
1. A discrete π may be looked at algebraically and geo-topologically.

2. Algebra.
 Let \(R \text{ ring}, \ M \text{ } R\text{-module} \)
 \(\text{Proj dim}_R M \leq n \) if there is a projective resolution of \(M \) of length \(n \):
 \[
 0 \to P_0 \to P_{n-1} \to \cdots \to P_i \to P_0 \to M \to 0
 \]
 \(H_i(P) = 0 \) \(i \geq 1 \), \(H_0(P) = \frac{P_{0}}{\ker(P \to P_0)} \cong M \).
For \(\pi \) a discrete group, we take the ring to be the group ring \(\mathbb{Z}[\pi] \). Take \(\mathbb{Z} \) to be a trivial \(\mathbb{Z}[\pi] \)-module.

The cohomological dimension of \(\pi \) is

\[
\text{cd} (\pi) = \text{projdim}_{\mathbb{Z}[\pi]} \mathbb{Z} = \inf \{ n : \mathbb{Z} \text{ admits a resolution by } \mathbb{Z}[\pi] \text{-modules of length } n \}.
\]

Recall how we find cohomology of \(\pi \):

1) Take a resolution of \(\mathbb{Z} \),

\[
\mathbb{Z} \to P_n \to P_{n-1} \to \cdots \to P_0 \to \mathbb{Z}
\]

2) Take a \(\mathbb{Z}[\pi] \)-module \(A \)
3) Form the complex
\[\text{Hom}_{\mathbb{Z}^+}(\mathbb{Z}^+, A) \rightarrow \text{Hom}_{\mathbb{Z}^+}(\mathbb{P}_0 A) \rightarrow \ldots \rightarrow \text{Hom}_{\mathbb{Z}^+}(\mathbb{P}_j A) \rightarrow \ldots \]

4) \[H^i(\pi, A) \overset{\text{def}}{=} H_i(\text{Hom}_{\mathbb{Z}^+}(\mathbb{P}_j A)) \]

(Exercise: \(H^0(\pi, A) = A^\pi = \text{fixed submodule} \))

\[\Rightarrow \text{cd}(\pi) = \inf \{ n : H^i(\pi, -) = 0 \text{ for } i > n \} \]
\[= \sup \{ n : H^i(\pi, M) \neq 0 \text{ for some } M \} \]

3. Topological
If \(\pi \) has a presentation \(0 \rightarrow R^jF \rightarrow \pi \)
with \(R, F \) free, then we can model
This by Ven-Kampeien's Theorem says
\[\pi_1(X_2) = \pi. \]

It is possible that \(\pi_2(X_2) \neq 0 \). If so, attach 3-cells to kill this group. We get \(X_3 \) with \(\pi_1(X_3) = \pi \), \(\pi_2(X_3) = 0 \).

Continue to attach cells until we have \(X \) with \(\pi_1(X) = \pi \) and \(\pi_j(X) = 0 \) \(\forall j > 1 \).

Then \(X \) is called a \(K(\pi, 1) \).
The geometric dimension of π is the smallest n such that there is a $K(\pi, 1)$ of dimension n. This is written $\dim(\pi)$.

Example, $\pi = \mathbb{Z} \times \mathbb{Z}$, $F_1 \rightarrow F_2 \rightarrow \mathbb{Z} \times \mathbb{Z}$

Start with $S^1 \vee S^1$.

$S^1 \rightarrow S^1 \vee S^1 \rightarrow X_2 = S^1 \times S^1 = T^2$

$\omega \mapsto aha^{-1}b^{-1}$

T^2 is covered by $\mathbb{R}^2 \Rightarrow T^2 = K(\mathbb{Z} \times \mathbb{Z}, 1)$.
4. What is a connection between the algebraic and geometric approaches?

Look at $\tilde{X} \to X = \text{ker}(\pi_j)$. Since $\pi_j(\tilde{X}) = \pi_j(X) = 0$ for $j > 1$ and $\pi_0(\tilde{X}) = 0$, we see \tilde{X} is contractible.

Consider the chain complex of cells of X:

$\cdots \to C_k(X) \to C_{k-1}(X) \to \cdots \to C_1(\tilde{X}) \to C_0(\tilde{X}) \to \mathbb{Z} \to 0$

$C_i(\tilde{X}) = |\pi_i|$ - number of cells above each i-cell in X.

This gives a resolution of \mathbb{Z} by free
\mathbb{Z}/π-modules.

Then $H^i(\pi, A)$ is then computed by

$$\cdots \to \text{Hom}_{\mathbb{Z}/\pi}(\mathbb{C}_i(X), A) \to H_{\mathbb{Z}/\pi}^i(\mathbb{C}_i(X), A) \to \cdots$$

If $A = \mathbb{Z}/\pi$, then $H^*_c(X) = H^*_i(\pi, \mathbb{Z}/\pi)$.

If $A = \mathbb{Z}$ (trivial), then $H^*_c(\pi, \mathbb{Z}) = H^*_c(X, \mathbb{Z})$.

$\text{alg def of } \text{coh of } \varpi$$

ordinary sing.

Suppose $\dim_{\mathbb{C}}(X) = n$,

$\Rightarrow \mathbb{C}_i(X) = 0$ for $i > n$,

$\Rightarrow H^i_c(\pi, A) = 0$ for $i > n$.

$\Rightarrow \text{codim}(\pi) \leq \dim_{\mathbb{C}}(X)$.
Theorem: (Eilenberg-Ganea)
Let \(\pi \) be an arbitrary group and let \(n = \max \{ \text{cd}(\pi), 3 \} \). Then there exists an \(n \)-dim \'K(\pi_1)\)-complex \(Y \).
If \(\pi \) is finitely presented and of type \(\text{FL} \) (resp. \(\text{FP} \)), then \(Y \) may be taken to be finite (resp. finitely dominated).

Corollary. If \(\text{cd}(\pi) \geq 3 \), then \(\text{cd}(\pi) = \dim(\pi) \).
EG - Conjecture. \(\text{cd}(\pi) = \dim(\pi) \) always.
Could there be a \(\pi \) with \(\text{cd}(\pi) = 2 \), \(\dim(\pi) = 3 \)?
Lusternik-Schnirelmann category enters this picture.
By the fibre-cofibre formulation of LS category, we can show

Theorem. If $X = \text{K}(\pi, 1)$, then

$$\text{cd}(\pi) = \text{cat}(X).$$