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Stability in the sense of Lyapunov

A dynamic system ẋ = f(x) is Lyapunov stable or internally stable about an
equilibrium point xeq if state trajectories are confined to a bounded region
whenever the initial condition x0 is chosen sufficiently close to xeq.
Mathematically, given R > 0 there always exists r > 0 so that if ||x0 − xeq|| < r,
then ||x(t) − xeq|| < R for all t > 0. As seen in the figure R defines a desired
confinement region, while r defines the neighborhood of xeq where x0 must
belong so that x(t) does not exit the confinement region.
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Stability in the sense of Lyapunov...

Note:

� Lyapunov stability does not require ||x(t)|| to converge to ||xeq||. The

stronger definition of asymptotic stability requires that

||x(t)|| → ||xeq|| as t → ∞.

� Input-Output stability (BIBO) does not imply Lyapunov stability. The

system can be BIBO stable but have unbounded states that do not

cause the output to be unbounded (for example take x1(t) → ∞,

with y = Cx = [01]x).

� The definition is difficult to use to test the stability of a given system.

Instead, we use Lyapunov’s stability theorem, also called Lyapunov’s

direct method. This theorem is only a sufficient condition, however.

When the test fails, the results are inconclusive. It’s still the best tool

available to evaluate and ensure the stability of nonlinear systems.
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Lyapunov’s Linearization Method

This method allows us to determine the stability of the nonlinear system

about the equilibrium point on the basis of the linearized system. Simply:

� If the eigenvalues of the A matrix in the linearized system have

negative real parts, the nonlinear system is stable about the

equilibrium point.

� If at least one eigenvalue of the A matrix in the linearized system

has positive real part, the nonlinear system is unstable about the

equilibrium point.

� If at least one eigenvalue ofthe A matrix in the linearized system has

zero real part, the test is inconclusive. The linear approximation is

insufficient to determine stability. However, methods exist to include

higher-order terms (center manifold technique).
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Positive-Definite Functions and Matrices

The function f : R
n 7→ R is positive semidefinite if f(0) = 0 and f(x) ≥ 0 for all

x ∈ R
n. If f(x) > 0 for all nonzero x ∈ R

n, then f is positive definite. Example:

f(x1, x2) = x2

1
+ x2

2
+ sin2(x1)

is positive-definite.
If f(x) ≥ 0 (resp. f(x) > 0) in a subset A ⊂ R

n, we say that f is
positive-semidefinite (resp. positive definite) in A.
When f(x) is a quadratic function defined through a symmetric matrix P as

f(x) = xT Px

then we say that P is positive-semidefinite (resp. positive definite) when the
associated function is so.

Finally, if −f is positive-semidefinite (resp. positive definite), we say that f is

negative-semidefinite (resp. negative definite). If f changes sign, it is sign-

indefinite.
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Testing for Positive-Definite Matrices

Suppose f(x) = x2

1
+ 2x2

2
− 0.1x2

3
− x1x2 + 8x2x3 − 5x1x3. How can we

tell if f is sign-definite?

The symmetric matrix associated with f is
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The eigenvalue test can be applied. If all eigenvalues are nonnegative,

we have a p.s.d. matrix. If they are all positive, we have a p.d. matrix.

The same idea applies for n.s.d. and n.d. If the eigenvalues have mixed

signs, the matrix is sign-indefinite.
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Lyapunov’s Direct Method

For simplicity, suppose the origin is an equilibrium point. Suppose we

find a function V : R
n 7→ R which has continuous first partial derivatives

and is positive-definite in a region surrounding the origin. We call this

function a candidate Lyapunov function. If the function V̇ is

negative-semidefinite in the same region, then the origin is a stable

equilibrium point.

When the region where V is p.d. and V̇ is n.s.d. can be extended to the

whole state-space, we say that the origin is globally stable.
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Necessary vs. Sufficient

Suppose we have a condition A and a property B. (think V > 0, V̇ ≤ 0 as a
condition and stability as the property)
We have several possible logical relationships:

� When A is true, then B must be true, but if A is false, nothing can be
said about B. Then A is a sufficient condition, represented as A → B (A
implies B). Example: If you live in the USA (A), then you live in North
America (B). (if you say you don’t live in the USA, we can’t tell whether you
live in North America or not).

� When B is true, then A must be true, but if B is false, nothing can be
said about A. Then A is a necessary condition, represented as B → A (B
implies A). Example: Living in North America (A) is a necessary condition
for living in the USA (B).

� When A is true, then B must be true, and if A is false, then B is also
false. Then A and B are necessary and sufficient conditions for each
other, represented as A ↔ B. We also say A if and only if B. Example: A
linear system is stable if and only if the eigenvalues of A have negative real
parts.
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Sufficient Conditions and Conservativeness

It is important to realize that sufficient conditions are conservative.

Suppose you are trying to determine whether someone lives in North

America. Then you decide to use the question “Do you live in the USA?”

as a test. Your condition is only sufficient. It doesn’t help you when the

answer is “No”. As a result, you will not be able to accurately estimate

how many people lives in North America from those who you

interviewed.

It is important to realize that the Lyapunov theorem is only sufficient. As

a consequence, if the Lyapunov function candidate does not have n.s.d.

derivative, it does not mean that the system is unstable.

There are some instability theorems, however (sufficient condition for in-

stability). Of course, if they fail, it doesn’t mean the system is stable!
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Example

Consider the nonlinear system

ẋ1 = −2x1 + x2u

ẋ2 = −x1u

The origin is an equilibrium point. Check the stability of the system using

the Lyapunov function candidate

V (x1, x2) =
1

2
(x2

1 + x2

2)

MCE503 – p.10/17



Asymptotic Stability and Global Asymptotic Stability

Stronger conditions on V and its derivative are required for asymptotic

stability and global asymptotic stability

1. If V̇ is negative-definite (V̇ < 0), then the origin is asymptotically

stable.

2. If in addition V (x) → ∞ as ||x|| → ∞ (V is radially unbounded),

then the origin is globally asymptotically stable.

Global asymptotic stability, also known as asymptotic stability in the large

is the most desirable situation.
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Region of Attraction

Suppose an equilibrium point xeq is asymptotically stable, but not

globally. We would like to determine the largest region surrounding xeq

which results in trajectories which converge to xeq. Such region is called

region of attraction.

In practical terms, if we design a closed-loop nonlinear control system to

regulate the state to xeq, we want to determine the safe region of

operation.

A somewhat conservative way to estimate this region is through a

Lyapunov function. The estimated region of attraction is the region in

which V > 0 and V̇ < 0. When V (x) and f(x) are sufficiently simple, we

may determine this region analytically. Otherwise we can use a

numerical technique (HW4).

This method is conservative because the Lyapunov stability theorem is

only sufficient, not necessary. That is, the actual region of attraction will

be larger.
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2D and 3D: Region of Attraction by Spherical Sweep

When V̇ is complex enough to prevent analysis, we can explore the

region where V̇ < 0 by a numerical method. A simple way to do this is to

determine a spherical region. This will introduce additional

conservativeness, since the actual region of attraction is generally not

spherical. We determine a radius of attraction by setting up a computer

iteration (3 nested for loops) that vary the r, θ and φ parameters of the

spherical coordinate system.

For each combination of r, θ and φ, we find the corresponding x1, x2, x3

coordinates and evaluate V̇ to determine its sign. We continue until V̇ >

0. The limiting value of r gives us the radius of attraction estimate.
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Example

Consider the nonlinear system:

ẋ1 = − sin(x1) cos(x2)

ẋ2 = − cos(x1) sin(x2)

1. Find the equilibrium points and use Lyapunov’s linearization method

to determine their stability

2. Use the quadratic Lyapunov function

V (x1, x2) = 1

2
((x1 − π)2 + (x2 + π)2) to study the stability of the

equilibrium point (π,−π). Determine a region of attraction by a

computer-generated contour plot and a radius of attraction by a

polar coordinate sweep.
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Quadratic Lyapunov Functions and Linear Systems

Consider the linear system ẋ = Ax and the quadratic Lyapunov function

V (x) = xT P x, with P being symmetric and positive-definite.

The derivative of V is

V̇ = ẋT Px + xT Pẋ = xT (AT P + PA)x

The linear system defined by A is asymptotically stable (A is Hurwitz) if

AT P + PA is negative-definite. This is referred to as a Lyapunov

inequality. We can turn this into an equality by making

AT P + PA = −Q

where Q is an arbitrary positive-definite matrix. We can solve for P using

Matlab’s lyap command. If P turns out to be positive-definite, we

conclude asymptotic stability.

Note: Matlab’s lyap uses the transpose of A.
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Sufficiency of Lyapunov’s Theorem for Linear Systems

For linear systems, the existence of P so that AT P + PA < 0 is

necessary and sufficient for stability:

� If the linear system is asymptotically stable, there has to be a P

proving it. We can find a P by choosing an arbitrary Q > 0 and

solving Lyapunov’s equation.

� If the linear system is unstable and the Lyapunov equation is solved

for P using an arbitrary Q > 0, P will not be positive-definite or a

unique solution may not exist.

In summary, any quadratic function V = xT Px can be used to prove the

asymptotic stability of a linear system.
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Example: Linear Systems

Find a quadratic Lyapunov function for the linearized system of the pre-

vious example about (π,−π) using Lyapunov’s equation. Use a similar

method to prove that (π/2, π/2) is unstable.
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