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Abstract

I examine the optimal inflation target in a dynamic stochastic New Keynesian

model featuring an occasionally binding zero lower bound on nominal interest rate

(ZLB). To this end, I first calibrate the shock to generate the risk of hitting the ZLB

that matches the U.S. data, based on a fully nonlinear method. I then resolve the model

with different inflation targets and find that the optimal target is 3.4%. In addition,

the optimal inflation target is a nonlinear function of the risk of hitting the ZLB and

inflation indexation. It is always greater than 2% if the risk is greater than 2.5% or if

the inflation indexation is larger than 0.5. Finally, the linear-quadratic (LQ) approach

overestimates the true optimal inflation target. In particular, based on the benchmark

calibration, it generates an optimal target of 5.5%, compared to 3.4% found by the

fully-nonlinear method.

JEL classification: E52, E58.

Keywords: Zero lower bound; Optimal inflation target; Inflation indexation;

Rotemberg price adjustments.
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1 Introduction

Inflation targeting is a very important monetary policy strategy that helps create a nominal

anchor to tie down the price level, so that central bankers are able to obtain their price

stability objectives. Since the early 1990s, advanced economies started using this strategy,

either explicitly, i.e. New Zealand, Canada and the UK, or implicitly, for example the US.

Although different countries pursue different inflation rates, the conventional inflation target

is around 2% for the advanced economies.

However, since the late 1990s when Japan fell into the liquidity trap with binding ZLB,

economists, such as Krugman (1998), have debated whether central banks should raise their

inflation targets above the status quo of 2% and what the optimal inflation target should be.

These topics are even more important today as the US target federal funds rate has reached

the zero bound since December 2008 and the US economy experienced its greatest slump

since the Great Depression. Prominent economists, including Blanchard et al. (2010) and

Ball (2013), suggested that policymakers might consider an inflation target of around 4%.

The suggestion lies under the argument that a significantly higher inflation target results

in higher expected inflation and, as a result, higher nominal interest rates. This creates

leeway for the central bank to deal with a particularly adverse demand shock before the

interest rate hits the ZLB. However, higher inflation is always associated with higher price

adjustment costs if firms do not foresee their future optimal prices, which is always the case,

and want to adjust their prices later. In addition, higher inflation might generate a larger

inefficiency wedge due to larger price distortion if firms are not able to charge their prices.

This paper aims at answering the question: what the optimal inflation target is in a

fully nonlinear dynamic stochastic general equilibrium (DSGE) model with an occasionally

binding ZLB. To this end, I first carefully compute the risk, or the unconditional probability,

of hitting the ZLB using the US interest rates data. I then calibrate the model to match the
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risk using a fully nonlinear method.

I find that, based on the US interest rates data, the unconditional probability of hitting

the ZLB in the US would have been 16.1% had the Fed targeted the inflation rate of 2%.

Calibrating the shock to match this risk and the inflation indexation found in empirical

studies, I resolve the model under different inflation targets and find that the optimal inflation

rate is 3.4%, which is smaller than 4% suggested by Blanchard et al. (2010) and Ball (2013),

but much larger than the conventional target of 2% pursued by many advanced economies

including the US.

In addition, I find that the optimal inflation target is nonlinearly associated with the risk

of hitting the ZLB and the degree of inflation indexation. It increases at a decreasing rate

with the risk, but at an increasing rate with the degree of inflation indexation. However, it

is always greater than 2% when the unconditional probability of hitting the ZLB is greater

than 2.5% or when the inflation indexation is greater than 0.5%.

Finally, I find that, based on the benchmark calibration, the LQ approach produces an

optimal inflation target of 5.5%, which is much larger than 3.4% found by the fully-nonlinear

approach. Because the fully-nonlinear approach captures all the nonlinearities in the model,

it would generate a more accurate optimal inflation target. So, the linear-quadratic (LQ)

approach substantially overestimates the true optimal inflation target.

The related literature includes Schmitt-Grohe and Uribe (2010), Billi (2011), Coibion

et al. (2012), and Ngo (2014).1 However, all these papers are different from the current

paper in many aspects. In Schmitt-Grohe and Uribe (2010), the central bank is able to

commit to policy plans and the unconditional probability of hitting the ZLB is 0%. They

find that the optimal inflation rate is around 0%.

Ngo (2014) also finds an optimal inflation rate of 0%. However, the central bank in his

1There has been extensive literature on optimal inflation target without the ZLB, for example see Anti-

nolfi et al. (2016) for more information.
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model conducts discretionary monetary policy instead of a Taylor rule, as in this paper. In

addition, Ngo (2014) does not allow inflation indexation in his model, and the unconditional

probability of hitting the ZLB is much lower than the probability we observed in the US data.

Moreover, he models the Calvo price adjustment instead of the Rotemberg price adjustment

as in this paper.

Coibion et al. (2012) find that the optimal inflation rate is around 1.5% in their benchmark

model. They calibrate the model such that the unconditional probability of hitting the ZLB

is about 5% post World War II, or approximately three years out of sixty years. This

unconditional probability is much smaller than what I compute in this paper. The reason is

that, to compute the risk of hitting the ZLB, Coibion et al. (2012) use a shorter time series

of federal funds target rates. In particular, they assume that the ZLB would end in 2011.

In addition, they do not address potential biases that might arise when using the nominal

interest to calibrate the risk of hitting the ZLB.

Moreover, I allow a higher degree of inflation indexation that matches empirical studies,

and I use the Rotemberg pricing scheme instead of the Calvo pricing scheme as in their paper.

Note that Rotemberg pricing scheme together with the symmetric equilibrium assumption

would eliminate the relative price distortion. Therefore, it would lower the cost of higher

steady state inflation.

Billi (2011) finds that, in the case of a Taylor rule, the optimal inflation target is about

8%, which is much larger than the optimal inflation rate found in this paper. In his paper,

Billi (2011) also allows inflation indexation. However, he uses the past inflation as a proxy

for the expected inflation. In this paper, I use the inflation target as the proxy for the

expected inflation.2 As a result, deflationary/disinflationary episodes are less persistent in

2Empirical studies, such as Ascari et al. (2011), find that firms use both the past inflation and the

inflation target to index their prices. It is ideal to investigate both of them at the same time. However,

to improve numerical efficiency, I decide to use only the inflation target for inflation indexation. Studying
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my model, and the central bank pursues a smaller inflation target.

Another key difference between this paper and the other two papers, Billi (2011) and

Coibion et al. (2012), is that I solve a fully nonlinear model instead of using an LQ approxi-

mation of the model.3 This plays an important role in creating the wedge between my results

and theirs. In particular, when I use the LQ approach, the optimal inflation target is found

to be 5.5%, which is closer to the value found by Billi but much larger than 3.4% found by

the fully-nonlinear method. Also, the unconditional probability of hitting the ZLB declines

much slower in the LQ model than in the fully-nonlinear model when the inflation target

increases. Moreover, the fully-nonlinear method generates much larger expected disinflation

when the risk of hitting the ZLB is high.

The remainder of this paper is organized as follows: Section 2 presents the structure of

the model; Section 3 shows the solution method and the benchmark calibration, especially

how to compute the risk of hitting the ZLB using the US data; Section 4 presents main

results; Section 5 contains sensitivity analyses of the main findings with respect to some

important parameters; Section 6 concludes; Appendices are in Section 7.

2 Model

The model in this paper is the conventional stochastic dynamic New Keynesian (DNK) model

featuring the Rotemberg price adjustment.

both the past inflation and the inflation target for inflation indexation would be interesting and is part of

my future research agenda.

3To remind the reader, according to the LQ approach, all equilibrium conditions are log-linearized, while

the objective function is approximated using the second order Taylor expansion.

6



2.1 Households

The representative household maximizes his expected discounted utility

Max Et

{(
C1−γ
t

1− γ
+ χ

N1+η
t

1 + η

)
+
∞∑
j=1

{
βj

(
j−1∏
k=0

βt+k

)(
C1−γ
t+j

1− γ
+ χ

N1+η
t+j

1 + η

)}}
(1)

subject to the budget constraint

Ct +Bt = WtNt +Bt−1

(
1 + it−1

1 + πt

)
+

1∫
0

Dt(i)di+ Tt, (2)

where C,N are composite consumption and total labor; B,D, T denote real bonds, dividends,

and lump sum transfers; i, π are the nominal interest rate and the inflation rate, respectively;

W is the real wage; γ, η, χ are the risk aversion parameter, the inverse wage elasticity of labor

with respect to wages, and the steady state labor determining parameter; βt is the shock to

the subjective time discount factor β, or the preference shock, that follows an AR(1) process

ln
(
βt+1

)
= ρβ ln (βt) + εβ,t+1, where βt is given, (3)

where ρβ ∈ (0, 1) is the persistence of the preference shock; and εβt is the innovation of the

preference shock with mean 0 and variance σ2
β. The preference shock is the only shock in the

model.4 It is a reduced form of more realistic forces that drive the nominal interest rate to

the ZLB.5

4The preference shock is considered as the main force driving the economy to the ZLB, not the technology

shock. In order for the nominal interest rate to reach the ZLB, we would need a particularly positive

technology shock that we could not observe in the last recession, see Amano and Shukayev (2012) for more

discussion.

5Another way make the ZLB binding is to introduce a deleveraging shock, see Eggertsson and Krugman

(2012), Guerrieri and Lorenzoni (2011), and Ngo (2015) for more detail. Moreover, if you look at the Euler
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The optimal choices of the household give rise to the implicit labor supply

χNη
t C

γ
t = Wt, (4)

and the Euler equation

Et

(
Mt,t+1

(
1 + it

1 + πt+1

))
= 1, (5)

where πt = Pt/Pt−1 − 1 is the inflation rate, and the stochastic discount factor is given by

Mt,t+1 = ββt

(
C−γt+1

C−γt

)
. (6)

2.2 Final goods producers

There is a mass 1 of competitive final goods producers. To produce the composite final

goods, they buy and aggregate a variety of intermediate goods using a CES technology.

Their cost-minimization problem is given below.

min

∫ 1

0

Pt (i)Yt (i) di s.t. Yt =

(∫ 1

0

Yt (i)
ε−1
ε di

) ε
ε−1

, (7)

where Pt (i) and Yt (i) are the price and the amount of intermediate goods i ∈ [0, 1]; and ε

is the elasticity of substitution among intermediate goods.

The optimal condition gives rise to the demand for the intermediate goods i

Yt (i) =

(
Pt (i)

Pt

)−ε
Yt, (8)

equation, the preference shock is similar to the risk premium shock, or the shock to the wedge between the

borrowing and the lending rates.
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and the aggregate price level

Pt =

(∫
Pt (i)1−ε di

) 1
1−ε

. (9)

2.3 Intermediate goods producers

There is a mass 1 of intermediate goods producers that are monopolistic competitors. Given

its price Pt(i) and demand Yt(i), firm i ∈ [0, 1] chooses labor that

min {WtNt(i)} s.t. Yt(i) = Nt, (10)

where Wt is the economy-wide real wage rate.

Let mci,t be the Lagrange multiplier with respect to the production. The first-order

condition gives the same marginal cost, mct, to all firms:

mct = mci,t = Wt. (11)

2.4 Price adjustments

The intermediate goods firms adjust their prices according to Rotemberg (1982). Specifically,

they have to pay an adjustment cost in terms of final goods when they change their prices.

Following Aruoba and Schorfheide (2013) and allowing some degree of inflation indexation,

the problem of firm i, for i ∈ [0, 1], is given as follows:

max
{Pt(i)}

Et

∞∑
j=0

{
Mt,t+j

[(
Pt+j(i)

Pt+j
−mct

)
Yt+j(i)−

ψ

2

(
Pt+j(i)

Pt+j−1(i)
− (1 + θπ)

)2

Yt+j

]}
(12)
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subject to its demand in equation (8) and

Mt,t+j = 1 if j = 0;Mt,t+j =

j−1∏
s=0

Mt+s,t+s+1 for j ≥ 1, (13)

where ψ is the adjustment cost parameter, π is the inflation target, and θ is inflation indexa-

tion. According to this formulation, the firm is allowed to index its price to the steady state

inflation, which is the same as the inflation target set by the central bank, and it only pays

adjustment costs if its new price is different from the indexed price, (1 + θπ)Pi,t−1.

The optimal pricing rule by firm i is given below:

0 =
Pt (i)

Pt
Yt (i)− ε

(
Pt (i)

Pt
−Wt

)
Yt (i)− ψ

(
Pt (i)

Pt−1 (i)
− (1 + θπ)

)
Pt (i)

Pt−1 (i)
Yt

+ψββtEt

(
C−γt+1

C−γt

(
Pt+1 (i)

Pt (i)
− (1 + θπ)

)
Pt+1 (i)

Pt (i)
Yt+1

)
(14)

In a symmetric equilibrium, all firms will choose the same price and produce the same

quantity, i.e. Pt(i) = Pt and Yt(i) = Yt.
6 The optimal pricing rule then gives rise to the

following condition:

(1− ε+ εWt − ψ(πt − θπ) (1 + πt))Yt + ψEt [Mt,t+1(πt+1 − θπ) (1 + πt+1)Yt+1] = 0, (15)

where Mt,t+1 is the stochastic discount factor defined in equation (6).

6As in the existing ZLB literature, in this paper I only study a symmetric equilibrium, not other equilibria.
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2.5 Monetary policy

The central bank conducts monetary policy using a simple Taylor rule as follows:

(
1 + it
1 + i

)
=

(
Yt
Y

)φy (1 + πt
1 + π

)φπ
, (16)

it ≥ 0, (17)

where π, i, Y are the inflation target, the steady state nominal interest rate, and the steady

state output, respectively.

Equation (17) implies that the nominal interest rate is not allowed to be negative. This

is the key condition in the ZLB literature.

2.6 Aggregate conditions and equilibrium

The aggregate output is

Yt = Nt, (18)

and the resource constraint is given by

Ct +
ψ

2
(πt − θπ)2 Yt = Yt. (19)

The equilibrium system consists of six nonlinear difference equations (4), (5), (15), (16),

(18), (19) together with the ZLB (17) for six variables Wt, Ct, it, πt, Nt, and Yt.
7

7See the appendix for the fully-nonlinear equilibrium system. In addition, the appendix also shows the

LQ version of this model.
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3 Calibration and solution method

3.1 Calibration

3.1.1 The risk of hitting the ZLB

The risk of hitting ZLB plays a key role in determining the optimal inflation target. Specif-

ically, when the risk of hitting the ZLB is high, the expected cost of hitting the ZLB is high

given the fact that the ZLB is very damaging. Many economists, including Mishkin (2011),

believe that the 2007-2009 recession with a binding ZLB is a rare disaster that occurs once

every seventy years. However, other economists, i.e. Ball (2013), disagree. In this section, I

carefully compute the risk that the nominal interest rate hits the ZLB if the Fed continues

to keep the inflation target at 2%.

Panel A of Figure 1 shows the target and effective federal funds rates in the US since

1981:I.8 These rates are tightly correlated and they have reached the ZLB since December

2008 when the economy was in the middle of the 2007-2009 recession.9 By the end of

2014, the ZLB duration had been 25 quarters, which is much longer than the existing ZLB

literature predicted.

Ideally, one should use the target federal fund rate to compute the unconditional proba-

bility for it to hit the ZLB. Using this time series, the unconditional probability of hitting

the ZLB is computed to be 19.2%, or 25 quarters out of 130 quarters. This unconditional

probability might overstate the actual risk of hitting the ZLB in the US because the series

is relatively short.

Given the fact the the target and the effective federal funds rates are closely related

8The data for the target federal funds rate was not available until 1982:III.

9To be more precise, the effective federal funds rate has been very close to zero, around 0.12% on average,

during this period.
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Figure 1: Real federal funds rate is the effective federal funds rate minus the inflation rate

computed as a percentage change in the CPI of All Items Less Food and Energy a year ago.

The shaded areas indicate the US recessions. Source: the Federal Reserve Economic Data.13



as seen in Panel A of Figure 1, we can use the effective federal funds rate to have more

observations, 244 quarters starting from June 1954. Based on this data, the unconditional

probability of hitting the ZLB is 10.3%. However, this number might understate the actual

risk of hitting the ZLB because of the fact that, not until the very early 1990s, the Fed and

other central banks started pursuing the inflation target of 2%, either explicitly or implicitly.

To address these biases, we should answer the question raised in Ball (2013): what would

the unconditional probability of hitting the ZLB have been, had the Fed targeted the inflation

rate of 2%. To this end, I follow Ball (2013) and use the real interest rate to answer the

question. Specifically, the nominal interest rate equals the real interest rate plus the expected

inflation rate. Therefore, we can interpret the zero lower bound on the nominal interest rate

as a bound of minus expected inflation for the real interest rate. If the target inflation rate

is 2%, the expected inflation rate would be 2% and the bound on the real interest rate would

be −2%. However, Ball (2013) argues that a recession is likely to push expected inflation

down somewhat and that the history suggests that the inflation fell about 1% during the

past recessions that started with 2− 3% inflation rates. Therefore, he finds that the bound

on the real interest rate is −1%.

Panel B of Figure 1 shows: (i) the effective federal funds rate; (ii) the real interest rate

computed as the effective federal funds rate minus the inflation rate, where the inflation rate

is calculated as a percentage change of the CPI of All Items Less Food and Energy from a

year ago; and (iii) the lower bound of the real interest rate. The data spans from 1957:IV,

when the data for the CPI of All Items Less Food and Energy was first available, to 2014:IV.

So, we have 229 observations in all.

From Panel B, we are able to see that the real interest rate was smaller than the bound,

and, as a result, the nominal interest rate might have hit the ZLB, in the five recessions:

1957:III-1958:II, 1969:IV-1970:IV, 1973:IV-1975:I, 1980:I-1980:IV, and 2007:IV-2009:II.10 Es-

10Ball (2013) argues that in the three out of seven recent recessions excluding the 2007-2009 recession,
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pecially, using the real interest rate, we can very well infer that the nominal interest rate

reached the ZLB during the 2007-2009 recession. In addition, the nominal interest rate

almost hit the ZLB in the 2001 recession.

Examining the real interest rate since 1957:IV when the CPI data was first available, I

find that the ZLB was binding in 37 quarters. Given that the sample has 229 quarters, the

unconditional probability of hitting the ZLB is 16.1%. 11 This value is greater than any

value used in the existing ZLB literature, including Coibion et al. (2012). For example, they

calibrate the model such that the unconditional probability of hitting the ZLB is three years

out of sixty years, or around 5%, if the inflation target is 3.5%. According to this calibration,

the unconditional probability of hitting the ZLB would be only 10% if the inflation target

was 2%.

However, the unconditional probability of 16.1% is potentially biased due to the following

implicit assumptions. First, the Fed always targeted 2%, and second, there was a credible

commitment to a 2% inflation target. This is obviously not true in reality. Therefore, in

Section 5 - Sensitivity analysis, I recalibrate the shock, resolve the model, and present results

the nominal interest rate would have hit the ZLB if the inflation rate had been around 2% at the start of

the recessions. These three recessions include the 1969-1970 recession, the 1973-1975 recession, and the 1980

recession. Hence, the probability of hitting the ZLB conditional on a recession would be around 50%, or four

recessions out of eight recessions, if the Fed targeted 2% inflation rate post World World II.

11For a robust check, I also used the CPI of All Items and the PCE index, instead of the CPI of All

Items Less Food and Energy. The result slightly changes. However, it is still in the range from 15% to 17%.

Another robust check is to raise the lower bound on the real interest rate. The reason is that, using the real

interest rate slightly underestimates the actual ZLB as the real interest rate was larger than the bound in

2009:IV and early 2010. This occurs because the inflation rate fell more than 1%, the decrease that Ball

(2013) assumes in order to find out the bound for the real interest rate. If we allowed the inflation rate to

fall more than 1% in a recession, i.e. 1.5%, then the lower bound on the real interest rate would be −0.5% if

the Fed targeted a 2% inflation rate. Using this new lower bound, the risk of hitting the ZLB would increase

to 20.6%. However, the ZLB was binding in many periods when the economy was in normal time.
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for different values of probability, ranging from 0% to 20%.

3.1.2 Parameterization

I calibrate the parameters on the basis of the observed data and other studies. The quarterly

subjective discount factor β is set at 0.997, as in Woodford (2011). The constant relative risk

aversion parameter γ is 1, corresponding to a log utility function with respect to consumption.

This utility function is commonly used in the business cycles literature. The labor supply

elasticity with respect to wages is set at 1, or η = 1, as in Woodford (2011). I set the

parameter associated with labor preference χ = 1.12 The elasticity of substitution among

differentiated intermediate goods ε is 7.66, corresponding to a 15% net markup. This value

is also popular in the literature (e.g., Adam and Billi (2007) and Braun et al. (2013)).

The price adjustment cost parameter, ψ, is calibrated to be 132 corresponding to the

probability of keeping prices unchanged of 0.8, which is in the range estimated by Christiano

et al. (2005) and is still smaller than the value used in Christiano et al. (2011), 0.85.13 Some

authors, including Nakata (2011) and Ascari et al. (2011), use/estimate higher values for

the price adjustment cost parameter. However, using these higher values would result in a

longer duration of keeping prices unchanged that is not in line with empirical studies, see

Nakamura and Steinsson (2008) for more detailed discussion.

12As in Fernandez-Villaverde et al. (2012), this parameter does not affect the results of the paper signifi-

cantly.

13This comparison is up to the first-order approximation around the steady state inflation of 0%, see Miao

and Ngo (2014) for more discussion.
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Table 1. Benchmark Parameterization

Symbol Description Values

β Quarterly discount factor 0.997

γ CRRA parameter 1

η Inverse labor supply elasticity 1

ε Monopoly power 7.66

θ Inflation indexation 0.9

ψ Price adjustment cost parameter in the Rotemberg model 132

π Inflation target, 2% per year 0.005

φπ Weight of target inflation in the Taylor rule 1.5

φy Weight of output target in the Taylor rule 0.125

ρβ AR-coefficient of preference shocks 0.65

σβ Standard deviation of the innovation of preference shocks (%) 0.5

I set the parameters in the Taylor rule φπ = 1.5 and φy = 0.125, as in Gali (2008)

and Ascari and Rossi (2012), which are conventional in the literature. I set the inflation

indexation, θ, at 0.9, which is in the range estimated by Ascari et al. (2011) and is the same

degree of inflation indexation used in Billi (2011). However, this value is controversial. For

example, Cogley and Sbordone (2008) find no evidence for price indexation. Therefore, I

also conduct some sensitivity analysis with respect to this parameter in Section 5.

Following Nakov (2008), I set the persistence of the preference shock, ρβ, at 0.65, which

reflects the persistence of the natural rate of interest rate. Nakov (2008) argues that this

value is between 0.35 used by Woodford (2003) and 0.8 used by Adam and Billi (2007). The

remaining and the most difficult task is to determine how large the standard deviation of

the innovation of preference shock is.
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In this paper, I calibrate the standard deviation of the innovation of preference shocks

to be 0.5% per quarter, which enables the model to generate the unconditional probability

of hitting the ZLB of 16.1%, based on the fully-nonlinear method that I describe in the

section below. However, as I discussed previously, this unconditional probability of hitting

the ZLB is controversial. Therefore, I also implement a sensitivity analysis for the results of

this paper regarding the risk of hitting the ZLB in Section 5.

3.2 Solution method

Following the method used in Ngo (2014), I solve the model using a collocation method asso-

ciated with cubic spline basis functions to capture kinks due to the ZLB. At each collocation

node, I solve a complementarity problem using the Newton method and the semi-smooth

root-finding algorithm as described in Miranda and Fackler (2002). I also use an analytical

Jacobian matrix computed from the approximating functions. Moreover, I write the code

using a parallel computing method that allows me to split up a large number of colloca-

tion nodes into smaller groups that are then assigned to different processors to be solved

simultaneously. This procedure reduces computation time significantly.14

Multiple equilibria is well-known in the existing ZLB literature, mainly in the setting

where the ZLB exogenously follows a two-state Markov chain with non-ZLB being the ab-

sorbing state. In particular, the economy is assumed to initially stay at the ZLB and it will

escape from the ZLB with an exogenous probability; after escaping from the ZLB, the econ-

omy will stay out of it forever. Braun et al. (2013) show that there are multiple equilibria at

the ZLB in this setting. Aruoba and Schorfheide (2013) also find this issue. However, this

multiple-equilibria issue does not occur in the stochastic setting as described in this paper,

14I obtain the maximal absolute residual across the equilibrium conditions of the order of 10−8 for almost

all states off the collocation nodes. For a few off-collocation states when the ZLB becomes binding, the

maximal absolute residual is of the order of 10−5.
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see Richter and Throckmorton (2015) for further discussion.

4 Results

To find out the optimal inflation target, I implement the following procedure. For each

inflation target, I first solve the model to find the value and policy as functions of the

preference shock. I then take a random sample of 99, 999 preference shocks, and compute

the unconditional (average) welfare based on the value function found in the first step.

Eventually, I compute welfare gain as a percentage change of the unconditional welfare from

the one associated with the conventional inflation target of 2% that the Fed has pursued

implicitly. In addition, I compute the long-run inflation, which is the average inflation rate

from the simulation of 99, 999 periods. I also compute the unconditional probability of hitting

the ZLB based on the 99, 999-period simulation, which is the ratio between the number of

periods with binding ZLB and 99, 999 periods simulated.

I plot the welfare gain, the long-run inflation, and the unconditional probability against

inflation targets in Figure 2. The solid red line in Figure 2, with the y-axis on the right,

presents the unconditional welfare gain. Apparently, the welfare gain is a nonlinear function

with respect to the inflation target. It first increases with the inflation target and reaches

the highest value at the inflation target of 3.4% before decreasing with the inflation target.

The intuition for the nonlinear relationship is that: when the inflation target is higher,

both the probability of hitting the ZLB and output loss are smaller. As a result, the benefit

of targeting an inflation rate higher than 2% is more than to offset the cost caused by the

higher inflation target. Therefore, the welfare gain increases. However, when the inflation

target is much higher than 2%, the cost of the higher inflation target outweighs the benefit,

and the welfare gain decreases. In conclusion, the optimal target inflation rate is 3.4% per

year.
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Figure 2: Welfare gain, long-run inflation, and unconditional probability of hitting the ZLB.

Welfare gain is a percentage change in unconditional welfare due to targeting an inflation

rate greater than the conventional target of 2%. Unconditional welfare is the average welfare

based on a sample of 99,999 preference shocks. Long-run inflation is the average inflation

rate based on the simulation of 99,999 periods. Unconditional probability of hitting the ZLB

is the ratio between the number of periods with a binding ZLB and 99,999 periods simulated.
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As shown in Figure 2 with the y-axis on the left, the higher the inflation target, the

higher the long-run inflation, and the lower the probability of hitting the ZLB. For example,

if the inflation target is 2%, the long-run inflation is 1.2% and the probability of hitting the

ZLB is around 16.1%. When the inflation target increases to 3.5%, the long-run inflation

is 3.5% and the unconditional probability of hitting the ZLB reduces to around 1.3%. It

is interesting to note that, even the inflation target is 2%, the average inflation is only

1.2%, which is very much in line with what we actually observed in the reality. This is the

well-known disinflationary bias.

The optimal inflation target of 3.4% is between the ones found in Coibion et al. (2012)

and Billi (2011). Specifically, Billi (2011) finds that, in the case of a Taylor rule, the opti-

mal inflation target is as big as about 8%. The main reason for the difference is that Billi

(2011) uses the last inflation for inflation indexation. Due to this characteristic, under a

particularly adverse shock that causes the ZLB to bind, his model generates very persistent

deflationary/disinflationary episodes associated with binding ZLB and output loss. Conse-

quently, a binding ZLB is very damaging in his model. Hence, the central bank pursues a

very high inflation target. In his framework, the probability of hitting the ZLB is zero under

the optimal inflation target of 8%.

Instead of using the past inflation as the benchmark for inflation indexation as in Billi

(2011), in this paper I use the inflation target for indexing inflation. By doing so, the

model does not produce very persistent deflationary/disinflationary episodes associated with

binding ZLB. Therefore, a binding ZLB is less damaging in this paper than in Billi (2011),

and the optimal inflation target is smaller than the one found in his paper. Note that the

degree of inflation indexation of 0.9 in this paper is similar to the one used in Billi (2011).

Another important reason is due to inaccuracy of the LQ approach. As shown in the

sensitivity analysis below, the LQ approach substantially overestimates the true optimal

inflation target that it would be under the fully nonlinear method as in this paper. This
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is due to the fact that the fully-nonlinear method is able to capture all nonlinearity of the

model, while the LQ approach is not.

The optimal inflation target in the benchmark model of Coibion et al. (2012) is around

1.5% per year and smaller than the one in this paper. There are several reasons for the

discrepancy. First, I model the price adjustment using adjustment costs, as in Rotemberg

(1982), instead of using the time-dependent pricing, as in Calvo (1983). This is a very im-

portant reason because in the Rotemberg model, the assumption of symmetric equilibrium

is commonly used. As a result, the relative price dispersion is zero regardless of inflation tar-

gets, and this helps to lower the cost of higher steady state inflation. To illustrate this point,

I plot steady state welfare gains against the inflation target in the models with Rotemberg

and Calvo pricing schemes, Panel A of Figure 3. Steady state welfare/consumption gains

are computed as percentage changes in steady state welfare/consumption from the ones as-

sociated with zero inflation target. The inefficiency wedge in the Rotermberg model is the

price adjustment cost, as percentage of output, while it is the relative price dispersion in the

Calvo model.

The panel shows that the welfare loss increases faster in the Calvo model than in the

Rotemberg model when the inflation target increases. So, the benefit of having a higher

inflation target may not enough to offset the loss in the Calvo model. As a result, the Calvo

model produces a smaller optimal inflation target.

Second and equally importantly, I calibrate the preference shock such that the uncondi-

tional probability of hitting the ZLB matches what we observed in the US post World War

II. This probability is much higher than the one used in the benchmark model of Coibion

et al. (2012), making both the conditional and unconditional cost of the ZLB higher.

In addition, the degree of inflation indexation in this paper is 0.9, which is in the range

estimated by Ascari et al. (2011) and is the same value used in Billi (2011). This degree of

inflation indexation is greater than the one used in Coibion et al. (2012). As a result, the
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Figure 3: Steady state welfare gain, steady state consumption gain, and inefficiency wedge.

cost of high steady state inflation incurred every period is smaller in this paper than in their

paper. Even though their LQ approach overestimates the optimal inflation target relative

to the fully-nonlinear method, the net benefit of targeting a highly positive inflation rate is

still greater in this paper.

I will conduct sensitivity analyses of the result of this paper with respect to alternative

numerical methods used to solve the model, and with important parameters, including the

risk of hitting the ZLB, the inflation indexation, the adjustment cost parameter, the persis-

tence of the innovation of the preference shock in the following section. So, we are able to

see how the optimal inflation target changes with these parameters in the next section.
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5 Sensitivity analyses

5.1 Fully-nonlinear versus linear-quadratic (LQ) approaches

In this subsection, I discuss the difference between results from the benchmark fully nonlinear

model and those from the LQ version of this model.

It is important to note that if I use the benchmark calibration, the LQ model produces the

unconditional probability of hitting the ZLB of only 0.25% instead of 16% as in the bench-

mark fully-nonlinear model, and the unconditional welfare of the LQ model monotonically

decreases in inflation target starting at 2%.

To make the two models more comparable, I first recalibrate the variance of the pref-

erence shock innovation from 0.5% to 1.33%. With this new value, the LQ produces an

unconditional probability of 16% given the inflation target of 2%. Then I solve the LQ

model under different inflation targets, and plot results in Figure 4, presented by the dashed

blue lines.

Surprisingly, as seen in Panel A, the unconditional welfare of the LQ model increases and

peaks at the inflation target of 5.5%, much higher than the optimal target of 3.4% as in the

benchmark fully-nonlinear model. The reason is that when the target inflation increases,

the frequency of hitting the ZLB decreases at a smaller rate in the LQ model than in the

fully-nonlinear model, as shown in Panel B. As a result, the risk of hitting the ZLB is higher

in the LQ model, and it is optimal for the central bank to pursue a higher inflation target.

To provide further explanation for the discrepancy, I also solve the linear-nonlinear model,

where I log-linearize the equilibrium conditions as in the LQ approach. However, instead of

approximating the objective function using the quadratic approach as in the LQ model, I

use the exact objective function. The result from the linear-nonlinear model is presented by

the dot-dashed green lines. We can easily see that the result from the LQ model and the

linear-nonlinear are very close. They both indicate that the optimal inflation target is 5.5%.
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Figure 4: Comparison between the fully-nonlinear method and the LQ approach. Welfare

gain is a percentage change in unconditional welfare due to targeting an inflation rate greater

than the conventional target of 2%. Unconditional welfare is the average welfare based on a

sample of 99,999 preference shocks. Long-run inflation is the average inflation rate based on

the simulation of 99,999 periods. Unconditional probability of hitting the ZLB is the ratio

between the number of periods with binding ZLB and 99,999 periods simulated.
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Therefore, the difference between the LQ and the fully-nonlinear model can not be explained

by the quadratic approximation of the objective function. In fact, the discrepancy is due to

the first order approximation of the equilibrium conditions, and this approximation could

not capture the risk of hitting the ZLB correctly.

These differences would be useful in explaining why the optimal inflation target in Billi

(2011) might be too high, and why the result in Coibion et al. (2012) might be potentially

inaccurate.

5.2 The risk of hitting the ZLB

To see how sensitive the optimal inflation target is to the risk of hitting the ZLB, I plot the

optimal inflation target against different values of unconditional probability of hitting the

ZLB. To help the reader understand more about the result, I first explain the procedure. I

then discuss the result.

To compute the optimal inflation target for each probability, I first recalibrate the volatil-

ity of the innovation of the preference shock such that the unconditional probability of hitting

the ZLB matches the probability given the other parameters values. For each case, I then

resolve the model and find out the optimal inflation target. The result is presented in Panel

A of Figure 5.

Apparently, the optimal inflation target is positively correlated with the risk of hitting

the ZLB. Intuitively, when the risk of hitting the ZLB increases, the expected cost of hitting

the ZLB increases. Therefore, it is better for the central bank to raise the optimal inflation

target.

It is not surprising to see the optimal inflation target rising as the risk increases. However,

it is interesting to learn that the relationship is non-linear. The optimal inflation target

increases at a smaller rate when the unconditional probability of hitting the ZLB increases.

The optimal inflation target is 0% when there is an extremely small chance for the nominal
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Figure 5: Optimal inflation target under different values of probability of hitting the ZLB

and different values of inflation indexation. In the benchmark calibration, the unconditional

probability of hitting the ZLB is 16.1% and the inflation indexation is 0.9. The optimal

inflation target under the benchmark calibration is 3.4%.
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rate to hit the ZLB. It increases to 2.2% when the the probability is 2.5%, and to 2.6% when

the risk of hitting the ZLB is 5%. The increase in the optimal inflation target is smaller

when the probability increases by another 2.5%, and so on.

In addition, it is important to know that the optimal inflation target is much higher than

2% even if the risk of hitting the ZLB is computed as low as 2.5%, and that the optimal

inflation target is always greater than 3% when the risk is greater than 10%.

5.3 Inflation indexation

I compute the optimal inflation target under different values of inflation indexation as follows.

With each value of inflation indexation, I first recalibrate the standard deviation of the

innovation of preference shocks such that the unconditional probability of hitting the ZLB

remains unchanged, around 16.1%. Afterward, I resolve the model under different inflation

targets, and find out the optimal inflation target that is associated with the highest welfare.

I plot the optimal inflation target against inflation indexation in Panel B of Figure 5.

Panel B of Figure 5 shows that for the benchmark calibration with 0.9 inflation indexa-

tion, the optimal target inflation is 3.4%. Overall, the optimal inflation target is positively

correlated with inflation indexation. When the inflation indexation is 0.5, the optimal infla-

tion target is around 2%. For the case when the inflation is fully indexed, the optimal target

inflation is 6%. Note that when the inflation indexation is smaller than 0.5, the optimal

inflation target is not greater than 2% given the unconditional probability of hitting the

ZLB of 16.1%.

Intuitively, when the inflation indexation is higher, the marginal cost of raising the infla-

tion target is smaller because firms’ prices are closer to the optimal price even if the firms

do not pay adjustment costs to change their prices. In the meantime, with a higher infla-

tion target, the probability of hitting the ZLB decreases, and the risk of falling into a deep

recession with a binding ZLB is smaller. Therefore, it is better for the central bank to raise
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Figure 6: Steady state welfare gains under different values of adjustment cost parameter and

inflation indexation.

the inflation target.

The fact that the optimal inflation target increases with inflation indexation might not

be surprising. It is more interesting to see how optimal inflation target changes with inflation

indexation. From Panel B of Figure 5, the relationship is nonlinear and convex. The optimal

inflation target is always greater than 2% when the indexation is greater than 0.5. Then it

increases gradually with inflation indexation. It only takes off when the indexation is greater

than 0.85.

5.4 The adjustment cost parameter

The inefficiency wedge of the Rotemberg model depends on both the price adjustment cost

parameter and the inflation indexation. In this sub-section, I will discuss the role of price
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adjustment cost parameter indirectly using comparative static. Figure 6 shows the steady

state welfare gain as a function of inflation target, under different values of the adjustment

cost parameter and different values of inflation indexation. The steady state welfare gain is

computed as a percentage change in steady state welfare from the one associated with zero

inflation target.

Apparently, in all cases, given the values of the other parameters, welfare decreases as the

inflation target increases. In addition, given an inflation target, welfare decreases with the

price adjustment cost and increases with inflation indexation. From Figure 6, welfare changes

are much less significant with the adjustment cost parameter than with inflation indexation.

Therefore, the optimal inflation target would change more with inflation indexation than

with the adjustment cost parameter that is in the range investigated here.

5.5 The persistence of the preference shock

The persistence of the preference shock is interesting because it represents the expected ZLB

duration. In this paper, the baseline value of 0.65 is still in the range used in the literature,

see Nakov (2008). Although the expected ZLB duration corresponding to this baseline value

is about 3 periods, the simulation showed that there are some recessions with 20-period ZLB

duration.

Given unconditional probability of hitting the ZLB, the optimal inflation target would

be higher with a more persistent shock. The intuition is that a recession would be worse

with the more persistent shock. Therefore, the optimal inflation targets found in this paper

would underestimate the true optimal inflation targets if a stable equilibrium exists for the

case of a more persistent shock.

However, to those whose have solved an occasionally binding ZLB model, it is very

common that there is a trade-off between unconditional probability of hitting the ZLB and

expected ZLB duration in solving the model, see Richter and Throckmorton (2015) for more
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discussion. Based on my numerical method, the model does not have a stable solution if

the persistence is greater than 0.7 given the unconditional probability of hitting the ZLB of

more than 16%, unless you truncate the state spaces of the shock. However, truncating the

space is not preferable because it distorts results substantially.

6 Conclusion

This paper investigates what inflation target is optimal in the New Keynesian framework

featuring an occasionally binding ZLB on the nominal interest rate. Solving the fully non-

linear model using a global method, I find that, under the calibration that matches the

unconditional probability of hitting the ZLB in the US and with the inflation indexation

found in empirical studies, the optimal inflation rate is 3.4%. In addition, I find that the

LQ approach substantially overestimates the true optimal inflation target found by the more

accurate fully-nonlinear method.

The optimal inflation target is positively correlated with the risk of hitting the ZLB and

the degree of inflation indexation. It is always greater than 2% as long as the probability

of hitting the ZLB is greater than 2.5% or the inflation indexation is greater than 0.5.

The relationship between the optimal inflation target and these metrics are nonlinear: it is

concave in the formal, and convex in the latter.

There are several ways in which we can extend this paper. First, in this paper, firms

adjust their prices using the Rotemberg pricing scheme, which is just a simple menu cost

model. It would be interesting to see if the result changes under different pricing schemes,

such as the Calvo time-dependent pricing scheme or the state dependent pricing scheme of

Dotsey et al. (1999) or Gertler and Leahy (2008). Second, it would be interesting to see if

adding more realistic features, such as habit formation, policy inertia, and inflation inertia,
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would change the result significantly.15
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7 Appendix

7.1 The fully-nonliear model

max

{(
Πt

Π

)φπ (Yt
Y

)φπ
− Rt

R
,

1

R
− Rt

R

}
= 0 (20)

1

RtC
γ
t

= ββtEt

(
1

Cγ
t+1

1

Πt+1

)
(21)

(1− ε+ εWt − ψ (πt − θπ) Πt)
Yt
Cγ
t

+ ψββtEt

[
Yt+1

Cγ
t+1

(πt+1 − θπ) Πt+1

]
= 0 (22)

Ct =

(
1− ψ

2
(πt − θπ)2

)
Yt (23)

Yt = Nt (24)

Wt = χCγ
t N

η
t (25)

Vt =
C1−γ
t

1− γ
− χN

1+η
t

1 + η
+ ββtEt [Vt+1] (26)

where Πt = 1 + πt, Rt = 1 + it, Vt = V (βt) .

7.2 The linear-quadratic (LQ) model

I follow Woodford (2003) to log-linearize the equilibrium conditions and approximate the

objective function using a quadratic approximation.

max
{
φπR̂t + φyŶt − R̂t,− log (R)− R̂t

}
= 0 (27)

−
(
R̂t + γĈt

)
= β̂t + Et

(
−γĈt+1 − Π̂t+1

)
(28)
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0 =
εWŴt − [ψ (1− θ) πΠ + ψΠ2] Π̂t

ψβ (θ − 1) πΠ
−
(
Ŷt − γĈt

)
+ β̂t (29)

+

(
Ŷt+1 − γĈt+1 +

(
Π

π (1− θ)
+ 1

)
Π̂t+1

)
(30)

Ĉt = Ŷt −
ψ (π − θπ) ΠY

C
Π̂t (31)

Ŷt = N̂t (32)

Ŵt = γĈt + ηN̂t (33)

Vt =

[(
C1−γ

1− γ
− χN

1+η

1 + η

)
− 1

2
(γ + η)C1−γ

(
Ĉt − x∗

)2
]

+ βEt [Vt+1] (34)

where, for any variable X, X̂t = log
(
Xt
X

)
and X is the steady state value; x∗ = Φ

γ+η
,Φ = 1

ε
.16

7.3 The linear-nonlinear model

The linear-nonlinear model is similar to the LQ model except the objective function. Instead

of using a quadratic approximation of the objective, I use the exact fully-nonlinear objective:

Vt =
C1−γ
t

1− γ
− χN

1+η
t

1 + η
+ Et

∞∑
j=1

[
βj

(
j−1∏
k=0

βt+k

)(
logCt+j − χ

N1+η
t+j

1 + η

)]
(35)

Or in the form of a Bellman equation:

Vt =
C1−γ
t

1− γ
− χN

1+η
t

1 + η
+ ββtEt [Vt+1] (36)

16Note that the common inflation term Π̂t does not appear in the quadratic approximation of the objective

function due to the fact that I use the Rotemberg price adjustment together with the symmetric equilibrium

assumption. With this assumption, the variance of individual prices across firms, and, as a result, the

inflation term disappear.
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where Ct and Nt are computed as follows:

Ct = exp
(
Ĉt

)
C (37)

Nt = exp
(
N̂t

)
C (38)

7.4 Steady state values

Π = 1 + π∗ (39)

R = Π/β (40)

W =
ε− 1

ε
+

(1− β)ψ (1− θ) πΠ

ε
(41)

N =

(
W

χ
(
1− ψ

2
(π∗ − θπ∗)2)γ

) 1
γ+η

(42)

Y = N (43)

C =

(
1− ψ

2
(π∗ − θπ∗)2

)
Y (44)

V =

(
1

1− β

)(
Cγ

1− γ
− χN

1+η

1 + η

)
(45)
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