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1 Introduction

The development of novel prosthetic devices has progressed at a rapid pace in the last decades. Transfemoral
leg prostheses, in particular, have become increasingly sophisticated in terms of the technologies used to
modulate knee behavior or even produce push-off forces with battery power. Knee torque may be varied
by pneumatic, hydraulic or fluid-rheological means, and embedded microprocessors are typically used for
control [1]. The literature shows, however, that none of the available knee prostheses fully restore normal
gait [2, 3, 4, 5, 6]. This fact has become a driver for the development of better prostheses, and the recent
literature describes some new prosthetic knee programs [7, 8, 9].

In the product development phase, prosthesis testing under normal and hazard conditions is problematic.
Informed consent, safety harnesses and lack of repeatability across test subjects inhibit useful data gathering.
Robotic testing of prosthesis can remove these obstacles and bring additional benefits. Indeed, robots may be
operated under conditions which are deemed unsafe for patients, such as near-fall situations. A robot may be
operated continuously for long periods of time, as necessary for real-time optimization of prosthetic control
algorithms. Also, robots may be fitted with sensors to measure quantities of interest which are difficult
to measure directly in a human subject, such as hip torque and angle. Finally, simultaneous computer
control of testing machine and prosthesis allows the real-time integration of musculoskeletal models as part
of prosthetic test programs. Real-time sensor data from the machine and the prosthesis provide inputs to
these models, which in turn produce outputs which are used to alter the motion profiles generated by the
machine, in a feedback process. This test modality is difficult to implement with a patient in the loop.

Although some use of commercial manufacturing robots in prosthesis testing has been reported by the
Fraunhofer Institute [10] and the Cleveland Clinic [11], the use or development of a machine aimed at
reproducing prosthetic gait has not been reported, to the best of the authors’ knowledge. In this paper,
robotic testing of transfemoral prosthesis is proposed, and the development, modeling and initial control of
a two-degree-of-freedom robot to emulate hip motions is described. It is expected that robotic testing of
prostheses will play a major role in extracting the dynamic characteristics of prosthetic knees because the
input displacements, velocities, accelerations, torques and forces can be measured with much more accuracy
and precision than during human gait trials.

Methodology

Higher-level design requirements such as the number of degrees of freedom, the shape of the motions to be
generated and load capacity requirements leave very few options for the mechanical configuration. Upon
fixing the kinematic concept, electromechanical actuation was favored over hydraulics due to the higher
achievable positioning accuracy and generally faster control bandwidth of the former. Besides, a hydraulic
system requires several ancillary components such as pumps, a tank, valves and filters, resulting in a bulkier
and overall less efficient solution for this particular application. Installation of a hydraulic system in a clinical
research facility may not be feasible due to noise and cleanliness concerns. The development of the robot
comprised several sub-tasks:

1. Actuator calculations and final component selection

2. Design and strength calculations for the frame

3. Detailed mechanical design and fabrication

4. Modeling and system identification of servo systems
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5. Robotic modeling and parameter estimation of a sample passive prosthesis

6. Integration of models and development of computer simulation tools

7. Controller design and simulation

8. Real-time control interfacing and tuning

9. Proof-of-concept tests under real-time feedback control

This paper focuses on sub-tasks 4,5,7 and 9, which we believe concentrate the innovative use of technology
toward more reliable prosthetic designs. The remainder of the paper is organized as follows: Section 2 de-
scribes machine functionality and components; Section 3 first derives separate models for the machine and
for the prosthesis, and then integrates them into one, following a robotic manipulator dynamics framework;
Section 4 describes various parameter estimation procedures used to populate the dynamic model; Section 5
presents preliminary independent-joint controller that can be used to accurately track motion profiles; Sec-
tion 6 reports our success in achieving the desired motion profiles and Section 7 offers conclusions and some
recommendations for future improvements to this design.

2 Machine Design

The robot must produce motions that mimic those of a human hip during walking and running. This
design is limited to two degrees of freedom, namely hip vertical displacement and hip swing, which are the
minimum required to reproduce two-dimensional gait patterns. Normal hip displacement and swing are
periodic oscillations with amplitudes and waveforms that depend primarily on the height of the patient and
the walking or running speed. Normal gait profiles used as a guideline for design are a subset of the data
collected by van den Bogert [12], which includes walking and running in healthy subjects. The machine is
designed for a hip displacement amplitudes of up to 50 mm, with a maximum velocity of 1 m/s. Vertical
force capacity is specified at 1200 N, which exceeds the ground force generated by a 78 kg normal subject
during fast walk/slow running. The vertical motion stage is comprised of a DC motor, a ballscrew and a
linear slide. Overall vertical motion range is 12 inches, of which up to 100 mm are used to accommodate the
expected vertical hip motion profiles. The remaining space is used to shift the center of oscillation, as it may
be required to test prostheses of various lengths. The center of oscillation may also be changed during real
time operation to initiate and regulate contact between the foot and the walking surface. Since the machine
has a fixed vertical axis, a treadmill is used as a walking surface.

The rotary motion stage, including motor, is carried by the vertical slide. Prostheses are attached to the
rotary plate by means of an adjustable threaded rod, which is secured to a bracket on the plate with two 2.75-
inch nuts. The threaded rod, in combination with the adjustable center of oscillation of the vertical stage,
offer great flexibility for standoff adjustments. Although thigh angular excursion in the normal gait data
does not exceed 50 degrees, the rotary actuator has an unlimited angular range. Following biomechanical
data from [12], the design values for thigh angular velocity and torque are is 150 degrees per second and 75
Nm.

A schematic diagram of the robot and its components is shown in Fig. 1, and the finished machine is
shown in the photograph of Fig. 2

2.1 Support Structure

The linear slide is attached to a rigid frame built with A500 rectangular steel tubing. Frame elements are
welded together, and bolted joints are used for the mounting plates. The frame, the welds and the bolted
joints were verified for static loading and fatigue using the SolidWorks software. A treadmill is secured to
the frame by bolts, and anchor bolts are used to secure the entire assembly to the lab floor. Overall machine
dimensions are 48′′ × 61′′ × 26′′.

2.2 Servo Systems

The vertical servo system is composed of a ballscrew-driven vertical slide (manufactured by RAF Automation,
Solon, Ohio), directly coupled to a brushless DC motor (Mitsubishi HF-KP73). The motor is powered by a
torque-mode servo amplifier (Mitsubishi MR-J3-70A). An analog input voltage applied to the servo amplifier
results in a proportional torque on the motor shaft and ballscrew. Vertical position (hip displacement) is
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Figure 1: Machine Schematic

Figure 2: Overall Robot Installation

measured with a 1000 line/rev incremental encoder rotating synchronously with the motor. An absolute
position reference is established with a limit switch mounted on the vertical guides. The ballscrew has a
diameter of 1 inch, a lead of 0.5 inches per revolution and the total useful travel of the slide is 12 inches.

The rotary servo system is composed of a brushless DC motor (ElectroCraft RapidPower RP34) coupled
to a rotary plate through an inchworm-gear reducer with ratio 80:1 (RM-8-SM-34, manufactured by New-
mark Systems, Rancho Santa Margarita, California). Angular position (thigh angle) is measured with an
incremental encoder rotating synchronously with the motor. An absolute position reference is established
with a limit switch mounted on the rotary plate. Real-time instrumentation and control is handled by a
dSPACE DS-1102 system and associated software. The developer may easily convert Matlab/Simulink code
into user-friendly real-time operating interfaces.

3 Robotic Modeling

The overall machine-and-prosthesis system is best modeled in the standard framework of robotics. Indeed,
the system fits the category of a 3-link rigid robot with a prismatic-revolute-revolute (PRR) configuration.
When a conventional leg prosthesis is attached, the system is underactuated, since the torque of the knee joint
may not be externally controlled. When advanced prototypes featuring actively-controlled knee damping
are attached, the system can be regarded as fully-actuated. A general dynamic model [13] for the robot is
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given in joint coordinates as

D(q)q̈ + C(q, q̇)q̇ +B(q, q̇) + JT
e Fe + g(q) = Fa (1)

where qT = [q1 q2 q3] is the vector of joint displacements (in our case q1 is the vertical displacement, q2
is the thigh angle and q3 is the knee angle), D(q) is the inertia matrix, C(q, q̇) is a matrix accounting for
centripetal and Coriolis effects, B(q, q̇) is a nonlinear damping matrix (in our case due to the knee damper),
Je is the kinematic Jacobian relative to the point of application of external forces Fe, g(q) is the gravity
vector and Fa is a vector of net actuator inputs, including their inertial and frictional effects. The explicit
form of Fa is developed below. MatricesD(q), C(q, q̇) and g(q) are readily obtained using the standard Euler-
Lagrange approach. Their entries are listed at the appendix. Matrix B(q, q̇) is specific to the leg prosthesis
and discussed in Section 3.3. The external force Jacobian and the external force vector are discussed next.

3.1 Forward Kinematics

A set of reference frames is defined to establish a basis for dynamic model derivations and to keep track of
leg geometry during analysis, simulation and real-time operation. The frame assignments shown in Fig. 3
follow the standard Denavit-Hartenberg convention [14]. The frame-to-frame transformations matrices are
expressed in terms of standard primitives [13] as:

A0

1
= (Transz,q1)(Rotx,90) (2)

A1

2 = (Rotz,q2)(Transz,d0
)(Transx,l2) (3)

A2

3
= (Rotz,q3)(Transx,c3) (4)

where l2 is the length of link 2 (thigh), d0 is the offset of link 2 and c3 is the distance between the knee joint
and the center of mass of link 3. The world-frame coordinates of points of interest can be readily computed
using the above transformation matrices, assuming q is known. The world position of the foot-mounted load
cell is particularly useful when designing force feedback controls. In frame 3 coordinates, the load cell is
located at [lcx − lcy 0]T . Using the composite transformation from frame 3 to the world frame, the vertical
coordinate of the load cell is found as

ZLC = q1 − lcy cos(q2 + q3) + (c3 + lcx) sin(q2 + q3) + l2 sin(q2) (5)

In the modeling and simulation stage, this coordinate may be compared to the treadmill’s standoff height to
determine belt deflection and estimate the vertical component of ground reaction force, FGV . In a simplified
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point-foot model, the belt is regarded as a stiffness, returning a force proportional to deflection. Also, side
forces (in the world Y-direction) are ignored. The friction force due to non-slip contact between belt and
foot in the world X-direction is denoted by FGH . This input affects knee angle, but its effect on thigh
angle is negligible due to non back-driveability of the rotary actuator. Likewise, FGH has no effect on the
vertical actuator. As explained in Section 3.5, a kinematic constraint associated to the foot-treadmill contact
eliminates the need to compute FGH during simulation. In this paper, no external torques are considered at
the location of the load cell, but they can certainly be incorporated if Je is appended with the appropriate
angular velocity Jacobian. Thus, we consider a force vector of the form FT

e = [0 0 − FGV ]. The velocity
Jacobian at the load cell location is listed in the appendix.

3.2 Servo System Models

The servo systems are modeled as current-driven DC machines with inertias attached to their shafts by a
mechanical transmission. For the linear actuator, we consider Coulomb friction on the carriage guides and
neglect viscous damping effects. For the rotary actuator, we consider viscous damping in the rotating gear.

Vertical Stage

The torque balance equation on the ballscrew is Tm1
− Tr = Jbθ̈, where Tm1

is the torque applied by the
motor, Tr is the torque due to the interaction between ballscrew and carriage nut, Jb is the moment of inertia
of the ballscrew and θ is the rotation angle. A transmission screw of pitch radius r and lead l (in units of
length per revolution) exhibits a linear torque-force relationship [15] of the form:

F =
1

γ
Tr (6)

where γ = l
2πη

, F is the thrust force and η is an efficiency figure, typically between 0.8 and 0.9 for ballscrews.

Using the ballscrew lead, we have θ = q1/l. Also, we define and calibrate the servo amplifier constant through
the relationship Tm1

= γk1u1, where u1 is the analog control voltage and k1 is a constant. The force exerted
by the ballscrew on the carriage becomes:

F = k1u1 −m0q̈1 (7)

where m0 = Jb/(γl) represents an inertial parameter which is not subject to gravity.

Rotary Stage

The rotary servo system can be modeled by the transfer function

G2(s) =
W2(s)

U2(s)
=

k2
(Jo + i2Jm)s+ br

(8)

where W2(s) and U2(s) are the Laplace transforms of the thigh angular speed and rotary actuator control
voltage, respectively, k2 is the servo amplifier gain (in N-m per volt), Jo is the rotary inertia associated with
the actuator gear, mounting plate and accessories, i = 80 is the gear ratio, Jm is the moment of inertia of
the worm gear and motor armature, and br is a viscous damping coefficient associated with the rotation of
the gear (friction on the motor side is small in comparison, and can be safely neglected).

3.3 Prosthesis Model

A passive prosthetic leg was attached to the machine to test the modeling approach and operate the machine
in real-time with a preliminary control system. The Mauch MicroLite S [16] leg consists of two rigid links
connected by a hinge. A damper is connected between the links, as shown in Fig. 1, to stabilize the knee
during the stance phase and limit knee angle during the swing phase. Typically, higher damping is required
during the stance phase than in the swing phase. For this reason, the damper features two adjustment dials
that can be used to set separate damping coefficients for knee flexion (q3 increasing) and knee extension (q3
decreasing).
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The prosthesis, therefore, is regarded as links 2 and 3 of the overall robot. Joint 3 is subject to an internal
torque due to damper action. This nonlinear damping torque can be calculated as ∂R/∂ẋd, where R is the
Rayleigh dissipation function:

R =
1

2
bkẋ

2

d (9)

where bk is the direction-dependent damping coefficient and ẋd is the expansion rate of the damper. The ex-
pansion rate is readily found by considering the geometry of the damper attachment and using differentiation
of the cosine law. The nonlinear damping term of Eq. 1 is thus found to be:

BT (q, q̇) =

[

0 0 −
bko

2

dr
2

d cos
2(q3)q̇3

l2d

]

(10)

where od, rd and ld are the damper offset, swing radius and instantaneous damper length, as shown in Fig. 4.
In the absence of manufacturer’s data, a custom experimental procedure described in Section 4 was used to
estimate bk.

3.4 Overall Swing-Mode Model

With a passive knee, the actuator input term Fa in Eq. 1 has the form FT
a = [(F − ff ) T 0], where ff is the

Coulomb friction force on the linear guides and T is the net torque of the rotary stage. The Coulomb friction
force is assumed to have the ideal form ff = f sign (q̇1), where f is the magnitude of the force. From Eq. 7,
the first component of Fa in Eq. 1 becomes

Fa(1) = F − ff = k1u1 − f sign (q̇1)−moq̈1 (11)

To integrate the rotary actuator model into the robotic model we note that a net torque balance on the
motor and worm gear axis yields Tm2

− TL = Jmq̈m2
, where Tm2

= k2u2/i is the motor torque reflected to
the output, and TL is the load torque on the same axis. On the link axis, this torque is multiplied by i to
obtain T , the net torque acting on link 2:

T = iTL = iTm2
− i2Jmq̈2 = k2u2 − i2Jmq̈2 (12)

When Fa is substituted into Eq. 1, a re-arrangement of terms yields the final dynamic model:

M(q)q̈ + C(q, q̇)q̇ +B(q, q̇) + Ff (q̇) + JT
e Fe + g(q) = Ku (13)

where FT
f (q̇) = [f sign (q̇1) 0 0], K = diag{k1, k2, 0} is the matrix of servo amplifier constants, u =

[u1 u2 0] is the vector of control voltages and the inertial contributions from the robotic links and the servo
system elements are combined into the mass matrix as follows:

M(q) = D(q) + diag{m0, i
2Jm, 0} (14)

where m0 is the inertial (not subject to gravity) contribution of the vertical motor armature and ballscrew,
discussed in Sect. 3.2, i is the gear ratio of the rotary actuator, Jm is the armature inertia of the rotary
actuator motor and D(q) is the inertia matrix associated with the three robotic links. Equation 13 is
expressed in state-space form as:

ż = w (15)

ẇ = M−1(Ku−B − Cz2 − Ff − JT
e Fe − g(q)) (16)
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ż1 = w1
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Figure 5: Swing/Stance Model as a Hybrid Dynamic System

where z is the vector of joint coordinates and w is the vector of joint velocities. The vertical component
of ground force is calculated as FGV = kb|sz − ZLC | when ZLC > sz and otherwise FGV = 0, where the
constant sz is the treadmill standoff (vertical distance between the origin of coordinates and the belt) and
kb is the belt stiffness.

3.5 Hybrid Swing-Stance Model

Although the model derived in the previous sections accounts for the external ground reaction force, it does
not incorporate any constraint due to the interaction of the foot and the moving surface of the treadmill.
However, tests are conducted with a ground force which is sufficiently large to prevent slippage between the
foot and the treadmill belt. Therefore, the horizontal component of foot velocity is constrained to match
that of the treadmill belt during the stance phase. The foot is still allowed to deflect the belt in the vertical
direction, giving rise to the vertical component of the contact force. As done earlier, it is assumed that this
component is a purely elastic effect. The horizontal velocity of the load cell point on the foot can be readily
obtained from the Jacobian listed at the appendix as:

ẋlc = −(q̇3 + q̇2) [(c3 + lcx) sin(q2 + q3)− lcy cos(q2 + q3)]− l2q̇2 sin(q2) (17)

To enforce the constraint, ẋlc is equated to −VH , the treadmill speed. Then Eq. 17 is solved for q̇3, yielding
the desired algebraic equation:

q̇3 = hVH(q2, q3, q̇2) (18)

Equation 18 is integrated during simulation to obtain q3. That is, knee velocity is not calculated dynamically
but algebraically during stance, from the kinematic constraint. Knee velocity is the integrated to give knee
angle as before. This implies that only 5 states are required during stance (q1, q2 and their derivatives, and
q3), while 6 are needed in the swing phase. A discrete variable ig which governs the transitions between
swing and stance completes the description of the swing-stance model as a hybrid dynamical system. We
define the gait phase index ig as zero whenever the vertical reaction force is positive (stance phase), and as 1
if the force is zero (swing phase). Define the components of the state vectors as z = [z1 z2 z3]

T = [q1 q2 q3]
T

and w = [q̇1 q̇2 q̇3]
T and let

M−1(Ku−B − Cz2 − Ff − JT
e Fe − g(q)) = [p1(z, w) p2(z, w) p3(z, w)]

T
(19)

In swing mode, z is integrated from w, which in turn is integrated from the accelerations pi(z, w) for
i = 1, 2, 3. In the stance mode, z1 and z2 are integrated from w1 and w2, but z3 is integrated from the
kinematic constraint of Eq. 18, and w3 becomes unnecessary. The other two angular velocities are integrated
from their corresponding accelerations, as in the swing phase. Fig. 5 is a graphical representation of the
hybrid model.

4 Parameter Estimation Procedures

4.1 Ballscrew Torque/Thrust Constant and Friction Force

A custom fixture was built to measure parameter γ in Eq. 6. The ballscrew was loaded statically by pressing
the carriage against a load cell, recording thrust and torque (with a separate torque cell). The value of γ was
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measured by linear regression to be 0.0024. This corresponds to an efficiency of 0.84 as calculated from Eq. 6,
which falls in the expected range. With zero load and the slide in a horizontal position, a breaking torque
must be applied to the ballscrew in order to initiate carriage motion. We regard this torque to correspond
to static friction torque on the linear guides only. The breaking torque was measured repeatedly using the
torque cell, yielding an average value of 0.2 Nm. From Eq. 6, the static friction force on the linear guides
can be estimated as f = 83.33 N. Note that f is likely to decrease once the carriage starts moving. Since the
main purpose of the model is to facilitate controller designs, we regard the magnitude of the friction force
to be constant under static or dynamic conditions, a conservative assumption.

4.2 Vertical Actuator

The vertical slide is back-driveable, i.e., the carriage will move and turn the ballscrew when a force parallel
to its axis is applied. This feature can be exploited to estimate various parameters by decoupling the motor
and allowing the carriage to move downward under the action of gravity while recording its velocity. Two
tests are conducted: one with the carriage and mounting plates included in link 1, and a second test where
an additional mass ∆m of known value is attached to the carriage. The governing equation for downward
motion in the free-fall test is:

(

m+
Jb
γl

)

v̇ = mg − f (20)

where v is the velocity of the carriage (positive downward), f is the Coulomb friction force and m can equal
the baseline mass m1 or m1 + ∆m, depending on the test. The downward accelerations v̇o and v̇ for the
baseline and added-mass test are obtained by numerical differentiation of the captured velocity data. The
ballscrew inertia is estimated with a standard formula [17] as Jb = 0.0015 kg-m2. Since f has been already
calculated, the linearly-moving mass can be calculated from Eq. 20. Using the data corresponding to the
baseline mass test, we obtain m1 = 43.28 kg, while the data corresponding to the added-mass test yields a
total mass of 61.67 kg. The true added mass was accurately measured to be ∆m = 21.35 kg, which predicts
m1 = 40.32 kg from the calculated total mass. Although only two data points are available, a conservative
estimate of the uncertainty in m1 can be taken as ±1.5 kg or 3.6%.

Once the mass and friction parameters are known, k1 may be estimated by applying a constant analog
input voltage u1 and extracting the resulting initial acceleration. Since the mass and friction force are known,
the net force k1u1 can be calculated, yielding an estimated value of k1. Repeating the procedure with various
values of u1, it was found that the values of k1 varied in a range between 224 and 672 N/V. Alternatively,
the carriage can be loaded statically against a load cell in a horizontal position, recording the applied voltage
and the resulting force. This method yielded a value of k1=375 N/V from linear regression. This value is
adopted for the nominal model used in controller design. Subsequent tests show that the controller is robust
enough to accommodate the uncertainty in this amplifier gain.

4.3 Rotary Actuator

The transfer function of Eq. 8 was measured by applying a swept-sinewave signal u2(t) and recording the re-
sulting output q̇2(t), followed by a standard system identification technique. The measured transfer function
was

G2(s) =
1

0.1s+ 0.65
(21)

Note that the above data determines only the ratios (Jo + i2Jm)/k2 and br/k2. However, k2 was measured
directly by attaching a bar to the actuator and loading it statically against a load cell, measuring the applied
voltage and corresponding torque. The servo amplifier was found to have an approximately linear torque-
voltage curve, with an average sensitivity of k2 = 15 N-m/V. This value is then used to find br and Jo, since
Jm is known from the motor manufacturer data.

4.4 Prosthesis Parameters

Link lengths l2 and l3 and masses m2 and m3 were measured directly, while the locations of the centers
of mass were determined by balancing the disassembled links on a knife edge. Since the moment of inertia
and mass of the rotary actuator’s gear, mounting plate and mounting rod are much larger than those of the
prosthetic thigh, the moment of inertia of link 2 at the center of mass was assumed to coincide with the
moment of inertia at the axis of rotation: I2z = Jo + Jr, were Jr is the moment of inertia of the connecting
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Table 1: Key Model Parameters
Parameter Value Units Parameter Value Units
Js

γl
317.5 kg l2 0.425 m

m1 43.28 kg l3 0.527 m
m2 8.57 kg c2 -0.339 m
m3 2.33 kg c3 0.320 m
I2z 0.435 kg-m2 rd 0.190 m
I3z 0.062 kg-m2 od 0.029 m
Jm 1.82 ×10−4 kg-m2 br 9.75 N-m-s
f 83.33 N bk 427.7-2776.6 N-s/m

rod and nuts, measured in SolidWorks as 0.105 kg-m2. To determine the moment of inertia I3z , the link
was suspended and allowed to oscillate in a compound pendulum fashion. The period of oscillation and the
distance between the suspension point and the center of mass were used to calculate the moments of inertia
using the well-known period formula. The values of damper constant were determined for each dial setting
using a custom fixture. The damper was fitted with a load cell to measure axial force, and a laser sensor
was used to capture displacement. Damper extension and force were recorded as the damper was manually
extended and compressed. Numerical differentiation was used to obtain velocity histories, which were linked
to force by linear regressions. This was done for positive and negative velocities separately, yielding two sets
of values for bk. Key model parameters and their values have been listed in Table 1.

4.5 Model Validation

The model is evaluated according to its usefulness in control design, rather than its open-loop prediction
abilities. This is because model parameters are subject to uncertainty, and prediction quality is strongly
dependent on the choice of parameters. The model, with nominal parameters, was used to design and
simulate a closed-loop controller, as described in Section 5. The controller was then deployed in real time
and plant outputs were compared with the corresponding simulation outputs. As it can be seen in Figs. 6, 7
and 8, model predictions are more accurate for actively-controlled outputs than for knee angle.

5 Independent-Joint Control System

The overall prosthetic testing concept is demonstrated by using a preliminary control system to track realistic
motion profiles. Since the rotary actuator is non back-driveable, the inertial coupling due to vertical motion
and leg swinging can be safely ignored. This implies that the rotary actuator can be controlled using a local,
single-input single-output (SISO) servo loop. Similarly, leg swinging is deemed to produce small inertial
forces on the vertical servo system, therefore a sufficiently robust SISO controller may be used to track
vertical hip displacement profiles.

Sliding Mode Control (SMC) was chosen as a development controller due to its good robustness properties
and straightforward implementation [18, 19, 20]. Neglecting inertial coupling, each joint is assumed to follow
a single-axis linear electromechanical model of the form

Jθ̈ + bθ̇ = ku+ τd (22)

where θ(t) is the controlled position variable, u(t) is the control voltage (assumed proportional to motor
torque), k is a constant reflecting a combination of servo amplifier gain, motor torque constant and ro-
tary/linear motion conversion, J is the inertia of the load and motor and b is a viscous damping coefficient.
Variable τd represents an uncertain torque input consisting of actual external torque disturbances, unmod-
eled dynamics, parametric uncertainties and unmodeled static effects such as friction torque. Unmodeled
dynamics include gravity torque and inertial coupling. An example of a parametric uncertainty is a value
of J subject to uncertainty ∆J . The uncertainty term can capture this error as −(∆J)θ̈. SMC laws employ
the concept of a performance surface, commonly referred to as sliding manifold. The sliding manifold is a
function s chosen so that desirable tracking performance and reduced or no sensitivity to uncertainties is
obtained when the system state is forced to remain in the set s = 0. In terms of the tracking error e = θd−θ,
the system of Eq. 22 admits a sliding function of the form s = ė + λe, with λ > 0 a tunable constant. Note
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Figure 6: Comparison between model and experimental outputs: hip displacement
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Figure 7: Comparison between model and experimental outputs: thigh angle
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Figure 8: Comparison between model and experimental outputs: knee angle

that if s(t) = 0 for all t after some reaching time tr, ideal first-order decay is achieved for the tracking error.
A frequently-used SMC law capable of achieving and maintaining s = 0 in finite time despite the presence
of the uncertain term τd has the form:

u =
J

k

[

(θ̈d + λθ̇d) + (
b

J
− λ)θ̇ + η sign (s)

]

(23)

where η > 0 is chosen according to an assumed bound for τd. Note that the motion profiles to be tracked
enter the control law through the feedforward term θ̈d + λθ̇d. Motion profiles used for prosthetic testing are
available as data sets, which may be readily differentiated offline to generate the required feedforward term.
Implementation of this control law is simpler than that of a PID controller, since no online integration or
differentiation are needed, and only position and velocity measurements are required, which are available
from optical encoders.

The control law of Eq. 23 was developed using simplified actuator models. Its applicability in actual
robot and prosthesis test conditions must be evaluated by simulation studies. Such controller validation was
conducted by simulating the controller against the overall model of Section 3.4. Simulation results indicated
that the controller would perform well, and that actuator limits would not be surpassed when tracking the
planned motion profiles.

6 Real-Time Control Tests

Tests were conducted under pure motion feedback control, using the independent SMCs of Section 5. The
robot is initially operated without ground contact, to verify the ability of the control system to track
motion profiles without force disturbances. Then , manual bias control on the vertical stage was used to
gradually “land” the foot on the treadmill, monitoring the force sensed by the load cell. The speed of
the treadmill was manually synchronized to the horizontal velocity of the foot during contact, preventing
slippage. This was done to evaluate the ability of the control system to operate in the presence of large force
disturbances. Figures 9 and 10, show the hip displacement and hip swing tracking performance achieved by
the independent-joint SMC, as well as the measured knee angle and control voltage histories. In this test,
manual biasing was applied until a force peak of 450 N was observed. Figure 11 shows the ground force as
measured by the load cell. As expected, the ground forces act as uncompensated disturbances, preventing
exact tracking of vertical hip displacement and thigh angle during ground contact. Although knee angle
is not being controlled, the prosthesis damping mechanism maintains it between 0 and 65 degrees, a range
compatible with normal human walking. Note also that the control voltages are within the servo amplifier
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Figure 9: Hip displacement and thigh angle tracking performance (with ground contact)
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Figure 10: Knee angle and control voltage histories (with ground contact)

limits of ±8 V for the vertical stage and ±10 V for the rotary stage. Note that the force history shows a
double peak, where the higher peak corresponds to flexion of the forefoot. With initial foot contact, ground
forces are distributed over a relatively large area, only partly occupied by the load cell. As the foot flexes,
the load cell is exposed to most of the distributed force, thus producing a higher reading. Although normal
human gait also features a double-peak force profile, our tests have shown that the location of the peaks and
their relative magnitudes will be largely influenced by load cell mounting and the phase of gait at the time
of ground contact. If force feedback is to be implemented as part of a test, it would be convenient to install
a force sensor on the ankle link, converting ground force requirements to ankle force demands.
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Figure 11: Vertical ground force

7 Conclusions

Robot dynamic modeling was successfully used to model both machine and prosthesis, leading to a simulation
model than can be used to test control concepts prior to real-time deployment. Other leg prostheses, including
those including knee actuation and ankle force generation can be easily interfaced to the machine model.
The robot will also prove useful in making objective comparison studies among competing prosthetic designs,
since test conditions can be made accurately uniform.

Hazards testing can be conducted to some degree with this design, or with simple modifications. For
instance, the inclination of the treadmill can be varied to simulate walking on ascending slopes. The mounting
screws on the treadmill may also be adjusted to simulate a banked surface. Steps and surface irregularities
can be simulated by replacing the treadmill with a reciprocating horizontal slide, on whose carriage a step
can be mounted.

A higher level of realism in robotic testing of transfemoral prostheses may be achieved by adding rotational
degrees of freedom to the mechanism. Rotations in the coronal and transverse planes are very small in
comparison to hip swing ranges. A spherical mount may be inserted between the vertical carriage and the
rotary actuator of this design to enable the additional degrees of freedom. This simple modification would
allow testing at various fixed values of the two additional angles. Dynamic changes are likely to require a
major re-design, since co-located actuation of several degrees of freedom is problematic. A hexapod platform
driven by piezoelectric actuators could be used, if one existed with the required load capacities.

No attempt was made to implement force feedback for the stance phase during the preliminary tests,
and therefore, no claim is made regarding the realism of the sensed force profiles in relation to those arising
during normal gait. Although motion tracking was obtained even with ground contact, the results motivate
the development of advanced controllers. The results strongly indicate that the robot will be capable of
attaining combined motion-force tracking when such control algorithms are implemented.
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Appendix: Kinematic and Dynamic Parameters

Velocity Jacobian at Load Cell Location:

Je(1, 1) = 0

Je(1, 2) = −(c3 + lcx) sin(q2 + q3) + lcy cos(q2 + q3)− l2 sin(q2)

Je(1, 3) = −(c3 + lcx) sin(q2 + q3) + lcy cos(q2 + q3)

Je(2, 1) = Je(2, 2) = Je(2, 3) = 0

Je(3, 1) = 1

Je(3, 2) = (c3 + lcx) cos(q2 + q3) + lcy sin(q2 + q3) + l2 cos(q2)

Je(3, 3) = (c3 + lcx) cos(q2 + q3) + lcy sin(q2 + q3)

Inertia Matrix:

D(1, 1) = m0 +m1 +m2 +m3

D(1, 2) = D(2, 1) = m3 (c3 cos(q2 + q3) + l2 cos(q2)) +m2 (c2 cos(q2) + l2 cos(q2))

D(1, 3) = D(3, 1) = c3m3 cos(q2 + q3)

D(2, 2) = I2z + I3z + c2
2
m2 + c2

3
m3 + l2

2
(m2 +m3) + 2c2l2m2 + 2c3l2m3 cos(q3)

D(2, 3) = D(3, 2) = m3c
2

3 + l2m3 cos(q3)c3 + I3z

D(3, 3) = m3c
2

3
+ I3z

Note: When integrating the actuator model into the robotic model, I2z = J2 + r2Jm is used, where J2 is the
moment of inertia of the gears and link 2, Jm is the moment of inertia of the motor and r is the gear ratio.
Coriolis/Centripetal Matrix:

C(1, 1) = 0

C(1, 2) = −q̇2(l2m3 +m2(c2 + l2)) sin(q2)− c3m3(q̇2 + q̇3) sin(q2 + q3)

C(1, 3) = −c3m3 sin(q2 + q3)(q̇2 + q̇3)

C(2, 1) = 0

C(2, 2) = −c3l2m3q̇3 sin(q3)

C(2, 3) = −c3l2m3 sin(q3)(q̇2 + q̇3)

C(3, 1) = 0

C(3, 2) = c3l2m3q̇2 sin(q3)

C(3, 3) = 0

Gravity Vector:

g =





−g(m1 +m2 +m3)
−c3gm3 cos(q2 + q3)− g(m2(c2 + l2) + l2m3) cos(q2)
−c3gm3 cos(q2 + q3)
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