MCE693/793: Analysis and Control of Nonlinear Systems

Introduction to Nonlinear Controllability and Observability

Hanz Richter
Mechanical Engineering Department
Cleveland State University
Definition of Controllability

Definition: The system

\[\dot{x} = f(x, u) \]

is (fully) controllable if given initial and final points \(x(t_0) \) and \(x_f \), we can always find an admissible control input \(u(t) \) and a \textit{finite} time \(t_f \) such that

\[\Phi(x(t_0), t_f) = x_f \]

where \(\Phi \) is the flow of the differential equation

\[\dot{x} = f(x, u(t)) \]

In plain words, there has to be a control that takes the system to the initial point to the final point in some finite time. Note that there is no steady-state requirement for the final point.
Consider the LTIS

\[\dot{x} = Ax + Bu \]

with \(m \) inputs and \(n \) states.

Intuitively, the ability to drive the system state from one point to another infinitesimally close to it is related to the possibility of using a constant control input to target desired values for \(\dot{x}, \ddot{x}, \ldots, \frac{d^nx}{dt^n} \) all at once.
Linear Controllability

Setting up equations:

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\ddot{x} &= A(Ax + Bu) \\
\vdots \\
\frac{dx^n}{dt^n} &= A(A...(Ax + Bu))
\end{align*}
\]

This can be rearranged as

\[
\begin{bmatrix}
\dot{x} - Ax \\
\ddot{x} - A^2x \\
\vdots \\
\frac{dx^n}{dt^n} - A^{n-1}x
\end{bmatrix}
=
\begin{bmatrix}
B \\
AB \\
\vdots \\
A^{n-1}B
\end{bmatrix}
\]

\[
u = C^T u
\]
Linear Controllability...

In the above problem, \(x \) is the current state (given). \(C \) is the controllability matrix, and its columns

\[
B_1, B_2, ..B_m, (AB)_1...(AB)_m...(A^{n-1}B)_m
\]

must span \(n \)-dimensional space to find a solution for \(u \).

In Matlab, \(C \) is built with » ctrlb(A,B).

Linear systems theory shows that a LTIS is controllable if and only if it is so between \(x_0 = 0 \) and an arbitrary \(x_f \).
Definition of Observability

Definition: The system

\[
\begin{align*}
\dot{x} &= f(x, u) \\
\dot{y} &= h(x)
\end{align*}
\]

is observable if \(y = 0 \) implies \(x = 0 \). A weaker definition is detectability, where \(y = 0 \) implies that \(x \to 0 \) as \(t \to \infty \).

When a system is observable, the initial state can be uniquely determined from \(y(t) \) and \(u(t) \) for \(t \in [t_0, t_f] \), where \(t_f \) is some finite time.
Consider the LTI system with \(m \) inputs, \(p \) outputs and \(n \) states:

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\dot{y} &= Cx + Du
\end{align*}
\]

Again, suppose a constant control is applied from \(x \) (unknown initial point) for an infinitesimal time. We want to find \(x \) by observing \(y \) and its derivatives up to the \(n - 1 \)-th order.
Linear Observability

Setting up equations ($\dot{u} = 0$):

\[
\begin{align*}
\dot{y} &= Cx + Du \\
\dot{y} &= C(Ax + Bu) \\
\vdots \\
\frac{dy^{n-1}}{dt^{n-1}} &= C(A...(Ax + Bu)) = CA^{n-1}x + CBu
\end{align*}
\]

This can be rearranged as

\[
\begin{bmatrix}
y - Du \\
\dot{y} - CBu \\
\vdots \\
\frac{dy^{n-1}}{dt^{n-1}} - CBu
\end{bmatrix}
=
\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix} x = \mathcal{O}x
\]
Linear Observability...

The observability matrix O must be full rank to find a solution for x.

In Matlab, O is built with `obsvb(A,B)`.
The Kalman Decomposition

For linear systems, we can always find a linear transformation that reveals the observable/controllable subspaces in the system.
Kalman Controllability Decomposition

Given

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\dot{y} &= Cx
\end{align*}
\]

there is a transformation \(z = Tx \) with \(T \) orthogonal \((T^{-1} = T') \) such that the transformed system has the form

\[
\begin{align*}
\dot{x} &= \begin{bmatrix}
A_{nc} & 0 \\
A_{21} & A_c
\end{bmatrix} x + \begin{bmatrix}
0 \\
B_c
\end{bmatrix} u \\
y &= [C_{nc} | C_c] x
\end{align*}
\]

In Matlab, use `ctrbf(A,B,C)`.

When \(A_{nc} \) is Hurwtiz, the system is **stabilizable**.
Kalman Observability Decomposition

Given

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\dot{y} &= Cx
\end{align*}
\]

there is a transformation \(z = Tx \) with \(T \) orthogonal \((T^{-1} = T') \) such that the transformed system has the form

\[
\begin{align*}
\dot{x} &= \begin{bmatrix} A_{no} & A_{12} \\ 0 & A_o \end{bmatrix} x + \begin{bmatrix} B_{no} \\ B_o \end{bmatrix} u \\
y &= [0|C_o]x
\end{align*}
\]

In Matlab, use \texttt{obsvf(A,B,C)}.

When \(A_{no} \) is Hurwitz, the system is \textit{detectable}.
Lie derivative of a scalar function with respect to a vector field

Let \mathcal{M} be a subset of \mathbb{R}^n. Let $f : \mathcal{M} \mapsto \mathbb{R}^n$ be a smooth vector field and let $h : \mathcal{M} \mapsto \mathbb{R}$ a smooth scalar function. The *Lie derivative* of h with respect to f, denoted $L_f h$ is the directional derivative in the direction of f:

$$L_f h = \nabla h f$$

If $\dot{x} = f(x)$ is a nonlinear system and $V(x)$ is a Lyapunov function candidate, then

$$\dot{V} = L_f V.$$
Lie derivatives as operators

The Lie derivative can be applied recursively:

\[L_f(L_fh) = \nabla (L_fh)f = L_f^2 h \]

Also, we can use various vector fields:

\[L_g(L_fh) = \nabla (L_fh)g = L_gL_fh \]

The Lie derivative is not commutative:

For \(h(x, y) = x - y^2 \), \(g(x, y) = [x \ y]^T \) and \(f(x, y) = [y \ x^2]^T \), calculate \(L_gL_fh \) and \(L_fL_gh \)
The Lie Bracket

Let f and g be two smooth vector fields. The Lie bracket of f and g is another vector field defined by

$$[f, g] = \nabla g f - \nabla f g$$

The notation $\text{ad}_f g$ is also used for $[f, g]$ (given a fixed f, $\text{ad}_f g$ is the adjoint action of f on the set of all smooth vector fields on \mathcal{M}.

The Lie bracket defines a non-associative algebra of smooth vector fields on a manifold). The algebraic properties are:

1. Bilinearity: $[\alpha_1 f_1 + \alpha_2 f_2, g] = \alpha_1 [f_1, g] + \alpha_2 [f_2, g]$
2. Antisymmetry: $[f, g] = -[g, f]$
3. Jacobi identity: $L_{[f,g]} h = L_{\text{ad}_f g} h = L_f L_g h - L_g L_f h$

Combining the given form of bilinearity with antisymmetry shows that

$$[f, \alpha_1 g_1 + \alpha_2 g_2] = \alpha_1 [f_1, g] + \alpha_2 [f_2, g]$$
Recursive Lie Brackets

\[\text{ad}_{f^2g} = [f, \text{ad}_f g] \]

This can be worked out using the Jacobi identity:

\[\text{ad}_{f^2g} h = L_{f^2} L_g h - 2L_f L_g L_f h + L_g L_{f^2} h \]

Exercise: Follow the proof of the Jacobi identity in Slotine and Li and use it to verify the above formula.
Back to Linear Controllability

Consider

\[\dot{x} = Ax + Bu = Ax + B_1u_1 + B_2u_2 + \ldots B_mu_m \]

We revisit the problem of “targeting” desired values for \(\dot{x}, \ddot{x}, \ldots \frac{d^n x}{dt^n} \) simultaneously, using a constant control.

We show that

\[C = [B_1, \ldots B_m, \text{ad}_f B_1, \ldots \text{ad}_f B_m, \ldots \text{ad}_{f^{n-1}} B_m] \]

Again, \(C \) must have \(n \) linearly independent columns.
Nonlinear Controllability

Consider the class of affine control systems

$$\dot{x} = f(x) + g(x)u$$

where the columns g_i of g span \mathbb{R}^m.

Hunt’s theorem (1982): The nonlinear system is (locally) controllable if there exists an index k such that

$$C = [g_1, \ldots g_m, \text{ad}_f g_1, \ldots \text{ad}_f g_m, \ldots \text{ad}_f^k g_1, \ldots \text{ad}_f^k g_m]$$

has n linearly independent columns.

Example (Hunt)

\[
\begin{align*}
\dot{x}_1 &= \cos(\theta)x_3 + \sin(\theta)x_4 \\
\dot{x}_2 &= -\sin(\theta)x_3 + \cos(\theta)x_4 \\
\dot{x}_3 &= u_1 \\
\dot{x}_4 &= u_2
\end{align*}
\]

with \(\theta = \sqrt{x_1^2 + x_2^2} \).

Notes:

1. Controllability is only local. It can be verified near a point, lost away from that point.

2. Linearization does not preserve local controllability properties!
Back to Linear Observability

With $y_i = C_i x = h_i(x)$, we can take successive derivatives of y using the Lie derivative, using vector field $f = A x$:

$$\frac{d^k y_i}{dt^k} = L_f^k h_i$$

Define

$$G = \begin{bmatrix} L_f^0 h_1 & \ldots & L_f^0 h_p \\ \vdots & \ddots & \vdots \\ L_f^{n-1} h_1 & \ldots & L_f^{n-1} h_p \end{bmatrix}$$

In the linear case, G is:

$$G = \begin{bmatrix} C_1 x & \ldots & C_p x \\ \vdots & \ddots & \vdots \\ C_1 A^{n-1} x & \ldots & C_p A^{n-1} x \end{bmatrix}$$

where C_i are the rows of C, $i = 1, 2 \ldots p$.
Linear Observability...

Form a matrix dG with the gradients of the Lie derivatives of G:

$$dG = \begin{bmatrix}
 dL^0_f h_1 & \ldots & dL^0_f h_p \\
 \vdots & & \vdots \\
 dL^{n-1}_f h_1 & \ldots & dL^{n-1}_f h_p
\end{bmatrix}$$

In the linear case, dG becomes the observability matrix.
Nonlinear Weak Observability

Theorem (Hermann and Krener, 1977): Let

\[\dot{x} = f(x, u) \]
\[\dot{y} = h(x) \]

Let \(G \) be the set of all finite linear combinations formed with the Lie derivatives of \(h_1, h_2, \ldots, h_p \) with respect to \(f \) and constant \(u \). Let \(dG \) denote the set of the gradients of the elements of \(G \).

The system is weakly (locally) observable if \(dG \) contains \(n \) linearly independent vectors.

Example

\[\begin{align*}
\dot{x}_1 &= \frac{x_1^2}{2} + e^{x_2} + x_2 \\
\dot{x}_2 &= x_1^2 \\
y &= x_1
\end{align*} \]

Note that \(x_2 \) can be found from \(y \) and \(\dot{y} \), and \(x_1 \) can obviously be found from \(y \). Therefore we now that the system is observable. We use the above technique to show weak observability.
Example: Muscle-Driven System

Consider a mass-spring system driven by a Hill muscle model:

where $L_{CEE} + L_{SEE} = L_m = x_1$. Constant β is defined by

$$\beta = x_{eq} + \Delta L$$

where x_{eq} is the equilibrium muscle length and ΔL is the corresponding elongation of the restraining spring of constant c.
Muscle-Driven System...

The dynamics of the system are given by

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = \frac{1}{m} \left[-\Phi_S(L_{SEE}) + c(\beta - x_1) \right] \]
\[\dot{L}_{SEE} = x_2 + u \]

where \(u \) is the contraction speed of the CE, regarded as control input in this simplified example.

\(\Phi_S(L_{SEE}) \) is the force-length relationship for the series elasticity, which contains a deadzone. We use the above results to verify local controllability and weak observability with \(y = x_1 \).

\(u \) is related to the muscle activation \(a \) by an algebraic equation. Controllability analysis is meaningful with \(u \) as the input.