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Abstract

This paper investigates the U.S. inflation dynamics by allowing regime switching in an

unobserved components stochastic volatility model. The likelihood is constructed using particle

filter with a new resampling procedure that ensures the smoothness of the likelihood function.

We estimate the model with three regimes using maximum likelihood and determine prevailing

regimes over the 1960:I - 2017:IV period. Our results show that since the start of the Great

Recession, the U.S. inflation has entered a regime with moderate volatility where most of the

volatility comes from transitory shocks. In terms of forecasting, our model produces a better

outcome compared to the model without regime switching.
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1 Introduction

Since the 1960s, the U.S. inflation has exhibited several episodes with distinctive dynamics. Most

prominent episodes include dramatic rise of the inflation level and its volatility in 1970s, disinflation

under tightening monetary policy in the early 1980s, and low and stable inflation in the 1990s. As

a result of these changes, many univariate models fail to explain the inflation dynamics over a

long period or reveal changes in the parameter estimates over different subsamples. See Stock and

Watson (2007) for discussion. Recently, due to low but relatively volatile inflation in the wake of

the Great Recession with the zero lower bound (ZLB) on nominal interest rate, a number of papers

have investigated whether the U.S. economy has recently transitioned to an unintended long-lasting

low inflation or deflation regime with higher volatility, for example Aruoba et al. (2018).

In this paper, we develop a model of inflation with unobserved mean and regime switching

stochastic volatilities of the measurement error (transitory shock) and the mean innovation (per-

manent shock). We build on the random walk plus noise or local level model (see Durbin and

Koopman (2012) for details) and introduce autoregressive volatilities processes with regime switch-

ing coefficients. In the model, the logarithms of the volatilities of the transitory and permanent

shocks are stationary processes conditional on the regime. We present evidence that supports this

specification. An important feature of our model is that it explicitly takes into account different

inflationary regimes and makes it possible to estimate the transition probabilities between different

regimes and forecast the probabilities of regimes.

The local level model with stochastic volatilities is used to study the predictability of inflation

in Stock and Watson (2007). In their unobserved components stochastic volatility (UCSV) model

both volatilities of transitory and permanent shocks are assumed to follow independent random

walks with same predetermined (calibrated) variance of the error term. This variance controls the

smoothness of the stochastic volatility processes, and is set equal to 0.2 in Stock and Watson (2007)

for their 1953:I–2004:IV sample. As we show in Section 4, this value is very large especially for

certain periods. The UCSV model requires a large variance of the error to generate enough volatility

and fit the model in the whole sample. We argue that the volatilities are stationary processes with

regime switching parameters.

Our paper has three main contributions. First, it introduces AR(1) volatility processes with

regime switching parameters into the UCSV model of inflation, hereafter called the RS-UCSV
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model. This representation nests the original UCSV model of Stock and Watson (2007) as a special

case with one regime and unit-root volatilities processes. In addition, the model provides predicted

probabilities of regimes which are of interest. Second, the paper develops a particle filter that adopts

regime switching parameters. In particular, we propose a resampling procedure that preserves the

continuity of the likelihood function and enables efficient maximum likelihood estimation. The

resampling procedure uses sampling from an importance density and the kernel density estimate of

the important weights. Third, the model is applied to the 1960:I–2017:IV U.S. inflation series. Our

estimation results show that since the start of the Great Recession, the U.S. inflation has entered

a regime with moderate volatility where larger fraction of volatility is due to transitory shocks. In

addition, our RS-UCSV model produces better inflation forecast compared to the model without

regime switching.

The U.S. inflation series is highly persistent and suggests a unit-root or highly persistent very

slow mean-reverting specification; for discussion see Barsky (1987), Ball and Cecchetti (1990), and

Stock and Watson (2007). Furthermore, Engle (1983) shows that the inflation data exhibits het-

eroskedasticity. Recent literature emphasizes structural breaks or changing regimes in the inflation

dynamics. Regime changes can stem from differences in monetary policy as discussed in Clarida

et al. (2000), Taylor (1993), and Malmendier et al. (2017). Cogley and Sargent (2003) and Cogley

et al. (2010) develop an empirical model that allows both coefficients and volatilities to vary over

time. Since the changes in the macroeconomic and institutional environment can be significant and

rapid, e.g. changes in monetary policy, discrete regime switching models can better describe the

data. Garcia and Perron (1996) apply the hidden Markov regime switching approach to modeling

structural changes in the ex-post real interest rate and inflation series. Clark (2006) examines the

structural breaks in disaggregated inflation indexes. Zhang (2008) finds multiple structural breaks

in the persistence of the U.S. inflation series. Chan et al. (2013) modify the UCSV model of Stock

and Watson (2007) by imposing bounds on the volatilities of the innovations of the permanent and

transitory components. They also allow for a time-varying degree of persistence of the transitory

component. This modification has the same flavor of some models used in Clark and Doh (2014),

where they evaluate alternative models of trend inflation.1

The rest of the paper is organized as follows. Section 2 introduces the model. In Section 3
1The literature on modeling inflation is too large to summarize. The reader can read Stock and Watson (2007)

and Clark and Doh (2014) for a complete list of models.
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we introduce the filtering procedure and describe the estimation method. Section 4 presents the

estimation results and compares the models. The final section concludes.

2 The Model

We build on the unobserved components stochastic volatility model (hereafter UCSV model) of

Stock and Watson (2007) by modifying the volatilities processes and allowing regime switching.

In the standard UCSV model, the observed inflation πt is equal to unobserved inflation mean τt

which follows a random walk process plus a serially uncorrelated transitory component (measure-

ment error). The log of volatilities of the permanent mean innovation (permanent shock) and the

transitory component innovation (transitory shock) follow random walk processes.

We extend the standard UCSV model by allowing that the log volatilities of the permanent and

transitory shocks evolve as independent AR(1) processes with regime switching coefficients. The

regime s(t) ∈ {1, ..., S} follows a Markov chain with transition matrix Λ. Our regime switching

unobserved component stochastic volatility model (hereafter RS-UCSV) is summarized as follows:

πt = τt + exp(σπ,t)επ,t, (1)

τt = τt−1 + exp(σε,t)ετ,t, (2)

σπ,t = µπ,s(t) + ρπ,s(t)
(
σπ,t−1 − µπ,s(t)

)
+ γs(t)ηπ,t, (3)

στ,t = µτ,s(t) + ρτ,s(t)
(
στ,t−1 − µτ,s(t)

)
+ γs(t)ητ,t (4)

λij = P[st = i|st−1 = j] (5)

where µπ,s, µτ,s, ρπ,s, ρτ,s, and γs are regime dependent coefficients, επ,t, ετ,t, ηπ,t, and ητ,t are

independent standard normal random variables. Parameter γs controls the smoothness of the

stochastic volatilities processes. The parameter space includes the regime dependent coefficients

and transition probabilities λij . The total number of parameters is S2 + 4S.

Our RS-UCSV model nests the standard UCSV model. When the number of regimes is one or
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when the AR(1) coefficients are one across regimes, our model becomes the standard UCSV model:

πt = τt + exp(σπ,t)επ,t, (6)

τt = τt−1 + exp(σε,t)ετ,t, (7)

σπ,t = σπ,t−1 + γηπ,t, (8)

στ,t = στ,t−1 + γητ,t (9)

The unobserved components models with constant and stochastic volatilities have been used

widely in modeling trend inflation. Chan et al. (2013) modify the UCSV model of Stock and

Watson (2007) by imposing bounds on the volatilities of the innovations of the permanent and

transitory components. They also allow for a time-varying degree of persistence of the transitory

component. This mofification has the same flavor of some models used in Clark and Doh (2014),

where they evaluate alternative models of trend inflation.

Another variant of unobserved components model is the first order integrated moving average

IMA(1,1):

∆πt = εt − θεt−1, (10)

where εt is i.i.d. with zero mean and variance σ2
ε . This model is analyzed, for example, in Nelson and

Schwert (1977) and Barsky (1987). In fact, the IMA(1,1) is equivarlent to the unobserved component

model with constant volatilities (UCCV) model. See Durbin and Koopman (2012) for details. We

can imply the MA coefficient from the UCCV model using the equation: στ/σπ = (1 + θ)
2
/θ.

When allowing stochastic volatilities as in the standard UCSV model of Stock and Watson (2007),

the MA coefficient of the IMA(1,1) model is no longer constant. Instead, it varies over time.

We are aware of the fact that there are many other forecasting models, both univariate and

multivariate, that incorporate unobserved stochastic trend inflation. However, in this paper we

focus on three types of models: the IMA(1,1) model, the UCSV model, and the RS-UCSV model.

The reason is two fold. First, both Stock and Watson (2007) and Clark and Doh (2014) show that

the UCSV model is among the best for forecasting future inflation. Second, we would like to see the

role of regime switching in explaining inflation dynamics beyond what is produced by the UCSV

model.
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3 Particle filter and likelihood

Stock and Watson (2007) estimate the standard UCSV model using Markov Chain Monte Carlo

(MCMC). Creal (2012) points out that their model has no static parameters that need to be

estimated and suggests using the particle filter. In addition, the distribution of the unobserved

permanent component τt can be calculated exactly by Kalman filter because conditional on the

volatilities σπ,t and στ,t the sub-model (1), (2) is a linear Gaussian state space model. We build

on this approach and augment the particle filter with Markov regime switching filter of Hamilton

(1989), which also calculates the distribution of the regime exactly.

The filter extracts the information about the regime and state variables of the model from

data on the inflation rate πt. The particle filter is implemented using the sequential importance

sampling (SIS) and the Markov regime switching filter. The distribution of τt, σπ,t and στ,t is

approximated with the particle representation. In particular, we denote the vector of state variables

zt ≡ (τt, σπ,t, στ,t) and the vector of parameters θ = ({µπ,s, µτ,s, ρπ,s, ρτ,s, γs}Ss=1). The filter

calculates the posterior probability of regime p(st|π1:t) and an approximation of the posterior density

p(zt|π1:t, st = s) by a sample of N particles {z(i)s,t}Ni=1 and their corresponding weights {w(i)
s,t}Ni=1 in

regime s, i.e.

p(zt|π1:t, st = s) ≈
N∑
i=1

w
(i)
s,tδ(zt − z

(i)
s,t),

where δ is the Dirac delta function and
∑
i w

(i)
s,t = 1. Thus, the moments of the distribution at time

t conditional on regime s are

1

N

N∑
i=1

m(z
(i)
s,t)w

(i)
s,t

a.s.−→ E[m(zt)|π1:t, st = s],

where m(·) is a real-valued function.

The SIS method places a unit probability mass on each path of particles that has already been

simulated in the previous iterations. The draws of particles are made sequentially from conditional

distribution keeping existing particle paths fixed. Therefore, the joint importance distribution of

the state and regime in the SIS approximation is factored as follows:

f(z0:t, s0:t|π1:t; θ) = f(zt, st|z0:t−1, s0:t−1, π1:t; θ)f(z0:t−1, s0:t−1|π1:t−1; θ). (11)

6



The joint conditional density the state and regime at time t is given by

f(zt, st|z0:t−1, s0:t−1, π1:t; θ) = f(zt|z0:t−1, s0:t, π1:t; θ)p(st|π1:t; θ) (12)

A new set of particles is drawn from the importance distribution f(zt|z0:t−1, s0:t−1, st = s, π1:t; θ)

conditional on st = s. The importance weights follow ws,t ∝ wt−1w̃s,t where the incremental

importance weight w̃s,t is given by

w̃s,t =
p(πt|zt, st = s; θ)p(zt|zt−1, st = s; θ)

f(zt|z0:t−1, s0:t−1, st = s, π1:t; θ)
. (13)

In the numerator of (13), the first factor, p(πt|zt, st; θ), is the probability density of observation

πt conditional on state zt and regime st and the second factor, p(zt|zt−1, st; θ), is the probability

density of the state transition under regime st. Weights wt−1 are obtained in the resampling step

by collapsing the states. This step allows us to avoid S-fold increase in the number of cases at each

iteration as discussed in Kim (1994).

The posterior (updated) probability of regime is calculated by the Bayes’ law:

p(st|π1:t; θ) =
p(πt|st, π1:t−1; θ)p(st|π1:t−1; θ)

p(πt|π1:t−1)
, (14)

where the second factor in the numerator is the predicted probability of regime

p(st|π1:t−1; θ) = p(st−1|π1:t−1)p(st|st−1) (15)

and

p(πt|π1:t−1) =
S∑
s=1

p(πt|st = s, π1:t−1; θ)p(st = s|π1:t−1; θ).

As a result of this procedure, at each iteration we have a set of particles and their weights for

each regime. In order to proceed to the next iteration, we collapse these sets into one set at a

resampling step discussed later.

The likelihood of the state space model can be calculated as a by-product of the filtering. An
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estimate of the contribution to the likelihood at time t is

p(πt|π1:t−1; θ) =

∫
p(πt|zt; θ)p(zt|π1:t−1; θ)dzt ≈

N∑
i=1

ŵ
(i)
t−1w̃

(i)
t (16)

where ŵ(i)
t−1 = w

(i)
t−1

(∑N
j=1 w

(j)
t

)−1
is a normalized importance weight.

Resampling from importance density As it is well established in the literature, the sequential

importance sampling suffers from the weight degeneracy, i.e. the probability masses of all but one

particle converge to zero as t increases. Therefore, normalized importance weight of one particle

converges to one while the normalized weights of the other particles converge to zero. As a result, as

shown in Chopin (2004) the variance of the weights grows exponentially in time and the estimator

becomes a function of a single draw. Gordon et al. (1993) show that a resampling step can prevent

the weight degeneracy problem. However, traditional resampling procedures make the likelihood

function discontinuous with respect to its parameters. The discontinuity problem persists even

if the resampling is based on common (seeded) random numbers. The discontinuity (and non-

smoothness) of the log-likelihood function can cause problems for optimizers, especially for gradient-

based routines. See Hurzeler and Kunsch (2001) for discussion.

Malik and Pitt (2011) propose a resampling algorithm which ensures the smoothness of the

likelihood function. The algorithm replaces a discrete CDF represented by particles and their

weights with a continuous CDF based on piecewise linear approximations. Though resampling

from a continuous CDF resolves the discontinuity and non-smoothness problem, the algorithm is

applicable only for low-dimensional state space models and intensive computationally as it requires

ordering of particles.

We propose an alternative resampling procedure which prevents weight degeneracy and preserves

the continuity. The procedure makes use of kernel density estimate and importance sampling

reweighing. In the resampling stage, we randomly draw new particles from a distribution chosen to

be close to the distribution defined by the current particle swarm. Since the resampling distribution

is not exact, we determine the particle weights as importance weights based on the kernel density

of the current particles. Our particle filter with resampling from importance density is given as

Algorithm 1 in Appendix A. For simplicity, we present the algorithm without the Kalman filter.

We use the normal distribution as the importance distribution in the resampling step.
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Table 1: Parameter estimates of IMA(1,1) and UCCV model

1960:I–2004:IV 1960:I–2017:IV

(a) IMA(1,1): ∆πt = εt − θεt−1

θ 0.3037 (0.0760) 0.3647 (0.0643)
σ2
ε 1.0650 1.0240

(b) UCCV

σπ 0.4102 (0.0002) 0.3718 (0.0001)
στ 0.9185 (0.0004) 0.4171 (0.0001)
Implied θ 0.2507 0.3622

Notes: Panel (a) reports the parameter estimates of the integrated moving average IMA(1,1) model. Panel
(b) reports estimates of the UCCV model and implied IMA(1,1) parameter θ. Standard errors are specified
in the parentheses. The sample is quarterly U.S. GDP inflation from 1960:I to 2017:IV.

4 Results

4.1 Data

We compute inflation series using quarterly GDP deflator and CPI over the 1960:I to 2017:IV period.

The data come from the Federal Reserve Economic Data website of the Federal Reserve Bank of St.

Louis. We also use the personal consumption expenditure (PCE) index and core PCE in comparing

forecasting ability among the models. Though inflation series are available from 1947:I, the earlier

data is not reliable and usually excluded from the analysis.2,3

4.2 The IMA(1,1) and unobserved components models

We first estimate the conventional benchmark models of inflation, the IMA(1,1), and the unobserved

components model with constant volatilities, the UCCV model.4 Panel (a) in Table 1 reports the

parameter estimates for the whole sample and 1960:I–2004:IV subsample for comparison with Stock

and Watson (2007).

The coefficient θ is significant in both samples and increases from 0.30 to 0.36 when we expand

the sample. As explained above, the IMA(1,1) model is equivalent to the UCCV model. If σ2
τ

2Clark and Doh (2014) also use the data from 1960 for their analysis.
3Figure 7 in the appendix shows the GDP inflation series, its first difference, autocorrelation and partial autocor-

relation functions for these series.
4The examination of the autocorrelation and partial autocorrelation functions of the inflation and the first differ-

ence in Figure 7 also suggests IMA(1,1) specification for our sample.
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and σ2
π are variances of the innovations in the permanent and transitory components in the UCCV

model, then λ = (1 + θ)
2
/θ, where θ is the implied IMA(1,1) parameter and λ = στ/σπ is the

signal-to-noise ratio. Panel (b) in Table 1 reports the estimates of the standard errors of the error

terms and implied IMA(1,1) coefficient θ from the UCCV model. From Table 1, the estimated θ

in the IMA(1,1) model and the implied θ in the UCCV model are almost the same based on the

1960:I-2017:IV sample.

However, Stock and Watson (2007) argue that the MA coefficient of the IMA(1,1) should vary

over time to fit structural changes in conducting monetary policy by the Fed. They actually reject

the null that the MA coefficient is stable. Thus, to model inflation properly we should use the UCSV

model, which is equivalent to the IMA(1,1) model with time-varying MA coefficient as variances σ2
τ

and σ2
π evolve endogenously.

In this standard UCSV model, the dynamics of the volatilities processes depends on the inno-

vation variance γ2 and the initial conditions of the processes. Since the volatilities processes are

random walks, they have no long-run steady state values that could serve as initial conditions. It is

easy to see that if the initial value στ,0 is large relative to the initial value σπ,0, the model attributes

innovations in the observed inflation to changes in the unobserved permanent component rather

than to the transitory component. As a result, the actual and filtered inflation series get closer.

Moreover, if the error term volatilities in the volatilities equations (8) and (9) were allowed to be

different, one could vary the speed of adjustment in the volatilities processes to control how the

model recognizes future shocks. For example, if the volatility of the unobserved mean, στ,t, is large

relative to the volatility of the measurement error σπ,t, the model adjusts the unobserved mean τt.

Otherwise, the model attributes the shock to the measurement error.

We follow Stock and Watson (2007) and estimate the UCSV model with one parameter (and one

regime) to illustrate this point. We use the CPI inflation series and the error term variance in the

volatilities equations, equal 0.2.5 Figure 1 plots the filtered inflation, implied IMA(1,1) parameter,

and volatilities processes σπ,t and στ,t.6

We find that the model has relatively good fit in a subsample before 2005. After 2005, actual

volatility of inflation significantly increases, and the filtered inflation process fails to accommodate

the fluctuations. The reason for this dynamics is that starting from mid-1980s the volatility of
5We find that value of 0.1936 delivers the maximum value of likelihood function.
6To see the drawback of the standard UCSV model more clearly, we use the CPI inflation in this section. The

result using the GDP inflation is robust. However, the volatility of inflation after 2005 is less pronounced.
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Figure 1: Standard UCSV model

Log transitory shock volatility, σπ Log permanent shock volatility, στ

Actual and predicted inflation, π Implied IMA(1,1) coefficient, θ

1960 1980 2000 1960 1980 2000

1960 1980 2000 1960 1980 2000
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Notes: The figure plots actual and predicted inflation, the implied IMA(1,1) coefficient θ and filtered
volatilities processes of the standard UCSV model. The sample is quarterly U.S. CPI inflation from 1960:I
to 2017:IV.
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Figure 2: Residuals from the local level model

e2

0

1

2

1960 1980 2000 2020

log(e2)

−8

−4

0

1960 1980 2000 2020

Notes: The left panel plots the squared transitory shocks from the (one regime) local level model. The
right panel plots the log of the squared transitory shocks from this model. The sample is quarterly U.S.
GDP inflation from 1960:I to 2017:IV.

inflation had been declining substantially causing the volatility of the permanent shock to go down,

see the right-bottom panel of Figure 1. At the same time, the volatility of the transitory shock had

been growing. When the volatility of inflation soared after 2005, the unobserved mean inflation could

not reconcile the oscillations, and the fluctuations were attributed to transitory shocks. Therefore,

the unit-root volatility processes (8) and (9) cause strong dependence of the model on the previous

dynamics.

Because the assumption that the volatilities processes are random walks makes the model

strongly dependent on the past dynamics, we would like to test if this assumption holds with

the data. Figure 2 plots squared residuals model and log of squared residuals from the local level

model (with constant volatilities). The volatilities are modeled in Stock and Watson (2007) as

independent random walks. While the logs of squared residuals reveal a slight low frequency trend,

e.g. lower mean in the 1990s, the augmented Dickey-Fuller test with up to 9 lags rejects the unit

root hypothesis at 5% significance level (p-value=0.01393 for the six-lags specification).

In addition to the limitation of the model in fitting the data after 2005, with the variance

of the innovations in the volatilities equations equal 0.2 and a sample of 180 observations as in

Stock and Watson (2007), ninety percent of simulated inflation series lie within the interval from

approximately -405 to 405 while ten percent of the series get beyond this range. Therefore, the

model could easily accommodate hyperinflation. For comparison if the variance is 0.01, then ninety

percent of simulated series are contained in the interval approximately (-27, 27). Figure 3 shows
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Figure 3: Simulated processes for the UCSV model
γ = 0.2

−20000

0

20000

40000

1960 1970 1980 1990 2000

γ = 0.1

−50

0

50

1960 1970 1980 1990 2000

Notes: The figure plots 1,000 simulated paths of the observable variable πt in the UCSV model over 180
periods. In the left panel the model parameter γ =

√
0.2, in the right panel γ = 0.1.

1,000 simulated inflation processes with variance equal 0.2 and 0.01. Arguably, the variance equal

0.2 is excessively large to explain the inflation series bounded between -10 and 20. As the parameter

is constant, a large value is required to generate enough volatility to fit the model in the whole

sample. In the next subsection, we model the volatilities using stationary and regime conditionally

stationary processes.

4.3 RS-UCSV Model

In this section, we estimate our main model (1)-(5) and provide a comparison between alternative

models with a focus on forecasting performance. We specify three hidden Markov regimes. Ngo

and Isakin (2018) show that a conventional DSGE model has up to three steady-state regimes. In

terms of the mean, one regime is associated with zero interest rate and deflation and the others –

with positive interest rate. Importantly, inflation in one of these two positive-interest steady-state

regimes is small and corresponds to the target inflation. The second positive-interest steady state

has a much higher inflation rate, e.g. about 12 percent on the annual basis. In the inflation liter-

ature, it is well-known that different periods with different inflation means have different inflation

volatilities, see Friedman (1977) and Ball (1992). For example, in the early 1980s when the inflation

rate was high on average, the inflation was also very volatile. This paper sheds light on the volatility

of these three regimes.

As discussed before, we assume that the coefficients in the volatilities equations (3) and (4)
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Table 2: Parameter estimates of models with three regime

(a) RS-UCSV model with AR(1) conditional volatilities

µπ,1 -2.7520 (0.1399) γ1 0.0001 (0.0000)
µτ,1 -2.8751 (0.0408) γ2 0.0001 (0.0001)
µπ,2 -0.6448 (0.0309) γ3 0.2622 (0.0242)
µτ,2 0.1153 (0.0248) λ12 0.0001 (0.0001)
µπ,3 0.5667 (0.7503) λ13 0.0183 (0.0015)
µτ,3 0.9026 (0.2065) λ21 0.0319 (0.0034)
ρπ,1 0.7942 (0.0428) λ23 0.0001 (0.0001)
ρτ,1 -0.0086 (0.0079) λ31 0.0098 (0.0011)
ρπ,2 -0.4236 (0.1509) λ32 0.0051 (0.0022)
ρτ,2 0.9990 (0.0277)
ρπ,3 0.9990 (0.0327)
ρτ,3 0.7629 (0.0534)

(b) RS-UCCV model

γπ,1 0.0400 (0.0304) λ12 0.0762 (0.0708)
γτ,1 0.0410 (0.0483) λ13 0.0000 (0.0000)
γπ,2 0.4733 (0.0845) λ21 0.0219 (0.0233)
γτ,2 0.0997 (0.0532) λ23 0.0075 (0.0076)
γπ,3 0.1469 (0.3289) λ31 0.0000 (0.0000)
γτ,3 2.2157 (0.7704) λ32 0.0413 (0.0285)

Notes: Panel (a) reports the parameter estimates of the model (1)-(5) with three regimes. Panel (b) reports
the parameter estimates of the three-regime UCSV model in which the volatilities are constants conditional
on the regime. The diagonal elements of the transition matrix are calculated as λii = 1−

∑
j 6=i λij . Standard

errors are specified in the parentheses. The sample is quarterly U.S. GDP inflation from 1960:I to 2017:IV.

including coefficient γs are regime dependent and coefficient γs is the same for both volatilities

processes στ,t and σπ,t. The last assumption is for parsimony only. Panel (a) of Table 2 reports the

parameter estimates of our main model (1)-(5) with three regimes using the GDP inflation. The

model has 21 parameters µπ,s, µτ,s, ρπ,s, ρτ,s, γs for s = 1, 2, 3 and non-diagonal elements λij of

the transition matrix Λ. The diagonal elements are calculated such that the probabilities in each

row sum up to one.

Table 2 shows that the three regimes are distinct: low volatility (regime 1), moderate volatility

(regime 2), and high volatility (regime 3). The average volatility of the transitory shock is smallest

in regime 1 and largest in regime 3. Interestingly, the volitility of the transitory shock is quite

persistent in regime 3, which is also the most persistent regime. The average volatility of the

permanent shock is also smallest in regime 1 and largest in regime 3. The permanent shock volatility

is very persistent in the second regime.
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Figure 4: Three-regime model with AR(1) conditional volatilities – GDP inflation

Log transitory shock volatility, σπ Log permanent shock volatility, στ
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Notes: The actual and predicted inflation, the implied IMA(1,1) coefficient θ, and filtered log volatilities of
the transitory and permanent shocks. The volatilities are modeled as AR(1) processes conditional on the
regime. The shaded areas indicate the likeliest regime in each quarter: the second regime is light grey, the
third is dark grey. The sample is quarterly U.S. GDP inflation from 1960:I to 2017:IV.

Figure 4 plots actual and predicted inflation, the implied IMA(1,1) coefficient θ, and filtered

log volatilities of the transitory and permanent shocks. In addition, Figure 4 shows the prevailing

regimes over the sample.7 As follows from the estimates of the (quarterly) transition probabilities

λij and filtered regime probabilities, the regimes are quite persistent. The most volatile third regime

prevails from 1972:II to 1986:IV with two short occurrences afterwards. The most stable first regime

has the longest spell from 1990:III to to 2007:I. Our results mostly support findings in Stock and

Watson (2007) of the changes in the inflation process. Moreover, the results validate the evidence

for a structural shift in the early 1990s borne out by Clark (2006). In addition, we find that after

2007:II the inflation predominantly stays in the regime with medium permanent shock volatility

and high transitory shock volatility.

For comparison, we also estimate a model where the volatilities of the transitory and permanent

shocks are constants conditional on the regime. It implies that ρs = 0 and γs = 0 for s = 1, 2, 3

in model (1)-(5). Overall, the model has twelve parameters: six error term volatilities and six

free probabilities in the regime transition matrix. Panel (b) of Table (2) reports the estimates of
7Figure 8 in the appendix plots the filtered probabilities of the regimes for the RS-UCSV model.
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Figure 5: Three-regime model with constant conditional volatilities: RS-UCCV model

Actual and predicted value of inflation

Actual and filtered value of inflation

1960 1980 2000 2020

1960 1980 2000 2020

0

4

8

12

0

4

8

12

actual

model

Notes: Filtered and predicted value of inflation in the model where the volatilities of the transitory and
permanent shocks are constants conditional on the regime. The shaded areas indicate the likeliest regime
in each quarter: the second regime is light gray, the third is dark gray. The sample is quarterly U.S. GDP
inflation from 1960:I to 2017:IV.

the parameters. Figure 5 plots filtered and predicted inflation.8 To explore the robustness of our

specification, we estimate a model with regime switching MA(1) volatilities processes and find that

the coefficients of the lagged error terms in all regimes are insignificant. The estimates of the filtered

state variables that are close to those for the model with constant volatilities conditional on the

regime.

For a robustness check, we estimate the model using the CPI inflation data. Figure 6 plots

inflation and its one-step ahead forecast, the implied IMA(1,1) coefficient, and filtered log volatilities

of the transitory and permanent shocks. It is worth noting that in the late 2000s and, especially,

post Great Recession period CPI inflation series exhibits significantly higher volatility compared to

the GDP inflation data. The model recognizes this period as the most volatile third regime. The

presence of the regime switching allows the model to produce very different dynamics of the filtered

inflation in this period compared to the UCSV model of Stock and Watson (2007); see Figure 1 for

comparison.

We now turn our attention on the forecasting ability of the models. We use two indicators to

compare the models. The first indicator is the in-sample mean squared forecasting error (MSFE)
8Figure 9 in the appendix plots the filtered probabilities of the regimes for the RS-UCCV model.
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Figure 6: Three-regime model with AR(1) conditional volatilities (RS-UCSV model) – CPI inflation
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Notes: The top four panels plot the actual and predicted inflation, the implied IMA(1,1) coefficient θ,
and filtered log volatilities of the transitory and permanent shocks. The volatilities are modeled as AR(1)
processes conditional on the regime. The shaded areas indicate the likeliest regime in each quarter: the
second regime is light gray, the third is dark gray. The bottom three panels plot the filtered probabilities
of the regimes. The sample is quarterly U.S. CPI inflation from 1960:I to 2017:IV.

calculated in the whole sample. The second criterion is the out-of-sample MSFE calculated for

the last five years of the sample. To calculate this indicator, we estimate the model using the

1960:I–2012:IV period and use one-step ahead forecasts in the 2013:I–2017:IV period. We do not

perform rolling estimation because multiple estimation of our RS-UCSV model is computationally

cumbersome.

Table 3 summarizes the forecasting performance of the models using different inflation series:

GDP inflation, CPI inflation, PCE inflation, and core CPE inflation. Based on in-sample MSFEs,

our RS-UCSV model dominates the other models. It produces the smallest in-sample RMSFEs

using the CPI, PCE, and core PCE inflation. For the GDP inflation, the RS-UCSV model is as

good as the RS-UCCV model. The RS-UCSV model also produces better out-of-sample RMSFEs

using the GDP, CPI, PCE inflation series. In sum, the models with regime switching outperform

the model without regime switching both in- and out-of-sample.
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Table 3: Forecasting Performance of the Models

Naive IMA(1,1) UCSV RS-UCSV RS-UCCV

GDP inflation

In-sample MSFE 1.1410 1.0236 1.0142 0.9570 0.9464
Out-of-sample MSFE 0.9606 0.7620 0.6729 0.6593 0.6658

CPI inflation

In-sample MSFE 4.5074 3.8069 3.5028 3.4936 3.9198
Out-of-sample MSFE 3.8826 2.8466 2.6366 2.5084 2.6816

PCE inflation

In-sample MSFE 2.1491 1.9157 1.8405 1.8277 1.9897
Out-of-sample MSFE 1.4919 1.2991 1.2611 1.1801 1.2552

PCE core inflation

In-sample MSFE 0.7277 0.6585 0.6852 0.6537 0.6961
Out-of-sample MSFE 0.2294 0.1926 0.4628 0.4525 0.4505

Notes: The Table reports in-sample and out-of-sample mean squared forecast errors. In-sample MSFE’s
are calculated in the whole sample period. Out-of-sample MSFEs are calculated for the 2013:I–2017:IV
period. The naive one-step ahead forecast equal to the previous value, i.e. πf

t = πt−1. The RS-UCCV
model is the regime switching local level model with constant volatilities conditional on the regime. The
samples contain the quarterly inflation over the 1960:I–2017:IV period.
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5 Conclusion

We study the U.S. inflation dynamics using the random walk plus noise model with regime switch-

ing stochastic volatilities of the permanent and transitory shocks. The model is equivalent to the

integrated moving average IMA(1,1) model with time-varying coefficient θ of the MA term. We

assume that the volatility processes are stationary conditional on the regime. Since the values of

the volatilities determine coefficient θ in each period, the coefficient is also stationary conditional

on regime. We use maximum likelihood estimator based on the particle filter with regime switch-

ing. An important contribution is the resampling procedure that preserves the continuity of the

likelihood function. We estimate the model with three regimes and find that the regime switching

autoregressive representation of volatilities produces superior inflation forecast.
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Appendix

5.1 Appendix A. Particle filter for the regime switching UCSV model

Algorithm 1 Particle filter for the regime switching UCSV model
I. At period t = 0:

1. Draw each set of particles {τ (i)0 }Ni=1, {σ
(i)
π,0}Ni=1, and {σ

(i)
τ,0}Ni=1 from their prior distributions.

Set weights for each set of particles w(i)
g,0 = 1/N for g ∈ {τ, σπ, στ} and i = 1, ..., N . Set prior

probabilities of regimes φ0 = (φ10, ..., φ
S
0 )′.

II. For periods t = 1, ..., T :

1. For each regime s = 1, .., S:

(a) Draw {η(i)π,t}Ni=1 and {η(i)τ,t}Ni=1 from N(0, 1) and calculate {σ(i),s
π,t }Ni=1 and {σ(i),s

τ,t }Ni=1 ac-
cording to (3) and (4) in regime s.

(b) Draw {ε(i)τ,t}Ni=1 from N(0, 1) and calculate {τ (i),st }Ni=1 according to (2) using {σ(i),s
τ,t }Ni=1.

(c) Update the importance weights w
(i),s
g,t ∝ w

(i)
g,tN

(
πt, exp(ν

(i),s
t + σ

(i),s
π,t )

)
for g ∈

{τ, σπ, στ} and i = 1, ..., N .

2. Calculate the vector of predicted probabilities of regimes as φ̂t = Λ′φt−1.

3. Calculate the likelihoods of regimes φ̃t = diag(w̄1
t , w̄

2
t , ..., w̄

S
t )φ̂ where w̄st = 1

N

∑N
i=1 w

(i),s
t and

incremental log likelihood log(φ̃′t1).

4. Obtain updated probabilities of regime as φt = φ̃t∑S
s=1 φ̃

s
t

.

5. Resample the particles {{τ (i),st , σ
(i),s
π,t , σ

(i),s
τ,t }Ni=1}Ss=1 and form unconditional (averaged across

the regimes) set of particles {τ (i)t , σ
(i)
π,t, σ

(i)
τ,t}Ni=1.

(a) Stack each set particles {{τ (i),st }Ni=1}Ss=1, {{σ
(i),s
π,t }Ni=1}Ss=1, and {{σ

(i),s
τ,t }Ni=1}Ss=1 for all

regimes in NS×1 vectors τ̃t, σ̃π,t, and σ̃τ,t and calculate corresponding vectors of weights

w̃τ,t, w̃σπ,t, and w̃στ,t such that particle i in regime s has weight φ̂s
tw

s,(i)
g,t∑S

s=1

∑N
i=1 φ̂

s
tw

s,(i)
g,t

for

g ∈ {τ, σπ, στ}.
(b) Calculate means νg,t and variances ςg,t for each set of particles g ∈ {τ, σπ, στ}.

(c) Sample N particles for each set of particles {τ (i)t }Ni=1, {σ
(i)
π,t}Ni=1, and {σ(i)

τ,t}Ni=1 from
corresponding N(νg,t, ςg,t), where g ∈ {τ, σπ, στ}.

(d) Calculate the importance weights for each set of particles. For set {τ (i)t }Ni=1 the weights
are

w
(i)
τ,t =

∑NS
j=1 w̃

(j)
g,tK(τ

(i)
t − τ̃

(j)
t |h)

φ(τ̃
(i)
t |ντ,t, ςτ,t)

, (17)

where K(·|H) is a kernel function with bandwidth h and φ(·|ν, ς) is the normal PDF
with mean ν and covariance matrix ς. For sets {σ(i)

π,t}Ni=1 and {σ(i)
τ,t}Ni=1 the importance

weights formulas are similar to (17).
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Figure 7: The ACF and PACF of the GDP inflation and its first difference
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Notes: The figure plots the autocorrelation and partial autocorrelation functions of the GDP inflation
calculated over the 1960:I–2017:IV period.
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Figure 8: Filtered probabilities of regimes for the GDP inflation: RS-UCSV model
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Notes: The figure plots the filtered probabilities of the regimes. The sample is quarterly U.S. GDP inflation
from 1960:I to 2017:IV.
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Figure 9: Filtered probabilities of regimes for the GDP inflation: RS-UCCV model
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Notes: Filtered probabilities of the regimes. The sample is quarterly U.S. GDP inflation from 1960:I to
2017:IV.
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