1: Consider the RPR robot used for HW3 (Fig. 1), with the DH parameters of Table 1, where \(d > 0 \).

Point \(P \) has coordinates \(P^3 = [l 0 0]^T \), where \(l > 0 \) is assumed. Consider the following:

- Link 1 has moment of inertia \(I_{z1} \) about the \(z_0 \) axis
- Link 2 has mass \(m_2 \) and center of mass at \(o_2 \)
- Link 3 has a moment of inertia matrix \(I = \text{diag} [I_{x3}, I_{y3}, I_{z3}] \) relative to a frame parallel to frame 3 but centered at the center of mass (halfway between \(o_2 \) and \(o_3 \)). The mass of the link is \(m_3 \).

![Figure 1: 3-dof robot](image)

<table>
<thead>
<tr>
<th>Link</th>
<th>(\theta)</th>
<th>(d)</th>
<th>(\alpha)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(q_1^*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(q_2^*)</td>
<td>(-\frac{\pi}{2})</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(q_3^*)</td>
<td>(d)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: DH parameters for RPR robot
Do the following:

1. Find the mass matrix \(M(q) \), Coriolis matrix \(C(q, \dot{q}) \) and gravity vector \(g(q) \) for this robot using symbolic computer algebra. Write clearly commented code and report on the results.

2. Use symbolic computing to verify that \(M \) is symmetric and \(\dot{M} - 2C \) is skew-symmetric.

3. Find a minimal linear parameter representation \(Y(q, \dot{q}, \ddot{q})\Theta \) for this robot. Verify the results as done in class.

2:

- Let \(x \) be a column vector and let \(f(x) = (Ax + b)^T C(Dx + e) \), where \(A, C \) and \(D \) are matrices and \(b \) and \(e \) vectors of compatible dimensions. A formula\(^1\) for the differential of \(f \) with respect to \(x \) is
 \[
 df(x) = ((Ax + b)^T CD + (Dx + e)^T C^T A)dx
 \]
 Assume that \(x \) has 2 elements and that all matrices are 2-by-2. Verify the formula by using symbolic computer algebra (find \(f(x) \) and differentiate explicitly).

- Let \(X \) be a matrix and let \(f(X) = X^{-1} \). A formula for the differential of \(f \) with respect to \(X \) is
 \[
 d(X^{-1}) = -X^{-1}dXX^{-1}
 \]
 Assume that \(X \) is 2-by-2 and verify the formula as above.

3: Consider the multi-input nonlinear control system
 \[
 \dot{x} = A(x)x + (1 + x^T x)Bu
 \]
 where \(A(x) \) is \(n \)-by-\(n \) and \(B \) is \(n \)-by-\(m \) and constant.

- Use the quadratic Lyapunov function
 \[
 V(x) = x^T Px
 \]
 with \(P = P^T > 0 \) to show that the control law
 \[
 u = -(PB)^*(\Gamma + PA(x) + A^T(x)P)x
 \]
 with \(\Gamma = \Gamma^T > 0 \) results in asymptotic stability of the origin, where * denotes the Moore-Penrose pseudoinverse and \(PB \) is assumed full-rank.

- Take
 \[
 A = \begin{bmatrix}
 \sin(x_1)\cos(x_2) & x_1 - x_2 \\
 0 & x_1^2
 \end{bmatrix}, \quad B = \begin{bmatrix}
 0 & 1 \\
 1 & -1
 \end{bmatrix}
 \]
 Select \(P = P^T > 0 \) such that \(PB \) is full-rank and simulate the control system using initial condition \(x^T_0 = [1 \ -2] \). Plot the time histories of each state, the control and a state-space trajectory \((x_1 \text{ vs. } x_2)\). Also plot the Lyapunov function value and its derivative as a function of time.

\(^1\)Matrix Reference Manual, Imperial College: http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html