statistic $MS_{S/A}$ = the error term for the overall ANOVA n = the sample size for each group

Example stat procedures–see also the **Newman-Keuls procedure** and the similar **Duncan procedure** as described by Winer (1971)

D. *Comparing one group to all others* e.g., Control group vs. several experimental groups

Example stat procedure-Dunnett test

Calculates the control-experimental mean differences and compares them against a critical mean difference (\overline{d}_{D}) that must be exceeded to be significant:

$$\overline{d}_D = q_D \sqrt{\frac{2(MS_{S/A})}{n}}$$

where $q_D =$ an entry in the Dunnett table (see Keppel) MS_{S/A} = the error term for the overall ANOVA n = the sample size for each group

4. An all-purpose test? An easy way out? The **Bonferroni technique:**

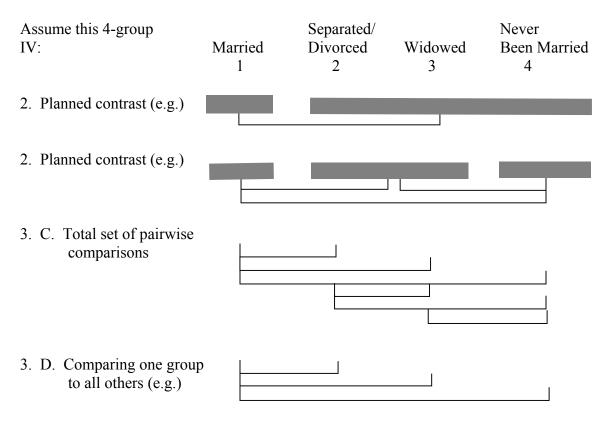
 $\alpha_{\rm BON} = \alpha_{\rm FW} / \# \text{ of tests}$

Hair et al. apply this to k-groups as a post hoc. Keppel applies this to multiple planned contrasts.

OR, Garson's online version:

 $\alpha_{\text{BON}} = 1 - (1 - \alpha 1)(1 - \alpha 2)(1 - \alpha 3)...(1 - \alpha n)$

where $\alpha 1$ to αn are the set levels of alpha for a series of tests. For example, a series of 4 tests at alpha = .01 would use a Bonferroni corrected alpha criterion of 1 - .99⁴ = .039. (This is equivalent to the FW (familywise) error formula on p. 1.)



Graphical representations for selected contrasts and post hoc families:

3. A. & B. –too complex to draw here

References

- Keppel, G. (1991). *Design and analysis: A researcher's handbook* (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.
- Winer, B. J. (1971). *Statistical principles in experimental design* (2nd ed.). New York: McGraw-Hill Book Company.

3/08