
Robotics Homework 4

Poya Khalaf 2625396

Obtain an estimated transfer function from amplifier input voltage to joint velocity using

the data collected during class and Matlab’s System Identification Toolbox.

After loading the chirp data and running the system identification tool box, we import the data

into the system identification tool box. The input data is u and the output data is q1dot.we also

set the sampling time to Ts. The figure below plots the input and output data.

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

y
1

Input and output signals

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

Time

u
1

15.5 16 16.5 17 17.5 18 18.5 19 19.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A carful look at the end of the data shows some behavior that even if it is the actual behavior of

the system it cannot be captured by a transfer function model that we aim to identify. For this

reason we truncate the end of the data. The figure below shows the truncated data that we will

use for the system identification.

In the next step we filter the data to remove unnecessary noise. For this purpose we low pass

filter the data with a cutoff frequency of 5, 7 and 10 Hz. the figure below plots the results of

filtering the data. From the figure below we choose a cutoff frequency of 10Hz.

0 5 10 15
-3

-2

-1

0

1

2

3

y
1

Input and output signals

0 5 10 15
-4

-2

0

2

4

Time

u
1

6 7 8 9 10 11 12 13 14
-3

-2

-1

0

1

2

3

y
1

Input and output signals

6 7 8 9 10 11 12 13 14
-4

-2

0

2

4

Time

u
1

10Hz

7Hz

5Hz.

data

10Hz

7Hz

5Hz

data

7.8 8 8.2 8.4 8.6 8.8 9 9.2
-2

-1

0

1

y
1

Input and output signals

7.8 8 8.2 8.4 8.6 8.8 9 9.2

-4

-2

0

2

Time

u
1

10Hz

7Hz

5Hz.

data

10Hz

7Hz

5Hz

data

In the next step we attempt to fit a transfer function model with different number of poles and

zeros using the output error structure. The figure below shows these results.

0 5 10 15
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time

Measured and simulated model output

oe140:83.71

oe440:29.47

oe130:85.53

oe330:85.52

oe120:85.47

oe220:94.2

validation data

7 7.05 7.1 7.15 7.2 7.25 7.3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

Measured and simulated model output

oe140:83.71

oe440:29.47

oe130:85.53

oe330:85.52

oe120:85.47

oe220:94.2

validation data

The OE220 model has the highest score however by converting this model from discrete to

continuous we see that it has a right half zero hand two complex conjugate poles. This does not

seem to be the right model for the motor.

>> zpk(d2c(oe220))

ans =

 From input "u1" to output "y1":

 0.0034689 (s+2001) (s-0.04857)

 (s^2 + 2.41s + 3.634)

Continuous-time zero/pole/gain model.

The next highest score is for the OE130 model. Converting this model to continuous time we

have:

>> zpk(d2c(oe130))

ans =

 From input "u1" to output "y1":

 1.3142e-05 (s+1743) (s^2 + 1996s + 4.705e06)

 --

 (s+4.517) (s^2 + 93.75s + 1.523e04)

Continuous-time zero/pole/gain model.

This model has two fast complex conjugate poles which can be neglected. Also the model has

three fast zeros that can be neglected. After these reductions and fixing the dc gain the model

becomes:

oe130r =

 7.077

 s + 4.517

Continuous-time transfer function.

The next model is OE330.The transfer function of this model in continuous time is as below.

This model also has right half zeros which is not compatible with our system.

>> zpk(d2c(oe330))

ans =

 From input "u1" to output "y1":

 0.0013018 (s+2048) (s^2 - 88.79s + 1.757e04)

 --

 (s+4.411) (s^2 + 1.799s + 6771)

Continuous-time zero/pole/gain model.

The next model is OE120. The transfer function of this model in continuous time is as below.

>> zpk(d2c(oe120))

ans =

 From input "u1" to output "y1":

 0.00026833 (s^2 + 3107s + 4.161e06)

 (s+154) (s+4.632)

Continuous-time zero/pole/gain model.

This model has one fast pole and two fast zeros that can be neglected. The reduced model is:

oe120r =

 7.25

 s + 4.63

Continuous-time transfer function.

The figure below compares the pulse response of the OE220, OE130, OE120 models.

It can be seen from the above figure that the OE220 model matches the data very good in the

pulse phase but has an undesirable over shoot. Also it is seen that the OE120 model and the

OE130 model have very close responses. We will choose the OE130 model for the remaining of

this HW.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1.5

-1

-0.5

0

0.5

1

time

ra
d
/s

e
c

data

oe220

oe120

oe130

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1.5

-1

-0.5

0

0.5

1

time

ra
d
/s

e
c

data

oe220

oe120

oe130

Design a controller (classical compensator) for your estimated transfer function for the

following

specifications relative to a reference step input of 45 degrees:

1. Zero (or almost zero) overshoot.

2. Zero steady-state error.

3. The fastest settling time that can be obtained under the restriction that |u| < 10 V.

The open loop transfer function from voltage to velocity is:

oe130r =

 7.077

 s + 4.517

Continuous-time transfer function.

The open loop transfer function from voltage to becomes:

>> G=tf([7.077],[1 4.517 0])

G =

 7.077

 s^2 + 4.517 s

Continuous-time transfer function.

The root locus of this system is plotted below.

-5 -4 -3 -2 -1 0 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Root Locus

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

Adding a PD controller the open loop transfer function becomes.

2

7.077(1)

4.517

d
p

p

PD

k
k s

k
G

s s






Selecting 0.1d

p

k

k
 the root locus of this system becomes:

There are two gains that produce zero overshoot. Also this system with the PD controller

produces zero steady state error. This can be seen from the closed loop transfer function.in

conclusion we check these two gains to see which one has the least settling time. For this

purpose a Simulink model is crated as below:

-35 -30 -25 -20 -15 -10 -5 0 5
-8

-6

-4

-2

0

2

4

6

8

System: HPD

Gain: 0.952

Pole: -2.6

Damping: 1

Overshoot (%): 0

Frequency (rad/s): 2.6

System: HPD

Gain: 42.8

Pole: -17.4

Damping: 1

Overshoot (%): 0

Frequency (rad/s): 17.4

Root Locus

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

Selecting kp=0.952 and kd=0.1kp the step response of the system is obtained.

It is seen that the response has zero over shoot and zero steady state error.to check the settling

time we do as below:

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X: 7.689

Y: 0.7854

time(s)

q
1
(r

a
d
)

>> stepinfo(output,t,0.7854)

ans =

 RiseTime: 1.3155

 SettlingTime: 2.2950

 SettlingMin: 0.7306

 SettlingMax: 0.7854

 Overshoot: 0

 Undershoot: 0

 Peak: 0.7854

 PeakTime: 10

So the settling time is equal to 2.29 sec. Now we check the controllers output to see if it has

satisfied the required constraint.

We see that setting kp=0.952 and kd=0.0952 satisfies the zero over shoot and zero steady state

error constraints. Also is satisfies the maximum voltage constraint and it produces a settling time

of 2.29 sec.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(s)

u
(V

)

In the next step we set kp=42.8 and kd=0.1kp.the step response is obtained as below

We see that the over shoot and steady state error are zero. We check the settling time:

>> stepinfo(output,t,0.7854)

ans =

 RiseTime: 0.2126

 SettlingTime: 0.3903

 SettlingMin: 0.7172

 SettlingMax: 0.7860

 Overshoot: 0.0813

 Undershoot: 0

 Peak: 0.7860

 PeakTime: 2.9812

We see that the settling time is 0.39 sec. We check the controller output:

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X: 3.456

Y: 0.7854

time(s)

q
1
(r

a
d
)

We see that it does not satisfy our constraint. Therefore the best settling time achieved was 2.29

sec.

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20

25

30

35

X: 0

Y: 33.62

time(s)

u
(V

)

3: Find a state-space representation of the estimated transfer function having q1 and q˙1 as

states (find matrices A, B, C, D). Then:

1. Design a linear state feedback controller (u = Pr−Kx) using linear quadratic optimal

design for K. Choose Q and R so that the response time is similar to what you obtained

with the classical compensator. The control input remains between -10 and 10. (Use

example4.mdl as an initial template and iterate with simulations.). Calculate the required

value of P and verify that the output settles at 45 degrees without offset.

The open loop transfer function of the estimated system is :

2

() 7.077

() 4.157

q s

u s s s




This corresponds to the following differential equation

4.157 7.077q q u 

The state space representation for this system is:

1

0 1 0

0 4.157 7.077

q
x

q

x x u

y x

 
  
 

   
    

   



 

0 1

0 4.157

0

7.077

1 0

0

A

B

C

D

 
  

 

 
  
 





We modify the example4.mdl file as below:

By setting the matrices Q and R we can use the LQR command to design the state feedback:

>> Q=eye(2)
Q =
 1 0
 0 1
>> R=1
R =
 1
>> K=lqr(A,B,Q,R)
K =
 1.0000 0.6884

After designing the state feedback we can calculate P:

>> P=1/(D-(C-D*K)*((A-B*K)^-1)*B)
P =
 1.0000

Running the Simulink simulation file the step response of the system with a state feedback controller is

obtained:

We see that the over shoot and the steady state error are zero. We check the settling time:

>> stepinfo(y,t,0.7854)
ans =
 RiseTime: 2.5657
 SettlingTime: 4.6441
 SettlingMin: 0.7122
 SettlingMax: 0.7854
 Overshoot: 0
 Undershoot: 0
 Peak: 0.7854
 PeakTime: 15

The settling time is 4.6 sec which is higher than what was obtained from the PD controller.we che the

controller output:

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X: 13.07

Y: 0.7854

time(s)

q
1
(r

a
d
)

We see that the voltage remains within the constraint.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(s)

u
(V

)

2. Design and tune a linear state estimator (Luenberger observer). Add it to the simulation and check

that the actual states are being tracked by the estimator.

In the next step we design an observer for this system. We modify the Simulink file as below:

We design the observer as below:

>> Q=2*eye(2)
Q =
 2 0
 0 2
>> R=1
R =
 1
>> H=lqr(A',C',Q,R)
H =
 1.4442 0.0429
>> H=H'
H =
 1.4442
 0.0429
>>

The figure below shows that the stats are being tracked correctly by the observer.

3. Use the velocity estimate in place of the actual velocity for calculating the control. Re-tune

controller and observer if necessary, to regain the original performance.

The Simulink file is modified so that the position is directly fed back to the controller but the velocity is

estimated by the observer and fed into the controller:

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(s)

q
1
(r

a
d
)

a
n
d
 q

1
d
o
t(

ra
d
/s

)

q1

q1hat

q1dot

q1dothat

The output of the system in this situation is as below:

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(s)

q
1
(r

a
d
)

