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Servomotor Model

A direct-current motor (DC motor or servomotor) for robotic applications

is usually controlled using armature voltage. These motors typically use

permanent magnets. As shown in elementary courses, the

electromagnetic torque produced by the motor is given by

τm = Kmia

where Km is the torque constant (a function of the motor’s constructive

characteristics) and ia is the current circulating in the armature circuit.

When the motor rotates, it also acts as a generator, producing a voltage

which opposes the armature current. This voltage, called

back-electromotive force, or back-emf is given by

Vb = Kbwm

where Kb is the back-emf constant and wm is the angular velocity of the

motor (rad/sec).
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Servomotor Model...

The units of Km are N-m/A and the units of Kb are V-sec, but it’s easy to

show that 1 N-m/A=1 V-sec, so Kb and Km are numerically equal if

expressed in the same units. Fig. 6.3 in SHV shows the circuit diagram

of the DC motor:

τl is the load torque, used to represent the effect of all mechanical loads

connected to the shaft.
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Independent Joint Model

To derive this model, it is assumed that the DC motor is connected to a gear
reduction of ratio r : 1 and moment of inertia Jg. The reduced-speed shaft
drives a rotational inertia Jl, which represents the link driven by the motorized
joint.
Of course, the motion of the other links should influence the DC motor as well.
For the independent joint model, however, we treat these influences as
disturbances and design the controller to be robust (tolerant) against them.
The only reason for this this gross assumption is simplicity (ignorance) and low
performance requirements.

A general principle when designing control systems is: “the performance of the

controller increases with the accuracy of the mathematical model”. Electrome-

chanical systems are well-understood and lead to accurate models. Higher per-

formance will be afforded with the MIMO techniques to be studied later in the

course.
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Independent Joint Model...

Analyzing the electrical side of the model, we obtain

V − iaR − L
dia
dt

− Vb = 0

Using Vb = Kb
˙θm and taking the Laplace transform we get

(Ls + R)Ia(s) = V (s) − KbsΘm(s)

On the mechanical side, we use θs = θm/r to describe the rotation of the link
and assume viscous damping (proportional to speed) in the gear reduction,
with coefficient Bm. The torque balance equation gives

Jmθ̈m + Bm
˙θm + τl/r = τm = Kmia

where Jm = Ja + Jg. Note (Fig. 6.5) that τl has been used to represent the
disturbance torque, reduced by a factor of r before it makes it to the motor
shaft. In Laplace form:

(Jms2 + Bms)Θ(s) = KmIa(s) − τl(s)/r
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Independent Joint Model...

In what follows, we will use Simulink (or Scilab/Scicos) to simulate the

performance of our controllers. The block diagram of Fig. 6.6 gives

access to important internal signals like the net torque and the current

(must not exceed mechanical and electrical ratings, respectively).

HW3: Build a Simulink (optionally Scicos) model corresponding to Fig.

6.6. Write an m-file loading a set of values for the DC motor parameters.

Very often, the ratio L/R is very small. This can be used as the basis for

a model simplification, leading to

Jθ̈ + Bθ̇ = u − d

where now J = Jm, B = Bm + KbKm/R, u = (Km/R)V and d = τl/r is

the disturbance.

This model can be used for control design. The designed controllers will

be simulated against the full model, however.
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PD Control

The transfer function from V to Θ has a pole at the origin and a negative

pole. A quick root locus indicates that the simplest controller stabilizing

the plant is a proportional gain. However, the settling time cannot be

modified using only P-control.

By adding derivative action, we can obtain complex poles with varying

time constants and damping. The control transfer function is

U(s) = (Kp + Kds)E(s)

where E(s) = Θd(s) − Θ(s) is the tracking error. It is straightforward to

show that any two positive values of Kp and Kd drives the error to zero

asymptotically when d = 0. However, the quality of the response is highly

dependent on the actual gain selections.
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PD Control...

If a step disturbance is applied, stability of the system is preserved,

however the error converges to a nonzero value (called steady-state

error ):

ess = −
D

Kp

Since d = τl/r, a smaller offset can be obtained for larger gear

reductions and higher values of proportional gain. The practical

limitation comes from control saturation and overcurrent limitations.

In Example 6.1, we see that the PD compensator introduces a zero at

Kp/Kd. The closed-loop poles have been forced to be real and equal

by setting ζ = 1. This strategy prevents the performance degradation

observed whenever zeroes have time constants similar to the dominant

poles.
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PID Control

When the limits on the P gain imposed by control saturation and current

limits are incompatible with the level of disturbance, an I-term can be

used to reject the disturbance completely without resorting to high gains.

The control transfer function is now

U(s) = (Kp + Kds +
Ki

s
)E(s)

As shown in SHV, the closed-loop poles are the solutions of a third-order

characteristic polynomial. The Routh-Hurwitz criterion can be used to

derive a condition for stability:

Ki <
(B + Kd)Kp

J

in addition to the requirement that all gains be positive.

Tuning of the PID gains can be done, for instance, using the root locus or

by trial-and-error simulations. MCE503 – p.9/15

Integrator Windup

By far, the main limitation of integrating control is the windup

phenomenon. When a large and persistent disturbance acts on the

system so that an offset results, the integrating term in the control law is

likely to reach large values which saturate the actuator (power amplifier

in robotics). Although the control input cannot increase beyond the

saturation limit, the integrating term keeps growing as long an offset is

present (winds up).

Even upon sudden removal of the disturbance, the integral term takes a

long time to reduce its value below saturation. This typically results in a

large bump in the response.

We run a sample Simulink model demonstrating the windup phenomenon

and a common anti-windup strategy.

MCE503 – p.10/15



Trajectory Tracking-Feedforward+Feedback

When the reference input is not constant (point-to-point vs. continuous

path) but rather an arbitary function of time, additional complexity is

required in the control strategy.

A drawback of the classical error feedback control structure is that an

error must necessarily occur before the controller takes corrective action

(the controller will not generate output if the error has been zero for a

while). Imagine driving a car by just looking at the rearview mirror and

steering only in response to deviations observed in the mirror.

On the other hand, purely predictive control based on plant model will

fail due to model errors and unexpected disturbances. Imagine

pre-programming the steering actions and not taking any corrective

action.

Feedforward can be used in combination with feedback to improve track-

ing and maintain disturbance rejection and robustness.
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Trajectory Tracking...

The diagram in Fig.6-16 illustrates the feedforward+feedback

arrangment:

Suppose the plant, feedback compensator and feedforward compensator

TFs are G(s) = q(s)
p(s) , H(s) = c(s)

d(s) and F (s) = a(s)
b(s) with G(s) strictly proper

(more poles than zeroes) and H(S) proper (#poles ≥ #zeroes).
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Trajectory Tracking...

A simple block diagram reduction shows that the closed-loop transfer

function is
Θ(s)

Θd(s)
= T (s) =

q(s)(c(s)b(s) + a(s)d(s))

b(s)(p(s)d(s) + q(s)c(s))

Therefore H(s) and F (s) must be chosen so that

b(s)(p(s)d(s) + q(s)c(s)) has poles in the left half of the complex plane

(Hurwitz). Obviously, the factors b(s) and p(s)d(s) + q(s)c(s) must be

themselves Hurwitz.

Since b(s) is the denominator of F (s), we require F (s) to be a stable TF.

If G(s) has all its zeroes in the lhp (a minimum-phase system) , then we

can choose F (s) = 1
G(s) . By doing this, it’s easy to show that the tracking

error is identically zero at all times if no disturbance is present and the

model is perfect.
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Trajectory Tracking...

If a disturbance D(s) is present at plant input, there will be some error:

E(s) =
q(s)d(s)

p(s)d(s) + q(s)c(s)
D(s)

The feedforward+feedback approach can be applied to the robot model

operating under PD control. In this case G(s) is minimum-phase, so we

may take F (s) = Js2 + Bs. Note that although F (s) includes double

and single differentiation, these operations do not need to be carried out

online (signal differentiation is noisy) if θd(t) is known in advance. The

derivatives can be pre-computed and stored in the control program. See

Eqs. 6.36 thru 6.38.
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Harmonic Drives and Joint Flexibility

A harmonic drive is a compact gear mechanism achieving large
reduction ratios with high torque capacity and low backlash. For more
information on harmonic drives see
http://www.harmonicdrive.net/reference/operatingprinciples/

http://www.powertransmission.com/issues/0706/harmonic.htm

A side-effect of using a harmonic drive is the flexibility introduced in the

drive train. SHV develops a simplified model which takes motor torque

as opposed to voltage as the control input. This model is used to show

the limitations of PD control.

As a homework project, you will design a PD or PID compensator assum-

ing voltage input and testing for performance against the full-order motor

model.
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http://www.harmonicdrive.net/reference/operatingprinciples/
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