Lecture 4: Cochain Finite Elements, the Whitney Map and RHT.

Let \(X \) be a smooth Riemannian manifold that is \(C^\infty \)-triangulated by a simplicial complex \(K \). There is a fixed ordering on the vertices of \(K \), \(X \) compact \(\iff K \) finite. \(K \) finite \(\Rightarrow \) we can identify cochains and chains. Let \(c \in C^g(K) \). Write

\[
 c = \sum c_\tau \tau \quad \text{where} \quad \tau = g\text{-simplex of } K,
\]

Let \(\tau = [p_0, \ldots, p_g] \), \(p_i \) vertices of \(K \).
Define a map $W: C^\infty(K) \to \Omega^\infty(X)$ by

$$W\gamma = \sum_{k=0}^{\infty} \gamma^{(k)} \mu_{p_0} \cdots \mu_{p_k} \wedge \cdots \wedge \mu_{p_0}.$$

where the μ_{p_i} are the barycentric coordinates of γ.

This means any point $x \in X$ may be written as $x = \mu_{p_0} \cdot p_0 + \cdots + \mu_{p_k} \cdot p_k$ when $\mu_{p_i} \geq 0$, $\sum \mu_{p_i} = 1$.

Really $W: C^\infty(K) \to L^2 \Omega^\infty(X)$ completion of $\Omega^\infty(X)$ with respect to the inner product.
W is the Whitney map.

Let integration be denoted by $R: \Omega^b(X) \to C^b(k)$, $R(\phi)(\gamma) = \int \phi$.

Here are some properties of W.

(1) $W\gamma = 0$ on $X \setminus St(\gamma)$

(2) $Wd\alpha = d(W\alpha) \forall$ cochains α

(3) If σ, τ are q-simplices with $p = \sigma \cup \tau$, $i: \epsilon \to \sigma$, $j: \epsilon \to \tau$, then...
\[i^*(Wc|\sigma) = j^*(Wc|\mu) \]

Proof

\[i^* \mu = \mu|_{\mathcal{L}} = j^* \mu \]

in barycentric coords and d commutes w. restriction.

(4) Let \(c \in C^g(K) \), \(a \in C^f_p(K) \). Then

\[R(Wc)(a) = \sum_{a} Wc = \langle c, a \rangle = \text{eval of a cochain on a chain.} \]

(5) \(RW = id \).

(6) \((dWc, f) = (Wc, df) \), \(f \in \Omega^{g+1}(X), c \in C^g(K) \).
The triangulation has a mesh
\[\mathcal{N}_n = \sup_{\sigma \in S_n^K} \text{diam}(\sigma) \]
where \(S_n^K \) is a certain standard subdivision of \(K \).
\[\lim_{n \to \infty} \mathcal{N}_n = 0 \]
Take \(n \) big for a good approx.

Theorem. Let \(f \in L^\infty(K) \). Then \(f \) has a constant \(C_f \) independent of \(n \) such that
\[\| f - W_n f \|_1 \leq C_f \mathcal{N}_n. \]

Let's define an inner product on \(C^\infty(K) \) by
\((c, c') \overset{\text{def}}{=} (Wc, Wc') = S \times Wc \perp *Wc'\)

Now everything we did on Hodge theory applies to \((C^g(K), (,))\).

\[C^g(K) = \bigoplus_{S, K} \mathcal{H}_n \oplus \text{Im}(d_n) \oplus \text{Im}(\partial_n) \]

\(n\) refers to \(S^n K\).

Theorem (Dodziuk)

Let \(f \in \Omega^g(X)\) have Hodge decomposition

\[f = h + dg + \partial K. \]

Then \(R^*_n f\) has discrete Hodge decomposition

\[R^*_n f = h_n + d_n g_n + \partial_n K_n. \]
Then
\[\lim_{n \to \infty} W_n h_n = h, \quad \lim_{n \to \infty} W_n d_n g_n = dg, \quad \lim_{n \to \infty} W_n \varepsilon_n k_n = 2k, \]
in the norm of \(L^2(\Omega)(X) \).

Dodziuk mentions that his approach does not seem to apply to finding solutions for \(\Delta u = f \).
Discretely \(\Delta_n u_n = R_n f \), but we can't see that \(u_n \to u \).
This is the exact problem we want to solve!