Introduction to Using Samplers and Estimators in Quantum Computing

Quantum computers operate fundamentally differently from classical computers. Classical
computers process information deterministically, meaning they will always produce the same
output given the same input. Quantum computers, on the other hand, operate
probabilistically. This means that the outcome of a quantum computation can vary, even with

the same input, due to the inherent probabilistic nature of quantum mechanics.

Why Use Samplers and Estimators?

Samplers and Estimators are critical for running quantum algorithms efficiently:

1. Samplers:

e Purpose: Used to gather and analyze the distribution of possible outcomes from a
quantum circuit. They help understand the probabilistic output by sampling
multiple circuit runs.

e Use Case: For tasks like generating samples according to the quantum state
prepared by a circuit (e.g., the relevant states/counts of a quantum circuit). This is

useful in various quantum algorithms and for verifying quantum states.

2. Estimators:

e Purpose: Used to estimate expected values of certain observables (e.g., energy in
a quantum system) based on the probabilistic outcomes.
e Use Case: Essential for algorithms in quantum chemistry and physics where

measuring specific properties of a quantum system is required.

The transition from backend.run() to Samplers and Estimators



With the deprecation of backend.run() in Qiskit, there is a shift towards using Samplers and
Estimators for executing quantum circuits. The backend.run() method and related session
methods are deprecated as of Qiskit-IBM-Runtime 0.23 and will be removed in future

releases. This change encourages the use of the more robust and flexible primitives:

“sampler.run()” and “estimator.run()”

Methods and Objects in Quantum Computing

To better understand samplers and estimators, let's briefly explain some important methods

and objects used in quantum computing when using Samplers and Estimators:

e Isa_circuit: A term used to describe a circuit mapped onto a given quantum
processor's specific hardware topology and constraints. This involves layout
adjustments and optimizations to ensure efficient execution on the target backend.

e Pass manager: A tool that manages the optimization passes applied to a quantum
circuit. These passes optimize the circuit in various ways, such as reducing gate count
or adapting the circuit to the hardware constraints.

e Transpile: A function that converts a high-level quantum circuit into a form that can
be executed on a specific quantum backend. This process includes mapping logical
qubits to physical qubits, optimizing the circuit, and ensuring it adheres to the
backend's constraints.

e Observable: An operator representing a physical quantity to be measured in a
quantum system. In the context of estimators, observables are often represented by
Pauli operators (e.g., Z, X, Y) applied to qubits.

e Counts: The number of times each possible outcome occurs when a quantum circuit
is executed multiple times. This is typically represented as a dictionary where keys are

bitstrings (representing the states) and values are the counts of those bitstrings.


https://docs.quantum.ibm.com/api/migration-guides/qiskit-runtime

e Expectation values: The weighted average of the measurement outcomes of an
observable, providing a single number that represents the average result of measuring
that observable on a quantum state. Expectation values are crucial for algorithms in

quantum chemistry, optimization, and machine learning.

How to Use Samplers and Estimators

Using Samplers and Estimators involves several steps in the Qiskit framework, IBM’s open-

source quantum computing software development kit.

1. Setup:

e Make sure you have Qiskit and Qiskit-IBM-Runtime installed

[1] !pip install giskit

Ipip install qiskit-ibm-runtime

2. Initialization:

e Import the necessary classes from Qiskit-IBM-Runtime.

[18] from giskit ibm_runtime import SamplerV2 as Sampler, EstimatorV2 as Estimator

e Initializing Qiskit IBM Quantum Runtime

t’ from qiskit_ibm_runtime import QiskitRuntimeService

service = QiskitRuntimeServicejchannel="ibm guantum”, token="<Your IBE

3. Using Samplers:

e Import the necessary libraries and generate a Quantum Circuit



~t numpy as np
giskit.circuit.library imp Iop
t.transpiler.preset_passmanagers import generate_preset pass_manager

from qiskit.quantum_info import random_hermitian

n_qubits = 127

mat = np.real(random_hermitian(n_gqubits, seed=1234))
circuit = IQP{mat)
circuit.measure_all{)

e Use the pass manager class to create an ISA circuit for the Quantum Hardware

s L8] pm = generate preset_pass_manager(optimization level=1, backend=backend)

isa_circuit = pm.run(circuit)

e Initialize the Sampler

kY o sampler = Sampler(mode=backend)

e Using the Sampler, run the circuit

[18] job = sampler.run([isa circuit])
print(f’ o ): {job.job_id
print(f">»>> Job Status: {job.status

Job ID: csx1yc97ynngBeszexwg
Job Status: QUEUED

e Get the job results and print out the counts

. [9] result = job2.result()

print( nt the output register: {pub_result.data.meas.get counts()}")

:):'v Counts for the meas output register: {'1012101010000110160100100001012622010110000]

4. Using Estimators:



e Import the necessary libraries and generate a Quantum Circuit and the relevant

observables

ort numpy as np
giskit.circuit.library im
giskit.transpiler.preset passmanagers import generate preset pass manager
t SparsePauliOp, random_ hermitian

giskit.quantum_info in
n_qubits = 5@

mat = np.real{random_hermitian(n_gubits, seed=1

circuit = IQP(mat)

observable = S ePauliOp(“Z" * n_qubits)

print(f":> vable: {observable.paulis}™)
_—

=¥ >»> Observable: ['Z
R

e Use the pass manager class to create an ISA circuit for the Quantum Hardware

[4] pm = generate preset pass manager{optimization level-=1, backend=backend})
isa_circuit = pm.run{circuit)
isa_observable = observable.apply layout(isa circuit.layout)

e [nitialize the Estimator

estimator = Estimator(mode=backend)

e Using the Estimator, run the circuit

job = estimator.run([(isa_circuit, isa observable)])
print(f": ): {job.job_id
print){f">>> Job Status: {job.status

SSEare@dBcyxyg

e Get the job results and print out the expectation values



result

print( ]

print{f" X ation value: {result[@].data.evs}"™)
print{f" > Metadata: {result[@].metadata}")

—_—

=¥ 33> PrimitiveResult([PubResult{data=DataBin(evs=np.ndarray(

L
> Expectation value: 8.4482758620689655
> Metadata: {'shots': 4896, "target precision’': 9.815625,

5. Advanced Features:
e The new versions (V2) of these primitives offer enhanced functionality, like
efficiently handling vectorized inputs and supporting multiple parameter sets
and observables. This flexibility allows for more complex and varied quantum

experiments.

Samplers and Estimators are fundamental tools in quantum computing for obtaining
measurement outcomes and expectation values. They provide the necessary interface to
execute and analyze quantum circuits efficiently, making them indispensable for research and
practical applications in quantum computing. Understanding the probabilistic nature of
quantum computing and using appropriate primitives like samplers and estimators are crucial

for effective quantum computations.

The examples provided illustrate the use of these primitives and highlight the necessary
methods and objects involved. By leveraging these tools, one can gather valuable insights
from quantum computations, thereby making the most of the unique capabilities of quantum

computers.

For more detailed information and advanced usage, refer to the Migration Guide and IBM

Quantum Documentation for Getting Started with Primitives



https://docs.quantum.ibm.com/api/migration-guides/v2-primitives
https://docs.quantum.ibm.com/run/primitives-get-started#start-sampler

