
Introduction to Using Samplers and Estimators in Quantum Computing 

Quantum computers operate fundamentally differently from classical computers. Classical 

computers process information deterministically, meaning they will always produce the same 

output given the same input. Quantum computers, on the other hand, operate 

probabilistically. This means that the outcome of a quantum computation can vary, even with 

the same input, due to the inherent probabilistic nature of quantum mechanics. 

Why Use Samplers and Estimators? 

Samplers and Estimators are critical for running quantum algorithms efficiently: 

1. Samplers: 

• Purpose: Used to gather and analyze the distribution of possible outcomes from a 

quantum circuit. They help understand the probabilistic output by sampling 

multiple circuit runs. 

• Use Case: For tasks like generating samples according to the quantum state 

prepared by a circuit (e.g., the relevant states/counts of a quantum circuit). This is 

useful in various quantum algorithms and for verifying quantum states. 

2. Estimators: 

• Purpose: Used to estimate expected values of certain observables (e.g., energy in 

a quantum system) based on the probabilistic outcomes. 

• Use Case: Essential for algorithms in quantum chemistry and physics where 

measuring specific properties of a quantum system is required. 

The transition from backend.run() to Samplers and Estimators 



With the deprecation of backend.run() in Qiskit, there is a shift towards using Samplers and 

Estimators for executing quantum circuits. The backend.run() method and related session 

methods are deprecated as of Qiskit-IBM-Runtime 0.23 and will be removed in future 

releases. This change encourages the use of the more robust and flexible primitives: 

“sampler.run()” and “estimator.run()” 

Methods and Objects in Quantum Computing 

To better understand samplers and estimators, let's briefly explain some important methods 

and objects used in quantum computing when using Samplers and Estimators: 

• Isa_circuit: A term used to describe a circuit mapped onto a given quantum 

processor's specific hardware topology and constraints. This involves layout 

adjustments and optimizations to ensure efficient execution on the target backend. 

• Pass_manager: A tool that manages the optimization passes applied to a quantum 

circuit. These passes optimize the circuit in various ways, such as reducing gate count 

or adapting the circuit to the hardware constraints. 

• Transpile: A function that converts a high-level quantum circuit into a form that can 

be executed on a specific quantum backend. This process includes mapping logical 

qubits to physical qubits, optimizing the circuit, and ensuring it adheres to the 

backend's constraints. 

• Observable: An operator representing a physical quantity to be measured in a 

quantum system. In the context of estimators, observables are often represented by 

Pauli operators (e.g., Z, X, Y) applied to qubits. 

• Counts: The number of times each possible outcome occurs when a quantum circuit 

is executed multiple times. This is typically represented as a dictionary where keys are 

bitstrings (representing the states) and values are the counts of those bitstrings. 

https://docs.quantum.ibm.com/api/migration-guides/qiskit-runtime


• Expectation values: The weighted average of the measurement outcomes of an 

observable, providing a single number that represents the average result of measuring 

that observable on a quantum state. Expectation values are crucial for algorithms in 

quantum chemistry, optimization, and machine learning. 

How to Use Samplers and Estimators 

Using Samplers and Estimators involves several steps in the Qiskit framework, IBM’s open-

source quantum computing software development kit. 

1. Setup: 

• Make sure you have Qiskit and Qiskit-IBM-Runtime installed 

 

2. Initialization: 

• Import the necessary classes from Qiskit-IBM-Runtime. 

 

• Initializing Qiskit IBM Quantum Runtime 

 

3. Using Samplers: 

• Import the necessary libraries and generate a Quantum Circuit 



 

• Use the pass manager class to create an ISA circuit for the Quantum Hardware 

 

• Initialize the Sampler 

 

• Using the Sampler, run the circuit 

 

• Get the job results and print out the counts 

 

4. Using Estimators: 



• Import the necessary libraries and generate a Quantum Circuit and the relevant 

observables 

 

• Use the pass manager class to create an ISA circuit for the Quantum Hardware 

 

• Initialize the Estimator 

 

• Using the Estimator, run the circuit 

 

• Get the job results and print out the expectation values 



 

5. Advanced Features: 

• The new versions (V2) of these primitives offer enhanced functionality, like 

efficiently handling vectorized inputs and supporting multiple parameter sets 

and observables. This flexibility allows for more complex and varied quantum 

experiments. 

Samplers and Estimators are fundamental tools in quantum computing for obtaining 

measurement outcomes and expectation values. They provide the necessary interface to 

execute and analyze quantum circuits efficiently, making them indispensable for research and 

practical applications in quantum computing. Understanding the probabilistic nature of 

quantum computing and using appropriate primitives like samplers and estimators are crucial 

for effective quantum computations.  

The examples provided illustrate the use of these primitives and highlight the necessary 

methods and objects involved. By leveraging these tools, one can gather valuable insights 

from quantum computations, thereby making the most of the unique capabilities of quantum 

computers. 

For more detailed information and advanced usage, refer to the Migration Guide and IBM 

Quantum Documentation for Getting Started with Primitives 

 

https://docs.quantum.ibm.com/api/migration-guides/v2-primitives
https://docs.quantum.ibm.com/run/primitives-get-started#start-sampler

