
Robotics Homework 4 
 

Poya Khalaf 2625396 

 

Obtain an estimated transfer function from amplifier input voltage to joint velocity using 

the data collected during class and Matlab’s System Identification Toolbox. 

After loading the chirp data and running the system identification tool box, we import the data 

into the system identification tool box. The input data is u and the output data is q1dot.we also 

set the sampling time to Ts. The figure below plots the input and output data. 
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A carful look at the end of the data shows some behavior that even if it is the actual behavior of 

the system it cannot be captured by a transfer function model that we aim to identify. For this 

reason we truncate the end of the data. The figure below shows the truncated data that we will 

use for the system identification. 

 

In the next step we filter the data to remove unnecessary noise. For this purpose we low pass 

filter the data with a cutoff frequency of 5, 7 and 10 Hz. the figure below plots the results of 

filtering the data. From the figure below we choose a cutoff frequency of 10Hz. 
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In the next step we attempt to fit a transfer function model with different number of poles and 

zeros using the output error structure. The figure below shows these results. 
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The OE220 model has the highest score however by converting this model from discrete to 

continuous we see that it has a right half zero hand two complex conjugate poles. This does not 

seem to be the right model for the motor.  

>> zpk(d2c(oe220)) 

 

ans = 

  

  From input "u1" to output "y1": 

  0.0034689 (s+2001) (s-0.04857) 

  ------------------------------ 

      (s^2 + 2.41s + 3.634) 

  

Continuous-time zero/pole/gain model. 

 

The next highest score is for the OE130 model. Converting this model to continuous time we 

have: 

>> zpk(d2c(oe130)) 

 

ans = 

  

  From input "u1" to output "y1": 

  1.3142e-05 (s+1743) (s^2 + 1996s + 4.705e06) 

  -------------------------------------------- 

      (s+4.517) (s^2 + 93.75s + 1.523e04) 

  

Continuous-time zero/pole/gain model. 

 

This model has two fast complex conjugate poles which can be neglected. Also the model has 

three fast zeros that can be neglected. After these reductions and fixing the dc gain the model 

becomes: 

  

oe130r = 

  

    7.077 

  --------- 

  s + 4.517 

  

Continuous-time transfer function. 

 

 



The next model is OE330.The transfer function of this model in continuous time is as below. 

This model also has right half zeros which is not compatible with our system. 

>> zpk(d2c(oe330)) 

 

ans = 

  

  From input "u1" to output "y1": 

  0.0013018 (s+2048) (s^2 - 88.79s + 1.757e04) 

  -------------------------------------------- 

        (s+4.411) (s^2 + 1.799s + 6771) 

  

Continuous-time zero/pole/gain model. 

 

The next model is OE120. The transfer function of this model in continuous time is as below. 

>> zpk(d2c(oe120)) 

 

ans = 

  

  From input "u1" to output "y1": 

  0.00026833 (s^2 + 3107s + 4.161e06) 

  ----------------------------------- 

           (s+154) (s+4.632) 

  

Continuous-time zero/pole/gain model. 

 

This model has one fast pole and two fast zeros that can be neglected. The reduced model is: 

oe120r = 

  

    7.25 

  -------- 

  s + 4.63 

  

Continuous-time transfer function. 

 

The figure below compares the pulse response of the OE220, OE130, OE120 models. 



 

 

It can be seen from the above figure that the OE220 model matches the data very good in the 

pulse phase but has an undesirable over shoot. Also it is seen that the OE120 model and the 

OE130 model have very close responses. We will choose the OE130 model for the remaining of 

this HW. 
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Design a controller (classical compensator) for your estimated transfer function for the 

following 

specifications relative to a reference step input of 45 degrees: 

1. Zero (or almost zero) overshoot. 

2. Zero steady-state error. 

3. The fastest settling time that can be obtained under the restriction that |u| < 10 V. 

The open loop transfer function from voltage to velocity is: 

oe130r = 

  

    7.077 

  --------- 

  s + 4.517 

  

Continuous-time transfer function. 

The open loop transfer function from voltage to becomes: 

>> G=tf([7.077],[1 4.517 0]) 

 

G = 

  

      7.077 

  ------------- 

  s^2 + 4.517 s 

  

Continuous-time transfer function. 

The root locus of this system is plotted below. 
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Adding a PD controller the open loop transfer function becomes. 
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Selecting 0.1d

p

k

k
  the root locus of this system becomes: 

 

There are two gains that produce zero overshoot. Also this system with the PD controller 

produces zero steady state error. This can be seen from the closed loop transfer function.in 

conclusion we check these two gains to see which one has the least settling time. For this 

purpose a Simulink model is crated as below: 
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Selecting kp=0.952 and kd=0.1kp the step response of the system is obtained. 

 

It is seen that the response has zero over shoot and zero steady state error.to check the settling 

time we do as below: 
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>> stepinfo(output,t,0.7854) 

ans =  

        RiseTime: 1.3155 

    SettlingTime: 2.2950 

     SettlingMin: 0.7306 

     SettlingMax: 0.7854 

       Overshoot: 0 

      Undershoot: 0 

            Peak: 0.7854 

        PeakTime: 10 

So the settling time is equal to 2.29 sec. Now we check the controllers output to see if it has 

satisfied the required constraint. 

 

We see that setting kp=0.952 and kd=0.0952 satisfies the zero over shoot and zero steady state 

error constraints. Also is satisfies the maximum voltage constraint and it produces a settling time 

of 2.29 sec. 
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In the next step we set kp=42.8 and kd=0.1kp.the step response is obtained as below 

 

We see that the over shoot and steady state error are zero. We check the settling time: 

>> stepinfo(output,t,0.7854) 

ans =  

        RiseTime: 0.2126 

    SettlingTime: 0.3903 

     SettlingMin: 0.7172 

     SettlingMax: 0.7860 

       Overshoot: 0.0813 

      Undershoot: 0 

            Peak: 0.7860 

        PeakTime: 2.9812 

 

We see that the settling time is 0.39 sec. We check the controller output: 
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We see that it does not satisfy our constraint. Therefore the best settling time achieved was 2.29 

sec. 
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3: Find a state-space representation of the estimated transfer function having q1 and q˙1 as 

states (find matrices A, B, C, D). Then: 

1. Design a linear state feedback controller (u = Pr−Kx) using linear quadratic optimal 

design for K. Choose Q and R so that the response time is similar to what you obtained 

with the classical compensator. The control input remains between -10 and 10. (Use 

example4.mdl as an initial template and iterate with simulations.). Calculate the required 

value of P and verify that the output settles at 45 degrees without offset. 

 

The open loop transfer function of the estimated system is : 
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This corresponds to the following differential equation 

4.157 7.077q q u   

The state space representation for this system is: 
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We modify the example4.mdl file as below: 



 

By setting the matrices Q and R we can use the LQR command to design the state feedback: 

>> Q=eye(2) 
Q = 
     1     0 
     0     1 
>> R=1 
R = 
     1 
>> K=lqr(A,B,Q,R) 
K = 
    1.0000    0.6884 

 

After designing the state feedback we can calculate P: 

>> P=1/(D-(C-D*K)*((A-B*K)^-1)*B) 
P = 
    1.0000 

Running the Simulink simulation file the step response of the system with a state feedback controller is 

obtained: 



 

 

We see that the over shoot and the steady state error are zero. We check the settling time: 

>> stepinfo(y,t,0.7854) 
ans =  
        RiseTime: 2.5657 
    SettlingTime: 4.6441 
     SettlingMin: 0.7122 
     SettlingMax: 0.7854 
       Overshoot: 0 
      Undershoot: 0 
            Peak: 0.7854 
        PeakTime: 15 

The settling time is 4.6 sec which is higher than what was obtained from the PD controller.we che the 

controller output: 
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We see that the voltage remains within the constraint. 
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2. Design and tune a linear state estimator (Luenberger observer). Add it to the simulation and check 

that the actual states are being tracked by the estimator. 

In the next step we design an observer for this system. We modify the Simulink file as below: 

 

 

We design the observer as below: 

>> Q=2*eye(2) 
Q = 
     2     0 
     0     2 
>> R=1 
R = 
     1 
>> H=lqr(A',C',Q,R) 
H = 
    1.4442    0.0429 
>> H=H' 
H = 
    1.4442 
    0.0429 
>> 

 

 

 

 



 

The figure below shows that the stats are being tracked correctly by the observer. 

 

3. Use the velocity estimate in place of the actual velocity for calculating the control. Re-tune 

controller and observer if necessary, to regain the original performance. 

The Simulink file is modified so that the position is directly fed back to the controller but the velocity is 

estimated by the observer and fed into the controller: 
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The output of the system in this situation is as below: 
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