Lecture 10.5: LaSalle’s Invariance Principle and Barbălat’s Lemma

Reading: SHV Appendix, any book on nonlinear control

Mechanical Engineering
Hanz Richter, PhD
The LaSalle-Krasovskii’s theorem (known as LaSalle’s invariance principle, 1959-1960) and Barbalat’s lemma (1959) are useful results that assist in proving asymptotic stability when the Lyapunov function derivative is only negative semi-definite.

Joseph LaSalle was an American mathematician and Brown University professor.

I. Barbălat was a Romanian mathematician who published in French. His result is used very often in adaptive control.
LaSalle’s Invariance Principle

Let a nonlinear system be defined by

\[\dot{x} = f(x) \]

and suppose the origin is an equilibrium point \((f(0) = 0)\).

A set \(\mathcal{I} \subseteq \mathbb{R}^n \) is *invariant* if the following is true:

\[x(t_0) \in \mathcal{I} \rightarrow x(t) \in \mathcal{I} \ \forall \ t > t_0 \]

Suppose we found a Lyapunov function \(V(x) \) which is positive-definite in a set \(\mathcal{D} \) containing the origin, and that \(\dot{V}(x) \leq 0 \) in \(\mathcal{D} \). Consider a set of all trajectories (solutions of the differential equation) that keep \(\dot{V} = 0 \):

\[\mathcal{E} = \{ x : \dot{V}(x) = 0 \} \]

Then all trajectories approach the largest invariant set \(\mathcal{I} = \{0\} \) contained in \(\mathcal{E} \).
To show asymptotic stability of the origin using LaSalle’s result, we first identify \mathcal{E}. Then we look for invariant sets under the condition $\dot{V} = 0$. If the only such set \mathcal{I} is the origin itself, we have shown that it is asymptotically stable.

Classical example: pendulum with viscous damping. We do this in class.
Barbălat’s Lemma

A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is square integrable if:

\[
\int_0^\infty f^T(t)Qf(t)dt \leq \infty
\]

A function \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is uniformly continuous if for any \(\epsilon > 0 \) there is a \(\delta > 0 \) such that:

\[
||x - y|| < \delta \rightarrow ||g(x) - g(y)|| < \epsilon
\]

for all \(x, y \in \mathbb{R}^n \).

Note that \(\delta \) can be a function of \(\epsilon \) but not on the points \(x \) and \(y \) (that would be plain continuity for \(g \); uniform continuity is a stronger property).

Barbălat’s lemma: If \(f(t) \) is square integrable and \(\frac{df(t)}{dt} \) is uniformly continuous then \(\frac{df(t)}{dt} \rightarrow 0 \) as \(t \rightarrow \infty \).
Barbălat’s Lemma in Lyapunov Theory

Let a nonlinear system be defined by

$$\dot{x} = f(x, \psi(t))$$

where $\psi(t)$ is some input function. Suppose the origin is an equilibrium point $(f(0, \psi) = 0)$ for any ψ.

Suppose we found a function $V(x, t)$ which is lower-bounded in a set \mathcal{D} containing the origin, and that $\dot{V}(x, t) \leq 0$ in \mathcal{D}. If $\dot{V}(x, t)$ is uniformly continuous with respect to time, then $\dot{V}(x, t) \to 0$ as $t \to \infty$.

Note that uniform continuity of V can be satisfied by verifying that \ddot{V} is bounded.
Barbălat’s Lemma Alternatives

If \(f \) is square integrable and has a bounded derivative, then \(f \) itself converges to zero asymptotically.

This version has been used in the course notes to prove asymptotic tracking with the adaptive inverse dynamics controller.