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1. Introduction

1.1 Introduction
This set of lecture notes was built from a one semester course on the Introduction to
Ordinary and Differential Equations at Penn State University from 2010-2014. Our main
focus is to develop mathematical intuition for solving real world problems while developing
our tool box of useful methods. Topics in this course are derived from five principle subjects
in Mathematics

(i) First Order Equations (Ch. 2)

(ii) Second Order Linear Equations (Ch. 3)

(iii) Higher Order Linear Equations (Ch. 4)

(iv) Laplace Transforms (Ch. 5)

(v) Systems of Linear Equations (Ch. 6)

(vi) Nonlinear Differential Equations and Stability (Ch. 7)

(vii) Partial Differential Equations and Fourier Series (Ch. 8)

Each class individually goes deeper into the subject, but we will cover the basic tools
needed to handle problems arising in physics, materials sciences, and the life sciences.
Here we focus on the development of the solution methods for solving those problems.

1.2 Some Basic Mathematical Models; Direction Fields
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Definition 1.2.1 A differential equation is an equation containing derivatives.

Definition 1.2.2 A differential equation that describes some physical process is often
called a mathematical model

� Example 1.1 (Falling Object)

(+)

γv

mg

Consider an object falling from the sky. From Newton’s Second Law we have

F = ma = m
dv
dt

(1.1)

When we consider the forces from the free body diagram we also have

F = mg− γv (1.2)

where γ is the drag coefficient. Combining the two

m
dv
dt

= mg− γv (1.3)

Suppose m = 10kg and γ = 2kg/s. Then we have

dv
dt

= 9.8− v
5

(1.4)

It looks like the direction field tends towards v = 49m/s. We plot the direction field by
plugging in the values for v and t and letting dv/dt be the slope of a line at that point. �

Direction Fields are valuable tools in studying the solutions of differential equations of
the form

dy
dt

= f (t,y) (1.5)

where f is a given function of the two variables t and y, sometimes referred to as a rate
function. At each point on the grid, a short line is drawn whose slope is the value of f at
the point. This technique provides a good picture of the overall behavior of a solution.

Two Things to keep in mind:
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Figure 1.1: Direction field for above example

1. In constructing a direction field we never have to solve the differential equation only
evaluate it at points.

2. This method is useful if one has access to a computer because a computer can generate
the plots well.

� Example 1.2 (Population Growth) Consider a population of field mice, assuming there
is nothing to eat the field mice, the population will grow at a constant rate. Denote time by
t (in months) and the mouse population by p(t), then we can express the model as

d p
dt

= rp (1.6)

where the proportionality factor r is called the rate constant or growth constant. Now
suppose owls are killing mice (15 per day), the model becomes

d p
dt

= 0.5p−450 (1.7)

note that we subtract 450 rather than 15 because time was measured in months. In general

d p
dt

= rp− k (1.8)

where the growth rate is r and the predation rate k is unspecified. Note the equilibrium
solution would be k/r.

Definition 1.2.3 The equilibrium solution is the value of p(t) where the system no
longer changes, d p

dt = 0.

In this example solutions above equilibrium will increase, while solutions below will
decrease.

�

Steps to Constructing Mathematical Models:
1. Identify the independent and dependent variables and assign letters to represent them.
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Figure 1.2: Direction field for above example

Often the independent variable is time.
2. Choose the units of measurement for each variable.
3. Articulate the basic principle involved in the problem.
4. Express the principle in the variables chosen above.
5. Make sure each term has the same physical units.
6. We will be dealing with models in this chapter which are single differential equations.

� Example 1.3 Draw the direction field for the following, describe the behavior of y as
t→ ∞. Describe the dependence on the initial value:

y′ = 2y+3 (1.9)

Ans: For y >−1.5 the slopes are positive, and hence the solutions increase. For y <−1.5
the slopes are negative, and hence the solutions decrease. All solutions appear to diverge
away from the equilibrium solution y(t) =−1.5. �

� Example 1.4 Write down a DE of the form dy/dt = ay+b whose solutions have the
required behavior as t→ ∞. It must approach 2

3 .
Answer: For solutions to approach the equilibrium solution y(t) = 2/3, we must have
y′ < 0 for y > 2/3, and y′ > 0 for y < 2/3. The required rates are satisfied by the DE
y′ = 2−3y. �

� Example 1.5 Find the direction field for y′ = y(y−3)
�

1.3 Solutions of Some Differential Equations
Last Time: We derived two formulas:

m
dv
dt

= mg− γv (Falling Bodies) (1.10)

d p
dt

= rp− k (Population Growth) (1.11)
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Figure 1.3: Direction field for above example

Both equations have the form:

dy
dt

= ay−b (1.12)

� Example 1.6 (Field Mice / Predator-Prey Model)
Consider

d p
dt

= 0.5p−450 (1.13)

we want to now solve this equation. Rewrite equation (1.13) as

d p
dt

=
p−900

2
. (1.14)

Note p = 900 is an equilbrium solution and the system does not change. If p 6= 900

d p/dt
p−900

=
1
2

(1.15)

By Chain Rule we can rewrite as

d
dt

[
ln |p−900|

]
=

1
2

(1.16)

So by integrating both sides we find

ln |p−900|= t
2
+C (1.17)

Therefore,

p = 900+Cet/2 (1.18)

Thus we have infinitely many solutions where a different arbitrary constant C produces a
different solution. What if the initial population of mice was 850. How do we account for
this? �
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Definition 1.3.1 The additional condition, p(0) = 850, that is used to determine C is
an example of an initial condition.

Definition 1.3.2 The differential equation together with the initial condition form the
initial value problem

Consider the general problem

dy
dt

= ay−b (1.19)

y(0) = y0 (1.20)

The solution has the form

y = (b/a)+ [y0− (b/a)]eat (1.21)

when a 6= 0 this contains all possible solutions to the general equation and is thus called
the general solution The geometric representation of the general solution is an infinite
family of curves called integral curves.

� Example 1.7 (Dropping a ball) System under consideration:

dv
dt

= 9.8− v
5

(1.22)

v(0) = 0 (1.23)

From the formula above we have

v =
(
−9.8
−1/5

)
+

[
0− −9.8
−1/5

]
e−

t
5 (1.24)

and the general solution is

v = 49+Ce−t/5 (1.25)

with the I.C. C =−49. �

1.4 Classifications of Differential Equations
Last Time: We solved some basic differential equations, discussed IVPs, and defined the
general solution.

Now we want to classify two main types of differential equations.
Definition 1.4.1 If the unknown function depends on a single independent variable
where only ordinary derivatives appear, it is said to be an ordinary differential equa-
tion. Example

y′(x) = xy (1.26)
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Definition 1.4.2 If the unknown function depends on several variables, and the deriva-
tives are partial derivatives it is said to be a partial differential equation.

One can also have a system of differential equations

dx/dt = ax−αxy (1.27)
dy/dt = −cy+ γxy (1.28)

Note: Questions from this section are common on exams.

Definition 1.4.3 The order of a differential equation is the order of the highest deriva-
tive that appears in the equation.

Ex 1: y′′′+2ety′′+ yy′ = 0 has order 3.
Ex 2: y(4)+(y′)2 +4y′′′ = 0 has order 4. Look at derivatives not powers.

Another way to classify equations is whether they are linear or nonlinear:

Definition 1.4.4 A differential equation is said to be linear if F(t,y,y′,y′′, ...,y(n)) = 0
is a linear function in the variables y,y′,y′′, ...,y(n). i.e. none of the terms are raised to a
power or inside a sin or cos.

� Example 1.8 a) y′+ y = 2
b) y′′ = 4y−6
c) y(4)+3y′+ sin(t)y �

Definition 1.4.5 An equation which is not linear is nonlinear.

� Example 1.9 a) y′+ t4y2 = 0
b) y′′+ sin(y) = 0
c) y(4)− tan(y)+(y′′′)3 = 0 �

� Example 1.10 d2θ

dt2 + g
L sin(θ) = 0.

The above equation can be approximated by a linear equation if we let sin(θ) = θ . This
process is called linearization. �

Definition 1.4.6 A solution of the ODE on the interval α < t < β is a function φ that
satisfies

φ
(n)(t) = f [t,φ(t), ...,φ (n−1)(t)] (1.29)

Common Questions:
1. (Existence) Does a solution exist? Not all Initial Value Problems (IVP) have solutions.

2. (Uniqueness) If a solution exists how many are there? There can be none, one or
infinitely many solutions to an IVP.

3. How can we find the solution(s) if they exist? This is the key question in this course.
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We will develop many methods for solving differential equations the key will be to identify
which method to use in which situation.
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2. Solution Methods For First Order Equations

2.1 Linear Equations; Method of Integrating Factors
Last Time: We classified ODEs and PDEs in terms of Order (the highest derivative taken)
and linearity.

Now we start Chapter 2: First Order Differential Equations
All equations in this chapter will have the form

dy
dt

= f (t,y) (2.1)

If f depends linearly on y the equation will be a first order linear equation.

Consider the general equation

dy
dt

+ p(t)y = g(t) (2.2)

We said in Chapter 1 if p(t) and g(t) are constants we can solve the equation explicitly.
Unfortunately this is not the case when they are not constants. We need the method of
integrating factor developed by Leibniz, who also invented calculus, where we multiply
(2.2) by a certain function µ(t), chosen so the resulting equation is integrable. µ(t) is
called the integrating factor. The challenge of this method is finding it.

Summary of Method:
1. Rewrite the equation as (MUST BE IN THIS FORM)

y′+ay = f (2.3)

2. Find an integrating factor, which is any function

µ(t) = e
∫

a(t)dt . (2.4)
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3. Multiply both sides of (2.3) by the integrating factor.

µ(t)y′+aµ(t)y = f µ(t) (2.5)

4. Rewrite as a derivative

(µy)′ = µ f (2.6)

5. Integrate both sides to obtain

µ(t)y(t) =
∫

µ(t) f (t)dt +C (2.7)

and thus

y(t) =
1

µ(t)

∫
µ(t) f (t)dt +

C
µ(t)

(2.8)

Now lets see some examples:

� Example 2.1 Find the general solution of

y′ = y+ e−t (2.9)

Step 1:

y′− y = et (2.10)

Step 2:

µ(t) = e−
∫

1dt = e−t (2.11)

Step 3:

e−t(y′− y) = e−2t (2.12)

Step 4:

(e−ty)′ = e−2t (2.13)

Step 5:

e−ty =
∫

e−2tdt =−1
2

e−2t +C (2.14)

Solve for y

y(t) =−1
2

e−t +Cet (2.15)

�
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� Example 2.2 Find the general solution of

y′ = ysin t +2te−cos t (2.16)

and y(0) = 1.
Step 1:

y′− ysin t = 2te−cos t (2.17)

Step 2:

µ(t) = e−
∫

sin tdt = ecos t (2.18)

Step 3:

ecos t(y′− ysin t) = 2t (2.19)

Step 4:

(ecos ty)′ = 2t (2.20)

Step 5:

ecos ty = t2 +C (2.21)

So the general solution is:

y(t) = (t2 +C)e−cos t (2.22)

With IC

y(t) = (t2 + e)e−cos t (2.23)

�

� Example 2.3 Find General Solution to

y′ = y tan t + sin t (2.24)

with y(0) = 2. Note Integrating factor

µ(t) = e−
∫

tandt = eln(cos t) = cos t (2.25)

Final Answer

y(t) =−cos t
2

+
5

2cos t
(2.26)

�

� Example 2.4 Solve

2y′+ ty = 2 (2.27)

with y(0) = 1. Integrating Factor

µ(t) = et2/4 (2.28)

Final Answer

y(t) = e−t2/4
∫ t

0
es2/4ds+ e−t2/4. (2.29)

�
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2.1.1 REVIEW: Integration By Parts
This is the most important integration technique learned in Calculus 2. We will derive the
method. Consider the product rule for two functions of t.

d
dt

[
uv
]
= u

dv
dt

+ v
du
dt

(2.30)

Integrate both sides from a to b

uv
∣∣∣∣b
a
=
∫ b

a
u

dv
dt

+
∫ b

a
v

du
dt

(2.31)

Rearrange the resulting terms

∫ b

a
u

dv
dt

= uv
∣∣∣∣b
a
−
∫ b

a
v

du
dt

(2.32)

Practicing this many times will be helpful on the homework. Consider two examples.

� Example 2.5 Find the integral
∫ 9

1 ln(t)dt. First define u,du,dv, and v.

u = ln(t) dv = dt (2.33)

du =
1
t

dt v = t (2.34)

Thus ∫ 9

1
ln(t)dt = t ln(t)

∣∣∣∣9
1
−
∫ 9

1
1dt (2.35)

= 9ln(9)− t
∣∣∣∣9
1

(2.36)

= 9ln(9)−9+1 (2.37)
= 9ln(9)−8 (2.38)

�

� Example 2.6 Find the integral
∫

ex cos(x)dx. First define u,du,dv, and v.

u = cos(x) dv = exdx (2.39)
du =−sin(x)dx v = ex (2.40)

Thus ∫
ex cos(x)dx = ex cos(x)−

∫
ex sin(x)dx (2.41)

Do Integration By Parts Again

u = sin(x) dv = exdx (2.42)
du = cos(x)dx v = ex (2.43)
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So ∫
ex cos(x)dx = ex cos(x)−

∫
ex sin(x)dx (2.44)

= ex cos(x)+ ex sin(x)−
∫

ex cos(x)dx (2.45)

2
∫

ex cos(x)dx = ex(cos(x)+ sin(x)
)

(2.46)∫
ex cos(x)dx =

1
2

ex(cos(x)+ sin(x)
)
+C (2.47)

�

Notice when we do not have limits of integration we need to include the arbitrary
constant of integration C.

2.2 Separable Equations
Last Time: We used integration to solve first order equations of the form

dy
dt

= a(t)y+b(t) (2.48)

the method of integrating factor only works on an equation of this form, but we want to
handle a more general class of equations

dy
dt

= f (t,y) (2.49)

We want to solve separable equations which have the form

dy
dx

= f (y)g(x) (2.50)

The General Solution Method:

Step 1: (Separate)
1

f (y)
dy = g(x)dx (2.51)

Step 2: (Integrate)
∫ 1

f (y)
dy =

∫
g(x)dx (2.52)

Step 2: (Solve for y) F(y) = G(x)+ c (2.53)

Note only need a constant of integration of one side, could just combine the constants we
get on each side. Also, we only solve for y if it is possible, if not leave in implicit form.

Definition 2.2.1 An equilibrium solution is the value of y which makes dy/dx = 0, y
remains this constant forever.

� Example 2.7 (Newton’s Law of Cooling) Consider the ODE, where E is a constant:

dB
dt

= κ(E−B) (2.54)
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with initial condition (IC) B(0) = B0. This is separable∫ dB
E−B

=
∫

κdt (2.55)

− ln |E−B| = κt + c (2.56)
E−B = e−κt+c = Ae−κt (2.57)

B(t) = E−Ae−κt (2.58)
B(0) = E−A (2.59)

A = E−B0 (2.60)

B(t) = E− E−B0

eκt (2.61)

�

� Example 2.8

dy
dt

= 6y2x, y(1) =
1
3
. (2.62)

Separate and Solve:

∫ dy
y2 =

∫
6xdx (2.63)

−1
y

= 3x2 + c (2.64)

y(1) = 1/3 (2.65)
−3 = 3(1)+ c⇒ c =−6 (2.66)

−1
y

= 3x2−6 (2.67)

y(x) =
1

6−3x2 (2.68)

What is the interval of validity for this solution? Problem when 6− 3x2 = 0 or when
x =±

√
2. So possible intervals of validity: (−∞,−

√
2),(−

√
2,
√

2),(
√

2,∞). We want to
choose the one containing the initial value for x, which is x = 1, so the interval of validity
is (−

√
2,
√

2). �

� Example 2.9

y′ =
3x2 +2x−4

2y−2
, y(1) = 3 (2.69)

There are no equilibrium solutions.∫
2y−2dy =

∫
3x2 +2x−4dx (2.70)

y2−2y = x3 + x2−4x+ c (2.71)
y(1) = 3⇒ c = 5 (2.72)

y2−2y+1 = x3 + x2−4x+6 (Complete the Square) (2.73)
(y−1)2 = x3 + x2−4x+6 (2.74)

y(x) = 1±
√

x3 + x2−4x+6 (2.75)
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There are two solutions we must choose the appropriate one. Use the IC to determine only
the positive solution is correct.

y(x) = 1+
√

x3 + x2−4x+6 (2.76)

We need the terms under the square root to be positive, so the interval of validity is values
of x where x3 + x2−4x+6≥ 0. Note x = 1 is in here so IC is in interval of validity. �

� Example 2.10

dy
dx

=
xy3

1+ x2 , y(0) = 1 (2.77)

One equilibrium solution, y(x) = 0, which is not our case (since it does not meet the IC).
So separate:∫ dy

y3 =
∫ x

1+ x2 dx (2.78)

− 1
2y2 =

1
2

ln(1+ x2)+ c (2.79)

y(0) = 1⇒ c =−1
2

(2.80)

y2 =
1

1− ln(1+ x2)
(2.81)

y(x) =
1√

1− ln(1+ x2)
(2.82)

Determine the interval of validity. Need

ln(1+ x2)< 1⇒ x2 < e−1 (2.83)

So the interval of validity is −
√

e−1 < x <
√

e−1. �

� Example 2.11

dy
dx

=
y−1
x2 +1

(2.84)

The equilibrium solution is y(x) = 1 and our IC is y(0) = 1, so in this case the solution is
the constant function y(s) = 1. �

� Example 2.12

(Review IBP)
dy
dt

= ey−t sec(y)(1+ t2), y(0) = 0 (2.85)

Separate by rewriting, and using Integration By Parts (IBP)

dy
dt

=
eye−t

cos(y)
(1+ t2) (2.86)∫

e−y cos(y)dy =
∫

e−t(1+ t2)dt (2.87)

e−y

2
(sin(y)− cos(y)) = −e−t(t2 +2t +3)+

5
2

(2.88)

Won’t be able to find an explicit solution so leave in implicit form. In the implicit form it
is difficult to find the interval of validity so we will stop here. �
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2.3 Modeling With First Order Equations
Last Time: We solved separable ODEs and now we want to look at some applications to
real world situations

There are two key questions to keep in mind throughout this section:
1. How do we write a differential equation to model a given situation?
2. What can the solution tell us about that situation?

� Example 2.13 (Radioactive Decay)

dN
dt

=−λN(t), (2.89)

where N(t) is the number of atoms of a radioactive isotope and λ > 0 is the decay constant.
The equation is separable, and if the initial data is N(0) = N0, the solution is

N(t) = N0e−λ t . (2.90)

so we can see that radioactive decay is exponential. �

� Example 2.14 (Newton’s Law of Cooling) If we immerse a body in an environment with
a constant temperature E, then if B(t) is the temperature of the body we have

dB
dt

= κ(E−B), (2.91)

where κ > 0 is a constant related to the material of the body and how it conducts heat. This
equation is separable. We solved it before with the initial condition B(0) = B0 to get

B(t) = E− E−B0

eκt . (2.92)

�

Approaches to writing down a model describing a situation:
1. Remember the derivative is the rate of change. It’s possible that the description of the
problem tells us directly what the rate of change is. Newton’s Law of Cooling tells us the
rate of change of the body’s temperature was proportional to the difference in temperature
between the body and the environment. All we had to do was set the relevant terms equal.

2. There are also cases where we are not explicitly given the formula for the rate of
change. But we may be able to use the physical description to define the rate of change
and then set the derivative equal to that. Note: The derivative = increase - decrease. This
type of thinking is only applicable to first order equations since higher order equations are
not formulated as rate of change equals something.

3. We may just be adapting a known differential equation to a particular situation, i.e.
Newton’s Second Law F = ma. It is either a first or second order equation depending
on if you define it for position for velocity. Combine all forces and plug in value for F
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to yield the differential equation. Used for falling bodies, harmonic motion, and pendulums.

4. The last possibility is to determine two different expressions for the same quantity and set
the equal to derive a differential equation. Useful when discussing PDEs later in the course.

The first thing one must do when approaching a modeling problem is determining which
of the four situations we are in. It is crucial to practice this identification now it will be
useful on exams and later sections. Secondly, your differential equation should not depend
on the initial condition. The IC only tells the starting position and should not effect how a
system evolves.

Type I: (Interest)

Suppose there is a bank account that gives r% interest per year. If I withdraw a con-
stant w dollars per month, what is the differential equation modeling this?

Ans: Let t be time in years, and denote the balance after t years as B(t). B′(t) is the
rate of change of my account balance from year to year, so it will be the difference between
the amount added and the amount withdrawn. The amount added is interest and the amount
withdrawn is 12w. Thus

B′(t) =
r

100
B(t)−12w (2.93)

This is a linear equation, so we can solve by integrating factor. Note: UNITS ARE
IMPORTANT, w is withdrawn each month, but 12w is withdrawn per year.

� Example 2.15 Bill wants to take out a 25 year loan to buy a house. He knows that he
can afford maximum monthly payments of $400. If the going interest rate on housing
loans is 4%, what is the largest loan Bill can take out so that he will be able to pay it off in
time?

Ans: Measure time t in years. The amount Bill owes will be B(t). We want B(25) = 0.
The 4% interest rate will take the form of .04B added. He can make payments of
12×400 = 4800 each year. So the IVP will be

B′(t) = .04B(t)−4800, B(25) = 0 (2.94)

This is a linear equation in standard form, use integrating factor

B′(t)− .04B(t) = −4800 (2.95)

µ(t) = e
∫
−.04dt = e−.04t (2.96)

(e−
4

100 tB(t))′ = −4800e−
4

100 t (2.97)

e−
4

100 tB(t) = −4800
∫

e−
4

100 tdt = 120000e−
4

100 t + c (2.98)

B(t) = 120000+ ce
4

100 t (2.99)
B(25) = 0 = 120000+ ce⇒ c =−120000e−1 (2.100)

B(t) = 120000−120000e
4

100 (t−25) (2.101)



30 Chapter 2. Solution Methods For First Order Equations

We want the size of the loan, which is the amount Bill begins with B(0):

B(0) = 120000−120000e−1 = 120000(1− e−1) (2.102)

�

Type II: (Mixing Problems)

Out

In

We have a mixing tank containing some liquid inside. Contaminant is being added to the
tank at some constant rate and the mixed solution is drained out at a (possibly different)
rate. We will want to find the amount of contaminant in the tank at a given time.
How do we write the DE to model this process? Let P(t) be the amount of pollutant (Note:
Amount of pollutant, not the concentration) in the tank at time t. We know the amount of
pollutant that is entering and leaving the tank each unit of time. So we can use the second
approach

Rate of Change ofP(t) = Rate of entry of contaminant−Rate of exit of contaminant
(2.103)

The rate of entry can be defined in different ways. 1. Directly adding contaminant i.e. pipe
adding food coloring to water. 2. We might be adding solution with a known concentration
of contaminant to the tank (amount = concentration x volume).
What is the rate of exit? Suppose that we are draining the tank at a rate of rout . The amount
of contaminant leaving the tank will be the amount contained in the drained solution, that
is given by rate x concentration. We know the rate, and we need the concentration. This
will just be the concentration of the solution in the tank, which is in turn given by the
amount of contaminant in the tank divided by the volume.

Rate of exit of contaminant = Rate of drained solution× Amount of Contaminant
Volume of Tank

(2.104)

or

Rate of exit of contaminant = rout
P(t)
V (t)

. (2.105)

What is V (t)? The Volume is decreasing by rout at each t. Is there anything being added to
the volume? That depends if we are adding some solution to the tank at a certain rate rin,
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that will add to the in-tank volume. If we directly add contaminant not in solution, nothing
is added. So determine which situation by reading the problem. In the first case if the
initial volume is V0, we’ll get V (t) =V0+ t(rin− rout), and in the second, V (t) =V0− trout .

� Example 2.16 Suppose a 120 gallon well-mixed tank initially contains 90 lbs. of salt
mixed with 90 gal. of water. Salt water (with a concentration of 2 lb/gal) comes into the
tank at a rate of 4 gal/min. The solution flows out of the tank at a rate of 3 gal/min. How
much salt is in the tank when it is full?

Ans: We can immediately write down the expression for volume V (t). How much liq-
uid is entering each minute? 4 gallons. How much is leaving the tank in the same
minute? 3 gallons. So each minute the Volume increases by 1 gallon, and we have
V (t) = 90+(4−3)t = 90+ t. This tells us the tank will be full at t = 30.
We let P(t) be the amount of salt (in pounds) in the tank at time t. Ultimately, we want to
determine P(30), since this is when the tank will be full. We need to determine the rates at
which salt is entering and leaving the tank. How much salt is entering? 4 gallons of salt
water enter the tank each minute, and each of those gallons has 2lb. of salt dissolved in it.
Hence we are adding 8 lbs. of salt to the tank each minute. How much is exiting the tank?
3 gallons leave each minute, and the concentration in each of those gallons is P(t)/V (t).
Recall

Rate of Change ofP(t) = Rate of entry of contaminant−Rate of exit of contaminant

(2.106)

Rate of exit of contaminant = Rate of drained solution× Amount of Contaminant
Volume of Tank

(2.107)
dP
dt

= (4gal/min)(2lb/gal)− (3gal/min)(
P(t)lb

V (t)gal
) = 8− 3P(t)

90+ t
(2.108)

This is the ODE for the salt in the tank, what is the IC? P(0) = 90 as given by the problem.
Now we have an IVP so solve (since linear) using integrating factor

dP
dt

+
3

90+ t
P(t) = 8 (2.109)

µ(t) = e
∫ 3

90+t dt = e3ln(90+t) = (90+ t)3 (2.110)
((90+ t)3P(t))′ = 8(90+ t)3 (2.111)

(90+ t)3P(t) =
∫

8(90+ t)3dt = 2(90+ t)4 + c (2.112)

P(t) = 2(90+ t)+
c

(90+ t)3 (2.113)

P(0) = 90 = 2(90)+
c

903 ⇒ c =−(90)4 (2.114)

P(t) = 2(90+ t)− 904

(90+ t)3 (2.115)
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Remember we wanted P(30) which is the amount of salt when the tank is full. So

P(30) = 240− 904

1203 = 240−90(
3
4
)3 = 240−90(

27
64

). (2.116)

We could ask for amount of salt at anytime before overflow and all would be the same
besides last step where we replace 30 with the time wanted. �

Exercise: What is the concentration of the tank when the tank is full?

� Example 2.17 A full 20 liter tank has 30 grams of yellow food coloring dissolved in it.
If a yellow food coloring solution (with concentration of 2 grams/liter) is piped into the
tank at a rate of 3 liters/minute while the well mixed solution is drained out of the tank at a
rate of 3 liters/minute, what is the limiting concentration of yellow food coloring solution
in the tank?

Ans: The ODE would be

dP
dt

= (3L/min)(2g/L)− (3L/min)
P(t)g
V (t)L

= 6− 3P
20

(2.117)

Note that volume is constant since we are adding and removing the same amount at each
time step. Use the method of integrating factor.

µ(t) = e
∫ 3

20 dt = e
3
20 t (2.118)

(e
3

20 tP(t))′ = 6e
3
20 t (2.119)

e
3
20 tP(t) =

∫
6e

3
20 tdt = 40e

3
20 t + c (2.120)

P(t) = 40+
c

e
3

20 t
(2.121)

P(0) = 20 = 40+ c⇒ c =−20 (2.122)

P(t) = 40− 20

e
3

20 t
. (2.123)

Now what will happen to the concentration in the limit, or as t→ ∞. We know the volume
will always be 20 liters.

lim
t→∞

P(t)
V (t)

= lim
t→∞

40−20e−
3

20 t

20
= 2 (2.124)

So the limiting concentration is 2g/L. Why does this make physical sense? After a period
of time the concentration of the mixture will be exactly the same as the concentration of
the incoming solution. It turns out that the same process will work if the concentration of
the incoming solution is variable. �

� Example 2.18 A 150 gallon tank has 60 gallons of water with 5 pounds of salt dissolved
in it. Water with a concentration of 2+ cos(t) lbs/gal comes into the tank at a rate of 9
gal/hr. If the well mixed solution leaves the tank at a rate of 6 gal/hour, how much salt is in
the tank when it overflows?
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Ans: The only difference is the incoming concentration is variable. Given the Volume
starts at 600 gal and increases at a rate of 3 gal/min

dP
dt

= 9(2+ cos(t))− 6P
60+3t

(2.125)

Our IC is P(0) = 5 and use the method of integrating factor

µ(t) = e
∫ 6

60+3t dt = e2ln(20+t) = (20+ t)2. (2.126)
((20+ t)2P(t))′ = 9(2+ cos(t))(20+ t)2 (2.127)

(20+ t)2P(t) =
∫

9(2+ cos(t))(20+ t)2dt (2.128)

= 9(
2
3
(20+ t)3 +(20+ t)2 sin(t)+2(20+ t)cos(t)−2sin(t))+ c(2.129)

P(t) = 9(
2
3
(20+ t)+ sin(t)+

2cos(t)
20+ t

− 2sin(t)
(20+ t)2 )+

c
(20+ t)2(2.130)

P(0) = 5 = 9(
2
3
(20)+

2
20

)+
c

400
= 120+

9
10

+
c

400
(2.131)

c = −46360 (2.132)

We want to know how much salt is in the tank when it overflows. This happens when the
volume hits 150, or at t = 30.

P(30) = 300+9sin(30)+
18cos(30)

50
− 18sin(30)

2500
− 46360

2500
(2.133)

So P(t)≈ 272.63 pounds. �

We could make the problem more complicated by assuming that there will be a change in
the situation if the solution ever reached a critical concentration. The process would still
be the same, we would just need to solve two different but limited IVPs.

Type III: (Falling Bodies)
Lets consider an object falling to the ground. This body will obey Newton’s Second Law
of Motion,

m
dv
dt

= F(t,v) (2.134)

where m is the object’s mass and F is the net force acting on the body. We will look
at the situation where the only forces are air resistance and gravity. It is crucial to be
careful with the signs. Throughout this course downward displacements and forces are
positive. Hence the force due to gravity is given by FG = mg, where g ≈ 10m/s2 is the
gravitational constant.
Air Resistance acts against velocity. If the object is moving up air resistance works
downward, always in opposite direction. We will assume air resistance is linearly dependant
on velocity (ie FA = αv, where FA is the force due to air resistance). This is not realistic,
but it simplifies the problem. So F(t,v) = FG +FA = 10−αv, and our ODE is

m
dv
dt

= 10m−αv (2.135)
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� Example 2.19 A 50 kg object is shot from a cannon straight up with an initial velocity
of 10 m/s off the very tip of a bridge. If the air resistance is given by 5v, determine the
velocity of the mass at any time t and compute the rock’s terminal velocity.

Ans: Two parts: 1. When the object is moving upwards and 2. When the object is
moving downwards. If we look at the forces it turns out we get the same DE

50v′ = 500−5v (2.136)

The IC is v(0) =−10, since we shot the object upwards. Our DE is linear and we can use
integrating factor

v′+
1

10
v = 10 (2.137)

µ(t) = e
t

10 (2.138)

(e
t

10 v(t))′ = 10e
t

10 (2.139)

e
t

10 v(t) =
∫

10e
t

10 dt = 100e
t

10 + c (2.140)

v(t) = 100+
c

e
t

10
(2.141)

v(0) = −10 = 100+ c⇒ c =−110 (2.142)

v(t) = 100− 110

e
t

10
. (2.143)

What is the terminal velocity of the rock? The terminal velocity is given by the limit of the
velocity as t → ∞, which is 100. We could also have computed the velocity of the rock
when it hit the ground if we knew the height of the bridge (integrate to get position). �

� Example 2.20 A 60kg skydiver jumps out of a plane with no initial velocity. Assuming
the magnitude of air resistance is given by 0.8|v|, what is the appropriate initial value
problem modeling his velocity?

Ans: Air Resistance is an upward force, while gravity is acting downward. So our
force should be

F(t,v) = mg− .8v (2.144)

thus our IVP is

60v′ = 60g− .8v, v(0) = 0 (2.145)

�

2.4 Existence and Uniqueness
Last Time: We developed 1st Order ODE models for physical systems and solved them
using the methods of Integrating Factor and Separable Equations.

In Section 1.3 we noted three common questions we would be concerned with this semester.
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1. (Existence) Given an IVP, does a solution exist?
2. (Uniqueness) If a solution exists, is it unique?
3. If a solution exists, how do we find it?

We have spent a lot of time on developing methods, now we will spend time on the
first two questions. Without Solving an IVP, what information can we derive about the
existence and uniqueness of solutions? Also we will note strong differences between linear
and nonlinear equations.

2.4.1 Linear Equations
While we will focus on first order linear equations, the same basic ideas work for higher
order linear equations.

Theorem 2.4.1 (Fundamental Theorem of Existence and Uniqueness for Linear Equa-
tions) Consider the IVP

y′+ p(t)y = q(t), y(t0) = y0. (2.146)

If p(t) and q(t) are continuous functions on an open interval α < t0 < β , then there
exists a unique solution to the IVP defined on the interval (α,β ).

REMARK: The same result holds for general IVPs. If we have the IVP

y(n)+an−1(t)y(n−1)+ ...+a1(t)y′+a0(t)y = g(t), y(t0) = y0, ...,y(n−1)(t0) = y(n−1)
0

(2.147)

then if ai(t) (for i = 0, ...,n−1) and g(t) are continuous on an open interval α < t0 < β ,
there exists a unique solution to the IVP defined on the interval (α,β ).

What does Theorem 1 tell us?
(1) If the given linear differential equation is nice, not only do we know EXACTLY ONE
solution exists. In most applications knowing a solution is unique is more important than
knowing a solution exists.
(2) If the interval (α,β ) is the largest interval on which p(t) and q(t) are continuous, then
(α,β ) is the interval of validity to the unique solution guaranteed by the theorem. Thus
given a "nice" IVP there is no need to solve the equation to find the interval of validity. The
interval only depends on t0 since the interval must contain it, but does not depend on y0.

� Example 2.21 Without solving, determine the interval of validity for the solution to the
following IVP

(t2−9)y′+2y = ln |20−4t|, y(4) =−3 (2.148)

Ans: If we look at Theorem 1, we need to write our equation in the form given in Theorem
1 (i.e. coefficient of y′ is 1). So rewrite as

y′+
2

t2−9
=

ln |20−4t|
t2−9

(2.149)
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Next we identify where either of the two other coefficients are discontinuous. By removing
those points we find all intervals of validity. Then the last step is to identify which interval
of validity contains t0.

Using the notation in Theorem 1, p(t) is discontinuous when t =±3, since at those
points we are dividing by zero. q(t) is discontinuous at t = 5, since the natural log of 0
does not exists (only defined on (0,∞)). This yields four intervals of validity where both
p(t) and q(t) are continuous

(−∞,−3), (−3,3), (3,5), (5,∞) (2.150)

Notice the endpoints are where p(t) and q(t) are discontinuous, guaranteeing within each
interval both are continuous. Now all that is left is to identify which interval contains
t0 = 4. Thus our interval of validity is (3,5). �

REMARK: The other intervals of validity we found are intervals of validity for the
same differential equation, but for different initial conditions. For example, if our IC was
y(2) = 5 then the interval of validity must contain 2, so the answer would be (−3,3).

What happens if our IC is at one of the bad points where p(t) and q(t) are discontin-
uous? Unfortunately we are unable to conclude anything, since the theorem does not apply.
On the other hand we cannot say that a solution does not exist just because the hypothesis
are not met, so the bottom line is that we cannot conclude anything.

� Example 2.22 Without solving, find the interval of validity for the following IVP

cos(x)y′ = sin(x)y−
√

x−1, y(
3
2
) = 0 (2.151)

First we need to put the equation in the form of Theorem 1

y′− tan(x)y =−
√

x−1
cos(x)

(2.152)

Using the notation in Theorem 1, p(t) is discontinuous at x = nπ

2 for odd integers n and
q(t) is discontinuous there and for any x < 1. Thus we can list the possible intervals of
validity

(1,
π

2
),(

π

2
,
3π

2
), ...,(

(2n+1)
2

,
(2n+3)π

2
) (2.153)

for all positive integers n. Since the IC is y(3
2) = 0, then the I.O.V. must contain 3

2 .
Therefore the answer is (1, π

2 ). �

2.4.2 Nonlinear Equations
We saw in the linear case every "nice enough" equation has a unique solution except for if
the initial conditions are ill-posed. But even this seemingly simple nonlinear equation

(
dt
dx

)2 + x2 +1 = 0 (2.154)

has no real solutions.

So we have the following revision of Theorem 1 that applies to nonlinear equations
as well. Since this is applied to a broader class the conclusions are expected to be weaker.
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Theorem 2.4.2 Consider the IVP

y′ = f (t,y), y(t0) = y0. (2.155)

If f and ∂ f
∂y are continuous functions on some rectangle α < t0 < β ,γ < y0 < δ containing

the point (t0,y0), then there is a unique solution to the IVP defined on some interval
(a,b) satisfying α < a < t0 < b≤ β .

OBSERVATION:
(1) Unlike Theorem 1, Theorem 2 does not tell us the interval of a unique solution guaran-
teed by it. Instead, it tells us the largest possible interval that the solution will exist in, we
would need to actually solve the IVP to get the interval of validity.
(2) For nonlinear differential equations, the value of y0 may affect the interval of validity,
as we will see in a later example. We want our IC to NOT lie on the boundary of a region
where f or its partial derivative are discontinuous. Then we find the largest t-interval on
the line y = y0 containing t0 where everything is continuous.

REMARK: Theorem 2 refers to partial derivative ∂ f
∂y of the function of two variables

f (t,y). We will talk extensively about this later, but for now we treat t as a constant and
take a normal derivative with respect to y. For example

f (t,y) = t2−2y3t, then
∂ f
∂y

=−6y2t. (2.156)

� Example 2.23 Determine the largest possible interval of validity for the IVP

y′ = x ln(y), y(2) = e (2.157)

We have f (x,y) = x ln(y), so ∂ f
∂y = x

y . f is discontinuous when y ≤ 0, and fy (partial
derivative with respect to y) is discontinuous when y = 0. Since our IC y(2) = e > 0
there is no problem since y0 is never in the discontinuous region. Since there are no
discontinuities involving x, then the rectangle is −∞ < x0 < ∞,0 < y0 < ∞. Thus the
theorem concludes that the unique solution exists somewhere inside (−∞,∞). �

REMARK: Note that this basically told us nothing, and nonlinear problems are quite
harder to deal with than linear.

� Example 2.24 Determine the largest possible interval of validity for the IVP

y′ =
√

y− t2, y(0) = 1. (2.158)

f (t,y) =
√

y− t2 and fy =
1

2
√

y−t2
. The region of discontinuities is given by y≤ t2. Our

IC is y(0) = 1 does not lie in this region, so we can continue. The line y = 1 is continuous
for −1 < t < 1, so our conclusion is that the interval of validity of the guaranteed unique
solution is contained somewhere within (−1,1). �

What can happen if the conditions of Theorem 2 are NOT met?

� Example 2.25 Determine all possible solutions to the IVP

y′ = y
1
3 , y(0) = 0. (2.159)
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First note this does not satisfy the conditions of the theorem, since fy =
1

3y2/3 is not
continuous at y0 = y = 0. Now solve the equation it is separable. Notice the equilibrium
solution is y = 0. This satisfies the IC, but let’s solve the equation.∫

y−1/3dy =
∫

dt (2.160)

3
2

y2/3 = t + c (2.161)

y(0) = 0 (2.162)

y(t) = ±(2
3

t)
3
2 (2.163)

(2.164)

The IC does not rule out either of these possibilities, so we end up with three possible
solutions (these two and the equilibrium solution y(t)≡ 0). �

In our class we will be mostly dealing with nice equations and unique solutions, but
be aware this is not always the case. Consider the next example which illustrates the
dependence of the interval of validity on y0.

� Example 2.26 Determine the interval of validity for the IVP

y′ = y2, y(0) = y0 (2.165)

First notice its nonlinear so Theorem 1 does not apply. y2 is continuous everywhere, so
for every y0 there will be a unique solution. It is defined somewhere in (−∞,∞). So let’s
solve. Notice first the equilibrium solution if y0 = 0 we have y≡ 0. So assume y0 6= 0.∫ 1

y2 dy =
∫

dt (2.166)

−1
y

= t + c (2.167)

c = − 1
y0

(2.168)

−1
y

= t− 1
y0

(2.169)

y(t) =
y0

1− y0t
(2.170)

What is the interval of validity? The only point of discontinuity is t = 1
y0

. So the two
possible intervals of validity are

(−∞,
1
y0
), (

1
y0
,∞) (2.171)

The correct choice will be the interval containing t0 = 0. But this will depend on y0. If
y0 > 0, 0 will be contained in the interval (−∞, 1

y0
) and so this is the interval of validity.

On the other hand, if y0 < 0, 0 is contained inside ( 1
y0
,∞) and so this is the interval of

validity. Thus we have the following possible intervals of validity, depending on y0.
(1) If y0 > 0, (−∞, 1

y0
) is the interval of validity

(2) If y0 = 0, (−∞,∞) is the interval of validity
(3) If y0 < 0, (− 1

y0
,∞) is the interval of validity �
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2.4.3 Summary
We established conditions for existence and uniqueness of solutions to first order ODEs.
Intervals of validity for linear equations do not depend on the initial choice of y0, while
nonlinear equations may. Secondly, we can find intervals of validity for solutions for linear
equations without having to solve the equation. For a nonlinear equation, we would need
to solve the equation to get the actual interval of validity. But we can still find all places
where the interval of validity definitely will not be defined.

2.5 Autonomous Equations with Population Dynamics
Last Time: We focused on the differences between linear and nonlinear equations as well
as identifying intervals of validity without solving any initial value problems (IVP).

2.5.1 Autonomous Equations
First order differential equations relate the slope of a function to the values of the function
and the independent variable. We can visualize this using direction fields. This in principle
can be very complicated and it might be hard to determine which initial values correspond
to which outcomes. However, there is a special class of equations, called autonomous
equations, where this process is simplified. The first thing to note is autonomous equations
do not depend on t

y′ = f (y) (2.172)

REMARK: Notice that all autonomous equations are separable.

What we need to know to study the equation qualitatively is which values of y make
y′ zero, positive, or negative. The values of y making y′ = 0 are the equilibrium solutions.
They are constant solutions and are indicated on the ty-plane by horizontal lines.

After we establish the equilibrium solutions we can study the positivity of f (y) on
the intermediate intervals, which will tell us whether the equilibrium solutions attract
nearby initial conditions (in which case they are called asymptotically stable), repel them
(unstable), or some combination of them (semi-stable).

� Example 2.27 Consider

y′ = y2− y−2 (2.173)

Start by finding the equilibrium solutions, values of y such that y′ = 0. In this case we
need to solve y2− y− 2 = (y− 2)(y+ 1) = 0. So the equilibrium solutions are y = −1
and y = 2. There are constant solutions and indicated by horizontal lines. We want to
understand their stability. If we plot y2− y−2 versus y, we can see that on the interval
(−∞,−1), f (y)> 0. On the interval (−1,2), f (y)< 0 and on (2,∞), f (y)> 0. Now con-
sider the initial condition.

(1) If the IC y(t0) = y0 <−1,y′ = f (y)> 0 and y(t) will increase towards -1.
(2) If the IC −1 < y0 < 2,y′ = f (y)< 0, so the solution will decrease towards -1. Since
the solutions below -1 go to -1 and the solutions above -1 go to -1, we conclude y(t) =−1
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is an asymptotically stable equilibrium.
(3) If y0 > 2,y′ = f (y)> 0, so the solution increases away from 2. So at y(t) = 2 above
and below solutions move away so this is an unstable equilibrium. �

� Example 2.28 Consider

y′ = (y−4)(y+1)2 (2.174)

The equilibrium solutions are y = −1 and y = 4. To classify them, we graph f (y) =
(y−4)(y+1)2.
(1) If y <−1, we can see that f (y)< 0, so solutions starting below -1 will tend towards
−∞.
(2) If −1 < y0 < 4, f (y)< 0, so solutions starting here tend downwards to -1. So y(t) = 1
is semistable.
(3) If y > 4, f (y) > 0, solutions starting above 4 will asymptotically increase to ∞, so
y(t) = 4 is unstable since no nearby solutions converge to it. �

2.5.2 Populations
The best examples of autonomous equations come from population dynamics. The most
naive model is the "Population Bomb" since it grows without any deaths

P′(t) = rP(t) (2.175)

with r > 0. The solution to this differential equation is P(t) = P0ert , which indicates that
the population would increase exponentially to ∞. This is not realistic at all.

A better and more accurate model is the "Logistic Model"

P′(t) = rP(1− P
N
) = rP− r

N
P2 (2.176)

where N > 0 is some constant. With this model we have a birth rate of rP and a mortality
rate of r

N P2. The equation is separable so let’s solve it.

dP
P(1− P

N )
= rdt (2.177)∫

(
1
P
+

1/N
1−P/N

)dP =
∫

rdt (2.178)

ln |P|− ln |1− P
N
| = rt + c (2.179)

P
1− P

N
= Aert (2.180)

P = Aert =
1
N

AertP (2.181)

P(t) =
Aert

1+ A
N ert

=
AN

Ne−rt +A
(2.182)

if P(0) = P0, then A = P0N
N−P0

to yield

P(t) =
P0N

(N−P0)e−rt +P0
(2.183)
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In its present form its hard to analyze what is going on so let’s apply the methods from the
first section to analyze the stability.

Looking at the logistic equation, we can see that our equilibrium solutions are P = 0
and P = N. Graphing f (P) = rP(1− N

P ), we see that
(1) If P < 0, f (P)< 0
(2) If 0 < P < N, f (P)> 0
(3) If P > N, f (P)< 0
Thus 0 is unstable while while N is asymptotically stable, so we can conclude for initial
population P0 > 0

lim
t→∞

P(t) = N (2.184)

So what is N? It is the carrying capacity for the environment. If the population exists, it
will grow towards N, but the closer it gets to N the slower the population will grow. If
the population starts off greater then the carrying capacity for the environment P0 > N,
then the population will die off until it reaches that stable equilibrium position. And if
the population starts off at N, the births and deaths will balance out perfectly and the
population will remain exactly at P0 = N.

Note: It is possible to construct similar models that have unstable equilibria above 0.

EXERCISE: Show that the equilibrium population P(t) =N is unstable for the autonomous
equation

P′(t) = rP(
P
N
−1). (2.185)

2.6 Exact Equations
Last Time: We solved problems involving population dynamics, plotted phase portraits,
and determined the stability of equilibrium solutions.

The final category of first order differential equations we will consider are Exact
Equations. These nonlinear equations have the form

M(x,y)+N(x,y)
dy
dx

= 0 (2.186)

where y = y(x) is a function of x and find the

∂M
∂y

=
∂N
∂x

(2.187)

where these two derivatives are partial derivatives.

2.6.1 Multivariable Differentiation
If we want a partial derivative of f (x,y) with respect to x we treat y as a constant and
differentiate normally with respect to x. On the other hand, if we want a partial derivative
of f (x,y) with respect to y we treat x as a constant and differentiate normally with respect
to y.
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� Example 2.29 Let f (x,y) = x2y = y2. Then

∂ f
∂x

= 2xy (2.188)

∂ f
∂y

= x2 +2y. (2.189)

�

� Example 2.30 Let f (x,y) = ysin(x)

∂ f
∂x

= ycos(y) (2.190)

∂ f
∂y

= sin(x) (2.191)

�

We also need the crucial tool of the multivariable chain rule. If we have a function
Φ(x,y(x)) depending on some variable x and a function y depending on x, then

dΦ

dx
=

∂Φ

∂x
+

∂Φ

∂y
dy
dx

= Φx +Φyy′ (2.192)

2.6.2 Exact Equations
Start with an example to illustrate the method.

� Example 2.31 Consider

2xy−9x2 +(2y+ x2 +1)
dy
dx

= 0 (2.193)

The first step in solving an exact equation is to find a certain function Φ(x,y). Finding
Φ(x,y) is most of the work. For this example it turns out

Φ(x,y) = y2 +(x2 +1)y−3x3 (2.194)

Notice if we compute the partial derivatives of Φ, we obtain

Φx(x,y) = 2xy−9x2 (2.195)
Φy(x,y) = 2y+ x2 +1. (2.196)

Looking back at the differential equation, we can rewrite it as

Φx +Φy
dy
dx

= 0. (2.197)

Thinking back to the chain rule we can express as

dΦ

dx
= 0 (2.198)

Thus if we integrate, Φ = c, where c is a constant. So the general solution is

y2 +(x2 +1)y−3x3 = c (2.199)

for some constant c. If we had an initial condition, we could use it to find the particular
solution to the initial value problem. �



2.6 Exact Equations 43

Let’s investigate the last example further. An exact equation has the form

M(x,y)+N(x,y)
dy
dx

= 0 (2.200)

with My(x,y) = Nx(x,y). The key is to construct Φ(x,y) such that the DE turns into

dΦ

dx
= 0 (2.201)

by using the multivariable chain rule. Thus we require Φ(x,y) satisfy

Φx(x,y) = M(x,y) (2.202)
Φy(x,y) = N(x,y) (2.203)

REMARK: A standard fact from multivariable calculus is that mixed partial derivatives
commute. That is why we want My = Nx, so My = Φxy and Nx = Φyx, and so these should
be equal for Φ to exist. Make sure you check the function is exact before wasting time on
the wrong solution process.

Once we have found Φ, then dΦ

dx = 0, and so

Φ(x,y) = c (2.204)

yielding an implicit general solution to the differential equation.
So the majority of the work is computing Φ(x,y). How can we find this desired

function, let’s retry Example 3, filling in the details.

� Example 2.32 Solve the initial value problem

2xy−9x2 +(2y+ x2 +1)
dy
dx

= 0, y(0) = 2 (2.205)

Let’s begin by checking the equation is in fact exact.

M(x,y) = 2xy−9x2 (2.206)
N(x,y) = 2y+ x2 +1 (2.207)

(2.208)

Then My = 2x = Nx, so the equation is exact.
Now how do we find Φ(x,y)? We have Φx = M and Φy = N. Thus we could compute

Φ in one of two ways

Φ(x,y) =
∫

Mdx or Φ(x,y) =
∫

Ndy. (2.209)

In general it does not usually matter which you choose, one may be easier to integrate than
the other. In this case

Φ(x,y) =
∫

2xy−9x2dx = x2y−3x3 +h(y). (2.210)

Notice since we only integrate with respect to x we can have an arbitrary function only
depending on y. If we differentiate h(y) with respect to x we still get 0 like an arbitrary
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constant c. So in order to have the highest accuracy we take on an arbitrary function of
y. Note if we integrated N with respect to y we would get an arbitrary function of x. DO
NOT FORGET THIS!

Now all we need is to find h(y). We know if we differentiate Φ with respect to x, then
h(y) will vanish which is unhelpful. So instead differentiate with respect to y, since Φy = N
in order to be exact. so any terms in N that aren’t in Φy must be h′(y).

So Φy = x2 +h′(y) and N = x2 +2y+1. Since these are equal we have h′(y) = 2y+1,
an so

h(y) =
∫

h′(y)dy = y2 + y (2.211)

REMARK: We will drop the constant of integration we get from integrating h since it
will combine with the constant c that we get in the solution process.

Thus, we have

Φ(x,y) = x2y−3x3 + y2 + y = y2 +(x2 +1)y−3x3, (2.212)

which is precisely the Φ that we used in Example 3. Observe

dΦ

dx
= 0 (2.213)

and thus Φ(x,y) = y2 +(x2 +1)y−3x3 = c for some constant c. To compute c, we’ll use
our initial condition y(0) = 2

22 +2 = c⇒ c = 6 (2.214)

and so we have a particular solution of

y2 +(x2 +1)y−3x3 = 6 (2.215)

This is a quadratic equation in y, so we can complete the square or use quadratic formula
to get an explicit solution, which is the goal when possible.

y2 +(x2 +1)y−3x3 = 6 (2.216)

y2 +(x2 +1)y+
(x2 +1)2

4
= 6+3x3 +

(x2 +1)2

4
(2.217)

(y+
x2 +1

2
)2 =

x4 +12x3 +2x2 +25
4

(2.218)

y(x) =
−(x2 +1)±

√
x4 +12x3 +2x2 +25

2
(2.219)

Now we use the initial condition to figure out whether we want the + or − solution. Since
y(0) = 2 we have

2 = y(0) =
−1±

√
25

2
=
−1±5

2
= 2,−3 (2.220)

Thus we see we want the + so our particular solution is

y(x) =
−(x2 +1)+

√
x4 +12x3 +2x2 +25

2
(2.221)

�
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� Example 2.33 Solve the initial value problem

2xy2 +2 = 2(3− x2y)y′, y(−1) = 1. (2.222)

First we need to put it in the standard form for exact equations

2xy2 +2−2(3− x2y)y′ = 0. (2.223)

Now, M(x,y) = 2xy2 +2 and N(x,y) =−2(3− x2y). So My = 4xy = Nx and the equation
is exact.

The next step is to compute Φ(x,y). We choose to integrate N this time

Φ(x,y) =
∫

Ndy =
∫

2x2y−6dy = x2y2−6y+h(x). (2.224)

To find h(x), we compute Φx = 2xy2 + h′(x) and notice that for this to be equal to M,
h′(x) = 2. Hence h(x) = 2x and we have an implicit solution of

x2y2−6y+2x = c. (2.225)

Now, we use the IC y(−1) = 1:

1−6−2 = c⇒ c =−7 (2.226)

So our implicit solution is

x2y2−6y+2x+7 = 0. (2.227)

Again complete the square or use quadratic formula

y(x) =
6±
√

36−4x2(2x+7)
2x2 (2.228)

=
3±
√

9−2x3−7x2

x2 (2.229)

and using the IC, we see that we want − solution, so the explicit particular solution is

y(x) =
3−
√

9−2x3−7x2

x2 (2.230)

�

� Example 2.34 Solve the IVP

2ty
t2 +1

−2t− (4− ln(t2 +1))y′ = 0, y(2) = 0 (2.231)

and find the solution’s interval of validity.
This is already in the right form. Check if it is exact, M(t,y) = 2ty

t2+1 −2t and N(t,y) =
ln(t2 + 1)− 4, so My =

2t
t2+1 = Nt . Thus the equation is exact. Now compute Φ(x,y).

Integrate M

Φ =
∫

Mdt =
∫ 2ty

t2 +1
dt = y ln(t2 +1)− t2 +h(y). (2.232)

Φy = ln(t2 +1)+h′(y) = ln(t2 +1)−4 = N (2.233)



46 Chapter 2. Solution Methods For First Order Equations

so we conclude h′(y) =−4 and thus h(y) =−4y. So our implicit solution is then

y ln(t2 +1)− t2−4y = c (2.234)

and using the IC we find c =−4. Thus the particular solution is

y ln(t2 +1)− t2−4y =−4 (2.235)

Solve explicitly to obtain

y(x) =
t2−4

ln(t2 +1)−4
. (2.236)

Now let’s find the interval of validity. We do not have to worry about the natural log
since t2 +1 > 0 for all t. Thus we want to avoid division by 0.

ln(t2 +1)−4 = 0 (2.237)
ln(t2 +1) = 4 (2.238)

t2 = e4−1 (2.239)

t = ±
√

e4−1 (2.240)

So there are three possible intervals of validity, we want the one containing t = 2, so
(−
√

e4−1,
√

e4−1). �

� Example 2.35 Solve

3y3e3xy−1+(2ye3xy +3xy2e3xy)y′ = 0, y(1) = 2 (2.241)

We have

My = 9y2e3xy +9xy3e3xy = Nx (2.242)

Thus the equation is exact. Integrate M

Φ =
∫

Mdx =
∫

3y3e3xy−1 = y2e3xy− x+h(y) (2.243)

and

Φy = 2ye3xy +3xy2e3xy +h′(y) (2.244)

Comparing Φy to N, we see that they are already identical, so h′(y) = 0 and h(y) = 0. So

y2e3xy− x = c (2.245)

and using the IC gives c = 4e6−1. Thus our implicit particular solution is

y2e3xy− x = 4e6−1, (2.246)

and we are done because we will not be able to solve this explicitly. �
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3. Solutions to Second Order Linear Equations

3.1 Second Order Linear Differential Equations
Last Time: We studied exact equations, which were our last type of first order differential
equations and the method for solving them. Now we start Chapter 3: Second Order Linear
Equations.

3.1.1 Basic Concepts

The example of a second order equation which we have seen many times before is Newton’s
Second Law when expressed in terms of position s(t) is

m
d2s
dt2 = F(t,s′,s) (3.1)

One of the most basic 2nd order equations is y′′ =−y. By inspection, we might notice
that this has two obvious nonzero solutions: y1(t) = cos(t) and y2(t) = sin(t). But consider
9cos(t)−2sin(t)? This is also a solution. Anything of the form y(t) = c1 cos(t)+c2 sin(t),
where c1 and c2 are arbitrary constants. Every solution if no conditions are present has this
form.

� Example 3.1 Find all of the solutions to y′′ = 9y
We need a function whose second derivative is 9 times the original function. What

function comes back to itself without a sign change after two derivatives? Always think
of the exponential function when situations like this arise. Two possible solutions are
y1(t) = e3t and y2(t) = e−3t . In fact so are any combination of the two. This is the principal
of linear superposition. So y(t) = c1e3t + c2e−3t are infinitely many solutions.

EXERCISE: Check that y1(t) = e3t and y2(t) = e−3t are solutions to y′′ = 9y. �
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The general form of a second order linear differential equation is

p(t)y′′+q(t)y′+ r(t)y = g(t). (3.2)

We call the equation homogeneous if g(t) = 0 and nonhomogeneous if g(t) 6= 0.

Theorem 3.1.1 (Principle of Superposition) If y1(t) and y2(t) are solutions to a second
order linear homogeneous differential equation, then so is any linear combination

y(t) = c1y1(t)+ c2y2(t). (3.3)

This follows from the homogeneity and the fact that a derivative is a linear operator.
So given any two solutions to a homogeneous equation we can find infinitely more by
combining them. The main goal is to be able to write down a general solution to a
differential equation, so that with some initial conditions we could uniquely solve an IVP.
We want to find y1(t) and y2(t) so that the general solution to the differential equation is
y(t) = c1y1(t)+ c2y2(t). By different we mean solutions which are not constant multiples
of each other.

Now reconsider y′′ =−y. We found two different solutions y1(t) = cos(t) and y2(t) =
sin(t) and any solution to this equation can be written as a linear combination of these
two solutions, y(t) = c1 cos(t)+ c2 sin(t). Since we have two constants and a 2nd order
equation we need two initial conditions to find a particular solution. We are generally given
these conditions in the form of y and y′ defined at a particular t0. So a typical problem
might look like

p(t)y′′+q(t)y′+ r(t)y = 0, y′(t0) = y′0, y(t0) = y0 (3.4)

� Example 3.2 Find a particular solution to the initial value problem

y′′+ y = 0, y(0) = 2, y′(0) =−1 (3.5)

We have established the general solution to this equation is

y(t) = c1 cos(t)+ c2 sin(t) (3.6)

To apply the initial conditions, we’ll need to know the derivative

y′(t) =−c1 sin(t)+ c2 cos(t) (3.7)

Plugging in the initial conditions yields

2 = c1 (3.8)
−1 = c2 (3.9)

so the particular solution is

y(t) = 2cos(t)− sin(t). (3.10)

�

Sometimes when applying initial conditions we will have to solve a system of equations,
other times it is as easy as the previous example.
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3.1.2 Homogeneous Equations With Constant Coefficients
We will start with the easiest class of second order linear homogeneous equations, where
the coefficients p(t), q(t), and r(t) are constants. The equation will have the form

ay′′+by′+ c = 0. (3.11)

How do we find solutions to this equation? From calculus we can find a function that
is linked to its derivatives by a multiplicative constant, y(t) = ert . Now that we have a
candidate plug it into the differential equation. First calculate the derivatives y′(t) = rert

and y′′(t) = r2ert .

a(r2ert)+b(rert)+ cert = 0 (3.12)
ert(ar2 +br+ c) = 0 (3.13)

What can we conclude? If y(t) = ert is a solution to the differential equation, then
ert(ar2 +br+ c) = 0. Since ert 6= 0, then y(t) = ert will solve the differential equation as
long as r is a solution to

ar2 +br+ c = 0. (3.14)

This equation is called the characteristic equation for ay′′+by′+ c = 0.
Thus, to find a solution to a linear second order homogeneous constant coefficient

equation, we begin by writing down the characteristic equation. Then we find the roots r1
and r2 (not necessarily distinct or real). So we have the solutions

y1(t) = er1t , y2(t) = er2t . (3.15)

Of course, it is also possible these are the same, since we might have a repeated root. We
will see in a future section how to handle these. In fact, we have three cases.

� Example 3.3 Find two solutions to the differential equation y′′−9y = 0 (Example 1).
The characteristic equation is r2− 9 = 0, and this has roots r = ±3. So we have two
solutions y1(t) = e3t and y2(t) = e−3t , which agree with what we found earlier. �

The three cases are the same as the three possibilities for types of roots of quadratic
equations:
(1) Real, distinct roots r1 6= r2.
(2) Complex roots r1,r2 = α±β i.
(3) A repeated real root r1 = r2 = r.
We’ll look at each case more closely in the lectures to come.

3.2 Solutions of Linear Homogeneous Equations and the Wronskian
Last Time: We studied linear homogeneous equations, the principle of linear superposition,
and the characteristic equation.

3.2.1 Existence and Uniqueness
Given an initial value problem involving a linear second order equation, when does a
solution exist? We had a theroem in the previous chapter for the first order case so the
following theorem will cover second order equations.



52 Chapter 3. Solutions to Second Order Linear Equations

Theorem 3.2.1 Consider the initial value problem

y′′+ p(t)y′+q(t)y = g(t), y(t0) = y0, y′(t0) = y′0. (3.16)

If p(t), q(t), and g(t) are all continuous on some interval (a,b) such that a < t0 < b,
then the initial value problem has a unique solution defined on (a,b).

3.2.2 Wronskian
Let’s suppose we are given the initial value problem

p(t)y′′+q(t)y′+ r(t)y = 0, y(t0) = y0, y′(t0) = y′0 (3.17)

and that we know two solutions y1(t) and y2(t). Since the differential equation is linear
and homogeneous, the Principle of Superposition says that any linear combination

y(t) = c1y1(t)+ c2y2(t) (3.18)

is also a solution. When is this the general solution? For this to be the case it must satisfy
its initial conditions. As long as t0 does not make any of the coefficient discontinuous,
Theorem 1 says y(t) meeting the initial conditions is the general solution. Start by
differentiating our candidate y(t) and using the initial conditions

y0 = y(t0) = c1y1(t0)+ c2y2(t0) (3.19)
y′0 = y′(t0) = c1y′1(t0)+ c2y′2(t0) (3.20)

Solve this system of equations to get

c1 =
y0− c2y2(t0)

y1(t0)
(3.21)

Thus

y′0 =
y0y′1(t0)− c2y2(t0)y′1(t0)

y1(t0)
+ c2y′2(t0) (3.22)

=
y0y′1(t0)− c2y2(t0)y′1(t0)+ c2y′2(t0)y1(t0)

y1(t0)
(3.23)

and we compute

c2 =
y′0y1(t0)− y0y′1(t0)

y1(t0)y′2(t0)− y2(t0)y′1(t0)
(3.24)

c1 =
y′0y2(t0)− y0y′2(t0)

y1(t0)y′2(t0)− y2(t0)y′1(t0)
(3.25)

(3.26)

Notice that c1 and c2 have the same quantity in their denominators, so the only time we
can solve for c1 and c2 is when this quantity is NOT zero.
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Definition 3.2.1 The quantity

W (y1,y2)(t0) = y1(t0)y′2(t0)− y2(t0)y′1(t0) (3.27)

is called the Wronskian of y1 and y2 at t0.

REMARK:
(1) When it’s clear what the two functions are, we will often denote the Wronskian by W .
(2) We can think of the Wronskian, W (y1,y2)(t), as a function of t and can be evaluated at
any t where y1 and y2 are defined. For any two solutions satisfying the initial conditions
we need the Wronskian W (y1,y2) to be nonzero at any value t0 where Theorem 1 applies.
(3) We could have solved the system of equations for y(t0) and y′(t0) by Cramer’s Rule
from Linear Algebra and we have the following formula for the Wronskian

W (y1,y2)(t0) =
∣∣∣∣ y1(t0) y2(t0)

y′1(t0) y′2(t0)

∣∣∣∣ . (3.28)

We will generally represent the Wronskian as a determinant.
Two solutions will form the general solution if they satisfy the general initial conditions.

The above computation showed that this will be the case so long as

W (y1,y2)(t0) =
∣∣∣∣ y1(t0) y2(t0)

y′1(t0) y′2(t0)

∣∣∣∣= y1(t0)y′2(t0)− y2(t0)y′1(t0) 6= 0 (3.29)

If y1(t) and y2(t) are solutions to our second order equation and W (y1,y2) 6= 0, then
the two solutions are said to be a fundamental set of solutions and the general solution is

y(t) = c1y1(t)+ c2y2(t). (3.30)

In other words, two solutions are "different" enough to form a general solution if they are
a fundamental set of solutions.

� Example 3.4 If r1 and r2 are distinct real roots of the characteristic equation for ay′′+
by′+ cy = 0, check that

y1(t) = er1t and y2(t) = er2t (3.31)

form a fundamental set of solutions.
To show this, we compute the Wronskian

W =

∣∣∣∣ er1t er2t

r1er1t r2er2t

∣∣∣∣= r2e(r1+r2)t− r1e(r2+r1) = (r2− r1)e(r2+r1)t (3.32)

Since the exponentials are never zero and r2 6= r1, we conclude that W 6= 0 and so as
claimed y1 and y2 form a fundamental set of solutions for the differential equation and the
general solution is

y(t) = c1y1(t)+ c2y2(t). (3.33)

�
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� Example 3.5 Consider

2t2y′′+ ty′−3y = 0. (3.34)

given that y1(t) = t−1 is a solution. Show y2(t) = t3/2 form a fundamental set of solutions.
To do this, we compute the Wronskian

W =

∣∣∣∣ t−1 t3/2

−t−2 3
2t1/2

∣∣∣∣= 3
2

t−
1
2 + t−

1
2 =

5
2
√

t
(3.35)

Thus W 6= 0, so they are a fundamental set of solutions. Notice we cannot plug in t = 0,
but this is OK since we cannot plug t = 0 into the solution anyway since it would make the
coefficients in standard for discontinuous. So the general solution is

y(t) = c1t−1 + c2t
3
2 (3.36)

�

� Example 3.6 Consider

t2y′′+2ty′−2y = 0. (3.37)

We are given that y1(t) = t is a solution and want to test y2(t) = t−2 as our other solution.
Check the Wronskian

W =

∣∣∣∣ t t−2

1 −2t−3

∣∣∣∣=−2t−2− t−2 =−3t−2 6= 0. (3.38)

So the solutions are a fundamental set of solutions, and the general solution is

y(t) = c1t + c2t−2 (3.39)

�

The last question is how we know if a fundamental set of solutions will exist for a
given differential equation. The following theorem has the answer.

Theorem 3.2.2 Consider the differential equation

y′′+ p(t)y′+q(t) = 0 (3.40)

where p(t) and q(t) are continuous on some interval (a,b). Suppose a < t0 < b. If y1(t)
is a solution satisfying the initial conditions

y(t0) = 1, y′(t0) = 0 (3.41)

and y2(t) is a solution satisfying

y(t0) = 0, y′(t0) = 1, (3.42)

then y1(t) and y2(t) form a fundamental set of solutions.
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We cannot use this to compute our fundamental set of solutions, but the importance is it
assures us that as long as p(t) and q(t) are continuous, then a fundamental set of solutions
will exist.

3.2.3 Linear Independence
Consider two functions f (t) and g(t) and the equation

c1 f (t)+ c2g(t) = 0. (3.43)

Notice that c1 = 0 and c2 = 0 always solve this equation, regardless of what f and g are.
Definition 3.2.2 If there are nonzero constants c1 and c2 such that the above equation
is satisfied for all t, then f and g are said to be linearly dependent. On the other hand,
if the only constants for which the equation holds are c1 = c2 = 0, then f and g are said
to be linearly independent.

REMARK: Two functions are linearly dependent when they are constant multiples of
each other. So there are nonzero c1 and c2 such that

f (t) =−c2

c1
g(t) (3.44)

� Example 3.7 Determine if the following pairs of functions are linearly dependent or
independent.
(1) f (x) = 9cos(2x),g(x) = 2cos2(x)−2sin2(x)
(2) f (t) = 2t2,g(t) = t4

(1) Consider

9c1 cos(2x)+2c2(cos2(x)− sin2(x)) = 0. (3.45)

We want to determine if there are nonzero constants c1 and c2 so this equation is true. Note
the trig identity cos(2x) = cos2(x)− sin2(x). So our equation becomes

9c1 cos(2x)+2c2 cos(2x) = 0 (3.46)
(9c1 +2c2)cos(2x) = 0 (3.47)

This equation is true for c1 = 2 and c2 =−9, thus f and g are linearly dependent.
(2) Consider

2c1t2 + c2t4 = 0 (3.48)

If this is true differentiate both sides and it will still be true

4c1t +4c2t3 = 0 (3.49)

Solve for c1 and c2. The second equation tells us c1 =−c2t2. Plug into the first equation
to get −c2t4 = 0, which is only true when c2 = 0. If c2 = 0, then c1 = 0, so f and g are
linearly independent. �

This can be involved and sometimes it is unclear how to proceed. The Wronskian helps
identify when two functions are linearly independent.
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Theorem 3.2.3 Given two functions f (t) and g(t) which are differentiable on some
interval (a,b),
(1) If W ( f ,g)(t0) 6= 0 for some a < t0 < b, then f (t) and g(t) are linearly independent
on (a,b) and
(2) If f (t) and g(t) are linearly dependent on (a,b), then W ( f ,g)(t) = 0 for all a < t < b.

REMARK: BE CAREFUL, this theorem DOES NOT say that if W ( f ,g)(x) = 0 then
f and g are linearly dependent. It’s possible for two linearly independent functions to have
a zero Wronskian.

Let’s use the theorem to check an earlier example.

� Example 3.8 (1) f (t) = 9cos(2x),g(x) = 2cos2(x)−2sin2(x).

W =

∣∣∣∣ 9cos(2x) 2cos2(x)−2sin2(x)
−18sin(2x) −4cos(x)sin(x)−4cos(x)sin(x)

∣∣∣∣ (3.50)

=

∣∣∣∣ 9cos(2x) 2cos(2x)
−18sin(2x) −4sin(2x)

∣∣∣∣ (3.51)

= −36cos(2x)sin(2x)+36cos(2x)sin(2x) = 0 (3.52)

We get zero which we expected since the two functions are linearly dependent.
(2) Now let’s take f (t) = 2t2 and g(t) = t4.

W =

∣∣∣∣ 2t2 t4

4t 4t3

∣∣∣∣ (3.53)

= 8t5−4t5 = 4t5 (3.54)

The Wronskian will be nonzero so long as t = 0, which is OK, we just do not want it to be
zero for all t. �

3.2.4 More On The Wronskian
We have established when the Wronskian is nonzero the two functions are linearly indepen-
dent. We also have seen when y1 and y2 are solutions to the linear homogeneous equation

p(t)y′′+q(t)y′+ r(t)y = 0 (3.55)

W (y1,y2)(t) 6= 0 is precisely the condition for the general solution of the differential
equation to be

y(t) = c1y1(t)+ c2y2(t) (3.56)

where y1 and y2 form a fundamental set of solutions.

3.2.5 Abel’s Theorem
Through the discussion of the Wronskian we have yet to use the differential equation.
If y1 and y2 are solutions to a linear homogeneous equation we can say more about the
Wronskian.
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Theorem 3.2.4 Suppose y1(t) and y2(t) solve the linear homogeneous equation

y′′(t)+ p(t)y′+q(t)y = 0, (3.57)

where p(t) and q(t) are continuous on some interval (a,b). Then, for a < t < b, their
Wronskian is given by

W (y1,y2)(t) =W (y1,y2)(t0)e
−
∫ t

t0
p(x)dx

, (3.58)

where t0 is in (a,b).

If W (y1,y2)(t0) 6= 0 at some point t0 in the interval (a,b), then Abel’s Theorem tell us
that the Wronskian can’t be zero for any t in (a,b), since exponentials are never zero. We
can thus change our initial data without worry that our general solution will change.

Another advantage to Abel’s Theorem is that it lets us compute the general form of
the Wronskian of any two solutions to the differential equation without knowing them
explicitly. The formulation in the theorem is not computationally useful, but we might not
have a precise t0 in mind. But applying the Fundamental Theorem of Calculus

W (y1,y2)(t) =W (y1,y2)(t0)e
−
∫ t

t0
p(x)dx

= ce−
∫

p(t)dt . (3.59)

What is c? We only care that c 6= 0.

� Example 3.9 Compute, up to a constant, the Wronskian of two solutions y1 and y2 of
the differential equation

t4y′′−2t3y′− t3y = 0. (3.60)

First we put the equation in the form of Abel’s Theorem.

y′′− 2
t

y′− t4y = 0 (3.61)

So, Abel’s Theorem tells us

W = ce−
∫
− 2

t dt = ce2ln(t) = ct2 (3.62)

The main reason this is important is it is an alternative way to compute the Wronskian. We
know by Abel’s Theorem

W (y1,y2)(t) = ce−
∫

p(t)dt . (3.63)

On the other hand, by definition

W (y1,y2)(t) =
∣∣∣∣ y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣= y1(t)y′2(t)− y2(t)y′1(t) (3.64)

Setting these equal, if we know one solution y1(t), we’re left with a first order differential
equation for y2 that we can then solve. �
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� Example 3.10 Suppose we want to find a general solution to 2t2y′′+ ty′−3y = 0 and
we’re given that y1(t) = t−1 is a solution. We need to find a second solution that will form
a fundamental set of solutions with y1. Let’s compute the Wronskian both ways.

ce−
∫ 1

2t dt = W (t−1,y2)(t) = y′2t−1 + y2t−2 (3.65)

y′2t−1 + y2t−2 = ce−
1
2 ln(t) = ct−

1
2 (3.66)

This is a first order linear equation with integrating factor µ(t) = e
∫

t−1dt = eln(t) = t. Thus

(ty2)
′ = ct

3
2 (3.67)

ty2 =
2
5

ct
5
2 + k (3.68)

y2(t) =
2
5

ct
3
2 + kt−1 (3.69)

Now we can choose constants c and k. Notice that k is the coefficient of t−1, which is just
y1(t). So we do not have to worry about that term, and we can take k = 0. We can similarly
take c = 5

2 , and so we’ll get y2(t) = t
3
2 . �

3.3 Complex Roots of the Characteristic Equation
Last Time: We considered the Wronskian and used it to determine when we have solutions
to a second order linear equation or if given one solution we can find another which is
linearly independent.

3.3.1 Review Real, Distinct Roots
Recall that a second order linear homogeneous differential equation with constant coeffi-
cients

ay′′+by′+ cy = 0 (3.70)

is solved by y(t) = ert , where r solves the characteristic equation

ar2 +br+ c = 0 (3.71)

So when there are two distinct roots r1 6= r2, we get two solutions y1(t) = er1t and y2(t) =
er2t . Since they are distinct we can immediately conclude the general solution is

y(t) = c1er1t + c2er2t (3.72)

Then given initial conditions we can solve c1 and c2.
Exercises:

(1) y′′+3y′−18y = 0, y(0) = 0, y′(0) =−1.
ANS: y(t) = 1

9e−6t− 1
9e3t .

(2) y′′−7y′+10y = 0, y(0) = 3, y(0) = 2
ANS: y(t) =−4

3e5t + 13
3 e2t

(3) 2y′′−5y′+2y = 0, y(0) =−3, y′(0) = 3
ANS: y(t) =−6e

1
2 t +3e2t .
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(4) y′′+5y′ = 0, y(0) = 2, y′(0) =−5
ANS: y(t) = 1+ e−5t

(5) y′′−2y′−8 = 0, y(2) = 1, y′(2) = 0
ANS: y(t) = 1

3e8 e4t + 2e4

3 e−2t

(6) y′′+ y′−3y = 0
ANS: y(t) = c1e

−1+
√

13
2 t + c2e

−1−
√

13
2 t .

3.3.2 Complex Roots
Now suppose the characteristic equation has complex roots of the form r1,2 = α± iβ . This
means we have two solutions to our differential equation

y1(t) = e(α+iβ )t , y2(t) = e(α−iβ )t (3.73)

This is a problem since y1(t) and y2(t) are complex-valued. Since our original equation was
both simple and had real coefficients, it would be ideal to find two real-valued "different"
enough solutions so that we can form a real-valued general solution. There is a way to do
this.

Theorem 3.3.1 (Euler’s Formula)

eiθ = cos(θ)+ isin(θ) (3.74)

In other words, we can write an imaginary exponential as a sum of sin and cos. How do
we establish this fact? There are two ways:

(1) Differential Equations: First we want to write eiθ = f (θ)+ ig(θ). We also have

f ′+ ig′ =
d

dθ
[eiθ ] = ieiθ = i f −g. (3.75)

Thus f ′ =−g and g′ = f , so f ′′ =− f and g′′ =−g. Since e0 = 1, we know that f (0) = 1
and g(0) = 0. We conclude that f (θ) = cos(θ) and g(θ) = sin(θ), so

eiθ = cos(θ)+ isin(θ) (3.76)

(2) Taylor Series: Recall that the Taylor series for ex is

ex =
∞

∑
n=0

xn

n
= 1+ x+

x2

2!
+

x3

3!
+ ... (3.77)

while the Taylor series for sin(x) and cos(x) are

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
+ ... (3.78)

cos(x) =
∞

∑
n−0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
+ ... (3.79)

(3.80)
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If we set x = iθ in the first series, we get

eiθ =
∞

∑
n=0

(iθ)n

n!
(3.81)

= 1+ iθ − θ 2

2!
− iθ 3

3!
+

θ 4

4!
+

iθ 5

5!
− ... (3.82)

= (1− θ 2

2!
+

θ 4

4!
− ...)+ i(θ − θ 3

3!
+

iθ 5

5!
− ...) (3.83)

=
∞

∑
n=0

(−1)nθ 2n

(2n!)
+ i

∞

∑
n=0

(−1)nθ 2n+1

(2n+1)!
(3.84)

= cos(θ)+ isin(θ) (3.85)

So we can write our two complex exponentials as

e(α+iβ )t = eαteiβ t = eαt(cos(β t)+ isin(β t)) (3.86)

e(α−iβ )t = eαte−iβ t = eαt(cos(β t)− isin(β t)) (3.87)

where the minus sign pops out of the sign in the second equation since sin is odd and cos
is even. Notice our new expression is still complex-valued. However, by the Principle of
Superposition, we can obtain the following solutions

y1(t) =
1
2
(eαt(cos(β t)+ isin(β t)))+

1
2
(eαt(cos(β t)− isin(β t))) = eαt cos(β t)(3.88)

y2(t) =
1
2i
(eαt(cos(β t)+ isin(β t)))− 1

2i
(eαt(cos(β t)− isin(β t))) = eαt sin(β t)(3.89)

EXERCISE: Check that y1(t) = eαt cos(β t) and y2(t) = eαt sin(β t) are in fact solutions to
the beginning differential equation when the roots are α± iβ .

So now we have two real-valued solutions y1(t) and y2(t). It turns out they are linearly
independent, so if the roots of the characteristic equation are r1,2 = α± iβ , we have the
general solution

y(t) = c1eαt cos(β t)+ c2eαt sin(β t) (3.90)

Let’s consider some examples:

� Example 3.11 Solve the IVP

y′′−4y′+9y = 0, y(0) = 0, y′(0) =−2 (3.91)

The characteristic equation is

r2−4r+9 = 0 (3.92)

which has roots r1,2 = 2± i
√

5. Thus the general solution and its derivatives are

y(t) = c1e2t cos(
√

5t)+ c2e2t sin(
√

5t) (3.93)

y′(t) = 2c1e2t cos(
√

5t)−
√

5c1e2t sin(
√

5t)+2c2e2t sin(
√

5t)+
√

5c2e2t cos(
√

5t).(3.94)
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If we apply the initial conditions, we get

0 = c1 (3.95)
−2 = 2c1 +

√
5c2 (3.96)

which is solved by c1 = 0 and c2 =− 2√
5
. So the particular solution is

y(t) =− 2√
5

e2t sin(
√

5t). (3.97)

�

� Example 3.12 Solve the IVP

y′′−8y′+17y = 0, y(0) = 2, y′(0) = 5. (3.98)

The characteristic equation is

r2−8r+17 = 0 (3.99)

which has roots r1,2 = 4± i. Hence the general solution and its derivatives are

y(t) = c1e4t cos(t) = c2e4t sin(t) (3.100)
y′(t) = 4c1e4t cos(t)− c1e4t sin(t)+4c2e4t sin(t)+ c2e4t cos(t) (3.101)

and plugging in initial conditions yields the system

2 = c1 (3.102)
5 = 4c1 + c2 (3.103)

so we conclude c1 = 2 and c2 =−3 and the particular solution is

y(t) = 2e4t cos(t)−3e4t sin(t) (3.104)

�

� Example 3.13 Solve the IVP

4y′′+12y′+10y = 0, y(0) =−1, y′(0) = 3 (3.105)

The characteristic equation is

4r2 +12r+10 = 0 (3.106)

which has roots r1,2 =−3
2 ±

1
2 i. So the general solution and its derivative are

y(t) = c1e
3
2 t cos(

t
2
)+ c2e

3
2 t sin(

t
2
) (3.107)

y′(t) =
3
2

c1e
3
2 t cos(

t
2
)− 1

2
c1e

3
2 t sin(

t
2
)+

3
2

c2e
3
2 t sin(

t
2
)+

1
2

c2e
3
2 t cos(

t
2
) (3.108)

Plugging in the initial condition yields

−1 = c1 (3.109)

3 =
3
2

c1 +
1
2

c2 (3.110)

which has solution c1 =−1 and c2 = 9. The particular solution is

y(t) =−e
3
2 t cos(

t
2
)+9e

3
2 t sin(

t
2
) (3.111)

�
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� Example 3.14 Solve the IVP

y′′+4y = 0, y(
π

4
) =−10, y′(

π

4
) = 4. (3.112)

The characteristic equation is

r2 +4 = 0 (3.113)

which has roots r1,2 =±2i. The general solution and its derivatives are

y(t) = c1 cos(2t)+ c2 sin(2t) (3.114)
y′(t) = −2c1 sin(2t)+2c2 cos(2t). (3.115)

The initial conditions give the system

−10 = c2 (3.116)
4 = −2c1 (3.117)

so we conclude that c1 =−2 and c2 =−10 and the particular solution is

y(t) =−2cos(2t)−10sin(2t). (3.118)

�

3.4 Repeated Roots of the Characteristic Equation and Reduction
of Order
Last Time: We considered cases of homogeneous second order equations where the roots
of the characteristic equation were complex.

3.4.1 Repeated Roots
The last case of the characteristic equation to consider is when the characteristic equation
has repeated roots r1 = r2 = r. This is a problem since our usual solution method produces
the same solution twice

y1(t) = er1t = er2t = y2(t) (3.119)

But these are the same and are not linearly independent. So we will need to find a second
solution which is "different" from y1(t) = ert . What should we do?

Start by recalling that if the quadratic equation ar2 +br+ c = 0 has a repeated root r,
it must be r = − b

2a . Thus our solution is y1(t) = e−
b

2a . We know any constant multiple
of y1(t) is also a solution. These will still be linearly dependent to y1(t). Can we find a
solution of the form

y2(t) = v(t)y1(t) = v(t)e−
b

2a t (3.120)

i.e. y2 is the product of a function of t and y1.
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Differentiate y2(t):

y′2(t) = v′(t)e−
b

2a t− b
2a

v(t)e−
b

2a t (3.121)

y′′2(t) = v′′(t)e−
b
2a − b

2a
v′(t)e−

b
2a t− b

2a
v′(t)e−

b
2a t +

b2

4a2 v(t)e−
b
2a t (3.122)

= v′′(t)e−
b
2a t− b

a
v′(t)e−

b
2a t +

b2

4a2 v(t)e−
b
2a t . (3.123)

Plug in differential equation:

a(v′′e−
b

2a t− b
a

v′e−
b
2a t +

b2

4a2 ve−
b
2a t)+b(v′e−

b
2a t− b

2a
ve−

b
2a t)+ c(ve−

b
2a t) = 0(3.124)

e−
b

2a t(av′′+(−b+b)v′+(
b2

4a
− b2

2a
+ c)v

)
= 0(3.125)

e−
b
2a t(av′′− 1

4a
(b2−4ac)v

)
= 0(3.126)

Since we are in the repeated root case, we know the discriminant b2− 4ac = 0. Since
exponentials are never zero, we have

av′′ = 0⇒ v′′ = 0 (3.127)

We can drop the a since it cannot be zero, if a were zero it would be a first order equation!
So what does v look like

v(t) = c1t + c2 (3.128)

for constants c1 and c2. Thus for any such v(t), y2(t) = v(t)e−
b
2a t will be a solution. The

most general possible v(t) that will work for us is c1t +c2. Take c1 = 1 and c2 = 0 to get a
specific v(t) and our second solution is

y2(t) = te−
b
2a t (3.129)

and the general solution is

y(t) = c1e−
b
2a t + c2te−

b
2a t (3.130)

REMARK: Here’s another way of looking at the choice of constants. Suppose we do
not make a choice. Then we have the general solution

y(t) = c1e−
b
2a t + c2(ct + k)e−

b
2a t (3.131)

= c1e−
b
2a t + c2cte−

b
2a t + c2ke−

b
2a t (3.132)

= (c1 + c2k)e−
b
2a t + c2cte−

b
2a t (3.133)

since they are all constants we just get

y(t) = c1e−
b
2a t + c2te−

b
2a t (3.134)

To summarize: if the characteristic equation has repeated roots r1 = r2 = r, the general
solution is

y(t) = c1ert + c2tert (3.135)

Now for examples:
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� Example 3.15 Solve the IVP

y′′−4y′+4y = 0, y(0) =−1, y′(0) = 6 (3.136)

The characteristic equation is

r2−4r+4 = 0 (3.137)
(r−2)2 = 0 (3.138)

so we see that we have a repeated root r = 2. The general solution and its derivative are

y(t) = c1e2t + c2te2t (3.139)
y′(t) = 2c1e2t + c2e2t +2c2te2t (3.140)

and plugging in initial conditions yields

−1 = c1 (3.141)
6 = 2c1 + c2 (3.142)

so we have c1 =−1 and c2 = 8. The particular solution is

y(t) =−e2t +6te2t (3.143)

�

� Example 3.16 Solve the IVP

16y′′+40y′+25y = 0, y(0) =−1, y′(0) = 2. (3.144)

The characteristic equation is

16r2 +40r+25 = 0 (3.145)
(4r+5)2 = 0 (3.146)

and so we conclude that we have a repeated root r =−5
4 and the general solution and its

derivative are

y(t) = c1e−
5
4 t + c2te−

5
4 t (3.147)

y′(t) = −5
4

c1e−
5
4 t + c2e−

5
4 t− 5

4
c2te−

5
4 t (3.148)

Plugging in the initial conditions yields

−1 = c1 (3.149)

2 = −5
4

c1 + c2 (3.150)

so c1 =−1 and c2 =
5
4 . The particular solution is

y(t) =−e−
5
4 t +

3
4

te−
5
4 t (3.151)

�
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3.4.2 Reduction of Order
We have spent the last few lectures analyzing second order linear homogeneous equations
with constant coefficients, i.e. equations of the form

ay′′+by′+ cy = 0 (3.152)

Let’s now consider the case when the coefficients are not constants

p(t)y′′+q(t)y′+ r(t)y = 0 (3.153)

In general this is not easy, but if we can guess a solution, we can use the techniques
developed in the repeated roots section to find another solution. This method will be called
Reduction Of Order. Consider a few examples

� Example 3.17 Find the general solution to

2t2y′′+ ty′−3y = 0 (3.154)

given that y1(t) = t−1 is a solution.
ANS: Think back to repeated roots. We know we had a solution y1(t) and needed to

find a distinct solution. What did we do? We asked which nonconstant function v(t) make
y2(t) = v(t)y1(t) is also a solution. The y2 derivatives are

y2 = vt−1 (3.155)
y′2 = v′t−1− vt−2 (3.156)
y′′2 = v′′t−1− v′t−2 +2vt−3 = v′′t−1−2v′t−2 +2vt−3 (3.157)

The next step is to plug into the original equation so we can solve for v:

2t2(v′′t−1−2v′t−2 +2vt−3)+ t(v′t−1− vt−2)−3vt−1 = 0 (3.158)
2v′′t−4v′+4vt−1 + v′− vt−1−3vt−1 = 0 (3.159)

2tv′′−3v′ = 0 (3.160)

Notice that the only terms left involve v′′ and v′, not v. This also happened in the repeated
root case. The v term should always disappear at this point, so we have a check on our
work. If there is a v term left we have done something wrong.

Now we know that if y2 is a solution, the function v must satisfy

2tv′′−3v′ = 0 (3.161)

But this is a second order linear homogeneous equation with nonconstant coefficients. Let
w(t) = v′(t). By changing variables our equation becomes

w′− 3
2t

w = 0. (3.162)

So by Integrating Factor

µ(t) = e
∫
− 3

2t dt = e−
3
2 ln(t) = t−

3
2 (3.163)

(t−
3
2 w)′ = 0 (3.164)

t−
3
2 w = c (3.165)

w(t) = ct
3
2 (3.166)
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So we know what w(t) must solve the equation. But to solve our original differential
equation, we do not need w(t), we need v(t). Since v′(t) = w(t), integrating w will give
our v

v(t) =
∫

w(t)dt (3.167)

=
∫

ct
3
2 tdt (3.168)

=
2
5

ct
5
2 + k (3.169)

Now this is the general form of v(t). Pick c = 5/2 and k = 0. Then v(t) = t
5
2 , so

y2(t) = v(t)y1(t) = t
3
2 , and the general solution is

y(t) = c1t−1 + c2t
3
2 (3.170)

�

Reduction of Order is a powerful method for finding a second solution to a differential
equation when we do not have any other method, but we need to have a solution to begin
with. Sometimes even finding the first solution is difficult.

We have to be careful with these problems sometimes the algebra is tedious and one can
make sloppy mistakes. Make sure the v terms disappears when we plug in the derivatives
for y2 and check the solution we obtain in the end in case there was an algebra mistake
made in the solution process.

� Example 3.18 Find the general solution to

t2y′′+2ty′−2y = 0 (3.171)

given that

y1(t) = t (3.172)

is a solution.
Start by setting y2(t) = v(t)y1(t). So we have

y2 = tv (3.173)
y′2 = tv′+ v (3.174)
y′′2 = tv′′+ v′+ v′ = tv′′+2v′. (3.175)

Next, we plug in and arrange terms

t2(tv′′+2v′)+2t(tv′+ v)−2tv = 0 (3.176)
t3v′′+2t2v′+2t2v′+2tv−2tv = 0 (3.177)

t3v′′+4t2v′ = 0. (3.178)

Notice the v drops out as desired. We make the change of variables w(t) = v′(t) to obtain

t3w′+4t2w = 0 (3.179)
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which has integrating factor µ(t) = t4.

(t4w)′ = 0 (3.180)
t4w = c (3.181)

w(t) = ct−4 (3.182)

So we have

v(t) =
∫

w(t)dt (3.183)

=
∫

ct−4dt (3.184)

= −c
3

t−3 + k. (3.185)

A nice choice for the constants is c =−3 and k = 0, so v(t) = t−3, which gives a second
solution of y2(t) = v(t)y1(t) = t−2. So our general solution is

y(t) = c1t + c2t−2 (3.186)

�

3.5 Nonhomogeneous Equations with Constant Coefficients
Last Time: We considered cases of homogeneous second order equations where the roots
of the characteristic equation were repeated real roots. Then we looked at the method of
reduction of order to produce a second solution to an equation given the first solution.

3.5.1 Nonhomogeneous Equations
A second order nonhomogeneous equation has the form

p(t)y′′+q(t)y′+ r(t)y = g(t) (3.187)

where g(t) 6= 0. How do we get the general solution to these?
Suppose we have two solutions Y1(t) and Y2(t). The Principle of Superposition no

longer holds for nonhomogeneous equations. We cannot just take a linear combination of
the two to get another solution. Consider the equation

p(t)y′′+q(t)y′+ r(t)y = 0 (3.188)

which we will call the associated homogeneous equation.

Theorem 3.5.1 Suppose that Y1(t) and Y2(t) are two solutions to equation (3.187) and
that y1(t) and y2(t) are a fundamental set of solutions to (3.188). Then Y1(t)−Y2(t) is a
solution to Equation (3.188) and has the form

Y1(t)−Y2(t) = c1y1(t)+ c2y2(t) (3.189)
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Notice the notation used, it will be standard. Uppercase letters are solutions to the
nonhomogeneous equation and lower case letters to denote solutions to the homogeneous
equation.

Let’s verify the theorem by plugging in Y1−Y2 to (3.188)

p(t)(Y1−Y2)
′′+q(t)(Y1−Y2)

′+ r(t)(Y1−Y2) = 0 (3.190)(
p(t)Y ′′1 +q(t)Y ′1 + r(t)Y1

)
−
(

p(t)Y ′′2 +q(t)Y ′2 + r(t)Y2
)

= 0 (3.191)
g(t)−g(t) = 0 (3.192)

0 = 0 (3.193)

So we have that Y1(t)−Y2(t) solves equation (3.188). We know that y1(t) and y2(t) are a
fundamental set of solutions to equation (3.188) and so any solution can be written as a
linear combination of them. Thus for constants c1 and c2

Y1(t)−Y2(t) = c1y1(t)+ c2y2(t) (3.194)

So the difference of any two solutions of (3.187) is a solution to (3.188). Suppose we have
a solution to (3.187), which we denote by Yp(t). Let Y (t) denote the general solution. We
have seen

Y (t)−Yp(t) = c1y1(t)+ c2y2(t) (3.195)

or

Y (t) = c1y1(t)+ c2y2(t)+Yp(t) (3.196)

where y1 and y2 are a fundamental set of solutions to Y (t). We will call

yc(t) = c1y1(t)+ c2y2(t) (3.197)

the complimentary solution and Yp(t) a particular solution. So, the general solution
can be expressed as

Y (t) = yc(t)+Yp(t). (3.198)

Thus, to find the general solution of (3.187), we’ll need to find the general solution to
(3.188) and then find some solution to (3.187). Adding these two pieces together give the
general solution to (3.187).

If we vary a solution to (3.187) by just adding in some solution to Equation (3.188), it
will still solve Equation (3.187). Now the goal of this section is to find some particular
solution Yp(t) to Equation (3.187). We have two methods. The first is the method of
Undetermined Coefficients, which reduces the problem to an algebraic problem, but only
works in a few situations. The other called Variation of Parameters is a much more general
method that always works but requires integration which may or may not be tedious.

3.5.2 Undetermined Coefficients
The major disadvantage of this solution method is that it is only useful for constant
coefficient differential equations, so we will focus on

ay′′+by′+ cy = g(t) (3.199)
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for g(t) 6= 0. The other disadvantage is it only works for a small class of g(t)’s.
Recall that we are trying to find some particular solution Yp(t) to Equation (3.199).

The idea behind the method is that for certain classes of nonhomogeneous terms, we’re
able to make a good educated guess as to how Yp(t) should look, up to some unknown
coefficients. Then we plug our guess into the differential equation and try to solve for the
coefficients. If we can, our guess was correct and we have determined Yp(t). If we cannot
solve for the coefficients, then we guessed incorrectly and we will need to try again.

3.5.3 The Basic Functions
There are three types of basic types of nonhomogeneous terms g(t) that can be used for
this method: exponentials, trig functions (sin and cos), and polynomials. One we know
how they work individually and combination will be similar.

Exponentials
Let’s walk through an example where g(t) is an exponential and see how to proceed.

� Example 3.19 Determine a particular solution to

y′′−4y′−12y = 2e4t . (3.200)

How can we guess the form of Yp(t)? When we plug Yp(t) into the equation, we should
get g(t) = 2e4t . We know that exponentials never appear or disappear during differentiation,
so try

Yp(t) = Ae4t (3.201)

for some coefficient A. Differentiate, plug in, and see if we can determine A. Plugging in
we get

16Ae4t−4(4Ae4t)−12Ae4t = 2e4t (3.202)
−12Ae4t = 2e4t (3.203)

For these to be equal we need A to satisfy

−12A = 2⇒ A =−1
6
. (3.204)

So with this choice of A, our guess works, and the particular solution is

Yp(t) =−
1
6

e4t . (3.205)

�

Consider the following full problem:

� Example 3.20 Solve the IVP

y′′−4y′−12y = 2e4t , y(0) =−13
6
, y′(0) =

7
3
. (3.206)

We know the general solution has the form

y(t) = yc(t)+Yp(t) (3.207)
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where the complimentary solution yc(t) is the general solution to the associated homoge-
neous equation

y′′−4y′−12y = 0 (3.208)

and Yp(t) is the particular solution to the original differential equation. From the previous
example we know

Yp(t) =−
1
6

e4t . (3.209)

What is the complimentary solution? Our associated homogeneous equation has constant
coefficients, so we need to find roots of the characteristic equation.

r2−4r−12 = 0 (3.210)
(r−6)(r+2) = 0 (3.211)

So we conclude that r1 = 6 and r2 =−2. These are distinct roots, so the complimentary
solution will be

yc(t) = c1e6t + c2e−2t (3.212)

We must be careful to remember the initial conditions are for the non homogeneous
equation, not the associated homogeneous equation. Do not apply them at this stage to yc,
since that is not a solution to the original equation.

So our general solution is the sum of yc(t) and Yp(t). We’ll need it and its derivative to
apply the initial conditions

y(t) = c1e6t + c2e−2t− 1
6

e4t (3.213)

y′(t) = 6c1e6t−2c2e2t− 2
3

e4t (3.214)

Now apply the initial conditions

−13
6

= y(0) = c1 + c2−
1
6

(3.215)

7
3

= y′(0) = 6c1−2c2−
2
3

(3.216)

This system is solved by c1 =−1
8 and c2 =−15

8 , so our solution is

y(t) =−1
8

e6t− 15
8

e−2t− 1
6

e4t . (3.217)

�

Trig Functions
The second class of nonhomogeneous terms for which we can use this method are trig
functions, specifically sin and cos.
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� Example 3.21 Find a particular solution for the following IVP

y′′−4y′−12y = 6cos(4t). (3.218)

In the first example the nonhomogeneous term was exponential, and we know when
we differentiate exponentials they persist. In this case, we’ve got a cosine function. When
we differentiate a cosine, we get sine. So we expect an initial guess to require a sine term
in addition to cosine. Try

Yp(t) = Acos(4t)+Bsin(4t). (3.219)

Now differentiate and plug in

−16Acos(4t)−16Bsin(4t)−4
(
−4Asin(4t)+4Bcos(4t))−12(Acos(4t)+Bsin(4t)

)
= 13cos(4t)

(3.220)

(−16A−16B−12A)cos(4t)+(−16B+16A−12B)sin(4t) = 13cos(4t)
(3.221)

(−28A−16B)cos(4t)+(16A−28B)sin(4t) = 13cos(4t)
(3.222)

To solve for A and B set the coefficients equal. Note that the coefficient for sin(4t) on the
right hand side is 0. So we get the system of equations

cos(4t) : −28A−16B = 13 (3.223)
sin(4t) : 16A−28B = 0. (3.224)

This system is solved by A =− 7
20 and B =−1

5 . So a particular solution is

Yp(t) =−
7

20
cos(4t)− 1

5
sin(4t) (3.225)

�

Note that the guess would have been the same if g(t) had been sine instead of cosine.

Polynomials
The third and final class of nonhomogeneous term we can use with this method are
polynomials.

� Example 3.22 Find a particular solution to

y′′−4y′−12y = 3t3−5t +2. (3.226)

In this case, g(t) is a cubic polynomial. When differentiating polynomials the order
decreases. So if our initial guess is a cubic, we should capture all terms that will arise. Our
guess

Yp(t) = At3 +Bt2 +Ct +D. (3.227)

Note that we have a t2 term in our equation even though one does not appear in g(t)! Now
differentiate and plug in

6At +2B−4(3At2 +2Bt +C)−12(At3 +Bt2 +Ct +D) = 3t2−5t +2(3.228)
−12At3 +(12A−12B)t2 +(6A−8B−12C)t +(2B−4C−12D) = 3t2−5t +2(3.229)
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We obtain a system of equations by setting coefficients equal

t3 : −12A = 3⇒ A =−1
4

(3.230)

t2 : −12A−12B = 0⇒ B =
1
4

(3.231)

t : 6A−8B−12C =−5⇒C =
1
8

(3.232)

1 : 2B−4C−12D = 2⇒ D =−1
6

(3.233)

So a particular solution is

Yp(t) =−
1
4

t3 +
1
4

t2 +
1
8

t− 1
6

(3.234)

�

Summary
Given each of the basic types, we make the following guess

aeαt ⇒ Aeαt (3.235)
acos(αt) ⇒ Acos(αt)+Bsin(αt) (3.236)
asin(αt) ⇒ Acos(αt)+Bsin(αt) (3.237)

antn +an−1tn−1 + ...+a1t +a0 ⇒ Antn +An−1tn−1 + ...+A1t +A0 (3.238)

3.5.4 Products
The idea for products is to take products of our forms above.

� Example 3.23 Find a particular solution to

y′′−4y′−12y = te4t (3.239)

Start by writing the guess for the individual pieces. g(t) is the product of a polynomial and
an exponential. Thus guess for the polynomial is At+B while the guess for the exponential
is Ce4t . So the guess for the product should be

Ce4t(At +B) (3.240)

We want to minimize the number of constants, so

Ce4t(At +B) = e4t(ACt +BC). (3.241)

Rewrite with two constants

Yp(t) = e4t(At +B) (3.242)

Notice this is the guess as if it was just t with the exponential multiplied to it. Differentiate
and plug in

16e4t(At +B)+8Ae4t−4(4e4t(At +B)+Ae4t)−12e4t(At +B) = te4t (3.243)
(16A−16A−12A)t4t +(16B+8A−16B−4A−12B)e4t = te4t (3.244)

−12Ate4t +(4A−12B)e4t = te4t (3.245)
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Then we set the coefficients equal

te4t : −12A = 1 ⇒ A = − 1
12

(3.246)

e4t : (4A−12B) = 0 ⇒ B = − 1
36

(3.247)

So, a particular solution for this differential equation is

Yp(t) = e4t(− 1
12

t− 1
36

) =−e4t

36
(3t +1). (3.248)

�

Basic Rule: If we have a product with an exponential write down the guess for the
other piece and multiply by an exponential without any leading coefficient.

� Example 3.24 Find a particular solution to

y′′−4y′−12y = 29e5t sin(3t). (3.249)

We try the following guess

Yp(t) = e5t(Acos(3t)+Bsin(3t)). (3.250)

So differentiate and plug in

25e5t(Acos(3t)+Bsin(3t))+30e5t(−Asin(3t)+Bcos(3t)+

9e5t(−Acos(3t)−Bsin(3t))−4(5e5t(Acos(3t)+Bsin(3t))+

3e5t(−Asin(3t)+Bcos(3t)))−12e5t(Acos(3t)+Bsin(3t)) = 29e5t sin(3t)

(3.251)

Gather like terms

(−16A+18B)e5t cos(3t)+(−18A−16B)e5t sin(3t) = 29e5t sin(3t) (3.252)

Set the coefficients equal

e5t cos(3t) : −16A+18B = 0 (3.253)
e5t sin(3t) : −18A−16B = 29 (3.254)

This is solved by A =− 9
10 and B =−4

5 . So a particular solution to this differential equation
is

Yp(t) = e5t(− 9
10

t− 4
5
)
=−e5t

10
(9t +8). (3.255)

�

� Example 3.25 Write down the form of the particular solution to

y′′−4y′−12y = g(t) (3.256)

for the following g(t):
(1) g(t) = (9t2−103t)cos(t)
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Here we have a product of a quadratic and a cosine. The guess for the quadratic is

At2 +Bt +C (3.257)

and the guess for the cosine is

Dcos(t)+E sin(t). (3.258)

Multiplying the two guesses gives

(At2 +Bt +C)(Dcos(t)) + (At2 +Bt +C)(E sin(t)) (3.259)
(ADt2 +BDt +CD)cos(t) + (AEt2 +BEt +CE)sin(t). (3.260)

Each of the coefficients is a product of two constants, which is another constant. Simply to
get our final guess

Yp(t) = (At2 +Bt +C)cos(t)+(Dt2 +Et +F)sin(t) (3.261)

This is indicative of the general rule for a product of a polynomial and a trig function.
Write down the guess for the polynomial, multiply by cosine, then add to that the guess for
the polynomial multiplied by a sine.

(2) g(t) = e−2t(3−5t)cos(9t)

This homogeneous term has all three types of special functions. So combining the two
general rules above, we get

Yp(t) = e−2t(At +B)cos(9t)+ e−2t(Ct +D)sin(9t). (3.262)

�

3.5.5 Sums

We have the following important fact. If Y1 satisfies

p(t)y′′+q(t)y′+ r(t)y = g1(t) (3.263)

and Y2 satisfies

p(t)y′′+q(t)y′+ r(t)y = g2(t) (3.264)

then Y1 +Y2 satisfies

p(t)y′′+q(t)y′+ r(t)y = g1(t)+g2(t) (3.265)

This means that if our nonhomogeneous term g(t) is a sum of terms we can write down
the guesses for each of those terms and add them together for our guess.
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� Example 3.26 Find a particular solution to

y′′−4y′−12y = e7t +12. (3.266)

Our nonhomogeneous term g(t) = e7t +12 is the sum of an exponential g1(t) = e7t and a
0 degree polynomial g2(t) = 12. The guess is

Yp(t) = Ae7t +B (3.267)

This cannot be simplified, so this is our guess. Differentiate and plug in

49Ae7t−28Ae7t−12Ae7t−12B = e7t +12 (3.268)
9Ae7t−12B = e7t +12. (3.269)

Setting the coefficients equal gives A = 1
9 and B =−1, so our particular solution is

Yp(t) =
1
9

e7t−1. (3.270)

�

� Example 3.27 Write down the form of a particular solution to

y′′−4y′−12y = g(t) (3.271)

for each of the following g(t):
(1) g(t) = 2cos(t)−9sin(3t)

Our guess for the cosine is

Acos(3t)+Bsin(3t) (3.272)

Additionally, our guess for the sine is

C cos(3t)+Dsin(3t) (3.273)

So if we add the two of them together, we obtain

Acos(3t)+Bsin(3t)+C cos(3t)+Dsin(3t) = (A+C)cos(3t)+(B+D)sin(3t) (3.274)

But A+C and B+D are just some constants, so we can replace them with the guess

Yp(t) = Acos(3t)+Bsin(3t). (3.275)

(2) g(t) = sin(t)−2sin(14t)−5cos(14t)

Start with a guess for the sin(t)

Acos(t)+Bsin(t). (3.276)

Since they have the same argument, the previous example showed we can combine the
guesses for cos(14t) and sin(14t) into

C cos(14t)+Dsin(14t) (3.277)
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So the final guess is

Yp(t) = Acos(t)+Bsin(t)+C cos(14t)+Dcos(14t) (3.278)

(3) g(t) = 7sin(10t)−5t2 +4t
Here we have the sum of a trig function and a quadratic so the guess will be

Yp(t) = Acos(10t)+Bsin(10t)+Ct2 +Dt +E. (3.279)

(4) g(t) = 9et +3te−5t−5e−5t

This can be rewritten as 9et +(3t−5)e−5t . So our guess will be

Yp(t) = Aet +(Bt +C)e−5t (3.280)

(5) g(t) = t2 sin(t)+4cos(t)
So our guess will be

Yp(t) = (At2 +Bt +C)cos(t)+(Dt2 +Et +F)sin(t). (3.281)

(6) g(t) = 3e−3t + e−3t sin(3t)+ cos(3t)
Our guess

Yp(t) = Ae−3t + e−3t(Bcos(3t)+C sin(3t))+Dcos(3t)+E sin(3t). (3.282)

This seems simple, right? There is one problem which can arise you need to be aware
of

� Example 3.28 Find a particular solution to

y′′−4y′−12y = e6t (3.283)

This seems straightforward, so try Yp(t) = Ae6t . If we differentiate and plug in

36Ae6t−24Ae6t−12Ae6t = e6t (3.284)
0 = e6t (3.285)

Exponentials are never zero. So this cannot be possible. Did we make a mistake on our
original guess? Yes, if we went through the normal process and found the complimentary
solution in this case

yc(t) = c1e6t + c2e−2t . (3.286)

So our guess for the particular solution was actually part of the complimentary solution.
So we need to find a different guess. Think back to repeated root solutions and try
Yp(t) = Ate6t . Try it

(36Ate6t +12Ae6t)−4(6Ate6t +Ae6t)−12Ate6t = e6t (3.287)
(36A−24A−12A)te6t +(12A−4A)e6t = e6t (3.288)

8Ae6t = e6t (3.289)

Setting the coefficients equal, we conclude that A = 1
8 , so

Yp(t) =
1
8

te6t . (3.290)

�
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NOTE: If this situation arises when the complimentary solution has a repeated root and
has the form

yc(t) = c1ert + c2tert (3.291)

then our guess for the particular solution should be

Yp(t) = At2ert . (3.292)

�

3.5.6 Method of Undetermined Coefficients
Then we want to construct the general solution y(t) = yc(t)+Yp(t) by following these
steps:
(1) Find the general solution of the corresponding homogeneous equation.
(2) Make sure g(t) belongs to a special set of basic functions we will define shortly.
(3) If g(t) = g1(t)+ ...+ gn(t) is the sum of n terms, then form n subproblems each of
which contains only one gi(t). Where the ith subproblem is

ay′′+by′+ cy = gi(t) (3.293)

(4) For the ith subproblem assume a particular solution of the appropriate functions (expo-
nential, sine, cosine, polynomial). If there is a duplication in Yi(t) with a solution to the
homogeneous problem then multiply Yi(t) by t (or if necessary t2).
(5) Find the particular solution Yi(t) for each subproblem. Then the sum of the Yi is a
particular solution for the full nonhomogeneous problem.
(6) Form the general solution by summing all the complimentary solutions from the homo-
geneous equation and the n particular solutions.
(7) Use the initial conditions to determine the values of the arbitrary constants remaining
in the general solution.

Now for more examples, write down the guess for the particular solution:
(1) y′′−3y′−28y = 6t + e−4t−2

First we find the complimentary solution using the characteristic equation

yc(t) = c1e7t + c2e−4t (3.294)

Now look at the nonhomogeneous term which is a polynomial and exponential, 6t−2+
e−4t . So our initial guess should be

At +B+Ce−4t (3.295)

The first two terms are fine, but the last term is in the complimentary solution. Since Cte−4t

does not show up in the complimentary solution our guess should be

Yp(t) = At +B+Cte−4t . (3.296)

(2) y′′−64y = t2e8t + cos(t)
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The complimentary solution is

yc(t) = c1e8t + c2e−8t . (3.297)

Our initial guess for a particular solution is

(At2 +Bt +C)e8t +Dcos(t)+E sin(t) (3.298)

Again we have a Ce8t term which is also in the complimentary solution. So we need to
multiply the entire first term by t, so our final guess is

Yp(t) = (At3 +Bt2 +Ct)e8t +Dcos(t)+E sin(t). (3.299)

(3) y′′+4y′ = e−t cos(2t)+ t sin(2t)
The complimentary solution is

yc(t) = c1 cos(2t)+ c2 sin(2t) (3.300)

Our first guess for a particular solution would be

e−t(Acos(2t)+Bsin(2t))+(Ct +D)cos(2t)+(Et +F)sin(2t) (3.301)

We notice the second and third terms contain parts of the complimentary solution so we
need to multiply by t, so we have a our final guess

Yp(t) = e−t(Acos(2t)+Bsin(2t))+(Ct2+Dt)cos(2t)+(Et2+Ft)sin(2t). (3.302)

(4) y′′+2y′+5 = e−t cos(2t)+ t sin(2t)
Notice the nonhomogeneous term in this example is the same as in the previous one,

but the equation has changed. Now the complimentary solution is

yc(t) = c1e−t cos(2t)+ c2e−t sin(2t) (3.303)

So our initial guess for the particular solution is the same as the last example

e−t(Acos(2t)+Bsin(2t))+(Ct +D)cos(2t)+(Et +F)sin(2t) (3.304)

This time the first term causes the problem, so multiply the first term by t to get the final
guess

Yp(t) = te−t(Acos(2t)+Bsin(2t))+(Ct +D)cos(2t)+(Et +F)sin(2t) (3.305)

So even though the nonhomogeneous parts are the same the guess also depends critically
on the complimentary solution and the differential equation itself.

(5) y′′+4y′+4y = t2e−2t +2e−2t

The complimentary solution is

yc(t) = c1e−2t + c2te−2t (3.306)

Notice that we can factor out a e−2t from out nonhomogeneous term, which becomes
(t2+2)e−2t . This is the product of a polynomial and an exponential, so our initial guess is

(At2 +Bt +C)e−2t (3.307)

But the Ce−2t term is in yc(t). Also, Cte−2t is in yc(t). So we must multiply by t2 to get
our final guess

Yp(t) = (At4 +Bt3 +C)e−2t . (3.308)
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3.6 Mechanical and Electrical Vibrations
Last Time: We studied the method of undetermined coefficients thoroughly, focusing
mostly on determining guesses for particular solutions once we have solved for the compli-
mentary solution.

3.6.1 Applications
The first application is mechanical vibrations. Consider an object of a given mass m
hanging from a spring of natural length l, but there are a number of applications in
engineering with the same general setup as this.

We will establish the convention that always the downward displacement and forces
are positive, while upward displacements and forces are negative. BE CONSISTENT. We
also measure all displacements from the equilibrium position. Thus if our displacement is
u(y), u = 0 corresponds to the center of gravity as it hangs at rest from a spring.

We need to develop a differential equation to model the displacement u of the object.
Recall Newton’s Second Law

F = ma (3.309)

where m is the mass of the object. We want our equation to be for displacement, so we’ll
replace a by u′′, and Newton’s Second Law becomes

F(t,u,u′) = mu′′. (3.310)

What are the various forces acting on the object? We will consider four different forces,
some of which may or may not be present in a given situation.

(1) Gravity, Fg
The gravitational force always acts on an object. It is given by

Fg = mg (3.311)

where g is the acceleration due to gravity. For simpler computations, you may take g = 10
m/s. Notice gravity is always positive since it acts downward.

(2) Spring, Fs
We attach an object to a spring, and the spring will exert a force on the object. Hooke’s

Law governs this force. The spring force is proportional to the displacement of the spring
from its natural length. What is the displacement of the spring? When we attach an object
to a spring, the spring gets stretched. The length of the stretched spring is L. Then the
displacement from its natural length is L+u.

So the spring force is

Fs =−k(L+u) (3.312)

where k > 0 is the spring constant. Why is it negative? It is to make sure the force is
in the correct direction. If u >−L, i.e. the spring has been stretched beyond its natural
length, then u+L > 0 and so Fs < 0, which is what we expect because the spring would
pull upward on the object in this situation. If u <−L, so the spring is compressed, then
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the spring force would push the object back downwards and we expect to find Fs > 0.

(3) Damping, Fd
We will consider some situations where the system experiences damping. This will not

always be present, but always notice if damping is involved. Dampers work to counteract
motion (example: shocks on a car), so this will oppose the direction of the object’s velocity.

In other words, if the object has downward velocity u′ > 0, we would want the damping
force to be acting in the upwards direction, so that Fd < 0. Similarly, if u′ < 0, we want
Fd > 0. Assume all damping is linear.

Fd =−γu′ (3.313)

where γ > 0 is the damping constant.

(4) External Force, F(t)
This is encompasses all other forces present in a problem. An example is a spring

hooked up to a piston that exerts an extra force upon it. We call F(t) the forcing function,
and it is just the sum of any of the external forces we have in a particular problem.

The most important part of any problem is identifying all the forces involved in the
problem. Some may not be present. The forces will change depending on the particular
situation. Let’s consider the general form of our differential equation modeling a spring
system. We have

F(t,u,u′) = Fg +Fs +Fd +F(t) (3.314)

so that Newton’s Second Law becomes

mu′′ = mg− k(L+u)− γu′+F(t), (3.315)

or upon reordering it becomes

mu′′+ γu′+ ku = mg− kL+F(t). (3.316)

What happens when the object is at rest. Equilibrium is u = 0, there are only two forces
acting on the object: gravity and the spring force. Since the object is at rest, these two
forces must balance to 0. So Fg +Fs = 0. In other words,

mg = kL. (3.317)

So our equation simplifies to

mu′′+ γu′+ ku = F(t), (3.318)

and this is the most general form of our equation, with all forces present. We have the
corresponding initial conditions

u(0) = u0 Initial displacement from equilibrium position (3.319)
u′(0) = u′0 Initial Velocity (3.320)

Before we discuss individual examples, we need to touch on how we might figure out
the constants k and γ if they are not explicitly given. Consider the spring constant k. We
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know if the spring is attached to some object with mass m, the object stretches the spring
by some length L when it is at rest. We know at equilibrium mg = kL. Thus, if we know
how much some object with a known mass stretches the spring when it is at rest, we can
compute

k =
mg
L
. (3.321)

How do we compute γ? If we do not know the damping coefficient from the beginning,
we may know how much force a damper exerts to oppose motion of a given speed. Then
set |Fd|= γ|u′|, where |Fd| is the magnitude of the damping force and |u′| is the speed of
motion. So we have γ = Fd

u′ . We will see how to compute in examples on damped motion.
Let’s consider specific spring mass systems.

3.6.2 Free, Undamped Motion
Start with free systems with no damping or external forces. This is the simplest situation
since γ = 0. Our differential equation is

mu′′+ ku = 0, (3.322)

where m,k > 0. Solve by considering the characteristic equation

mr2 + k = 0, (3.323)

which has roots

r1,2 =±i

√
k
m
. (3.324)

We’ll write

r1,2 =±iω0, (3.325)

where we’ve substituted

ω0 =

√
k
m
. (3.326)

ω0 is called the natural frequency of the system, for reasons that will be clear shortly.
Since the roots of our characteristic equation are imaginary, the form of our general

solution is

u(t) = c1 cos(ω0t)+ c2 sin(ω0t) (3.327)

This is why we called ω0 the natural frequency of the system: it is the frequency of motion
when the spring-mass system has no interference from dampers or external forces.

Given initial conditions we can solve for c1 and c2. This is not the ideal form of the
solution though since it is not easy to read off critical information. After we solve for the
constants rewrite as

u(t) = Rcos(ω0t−δ ), (3.328)
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where R > 0 is the amplitude of displacement and δ is the phase angle of displacement,
sometimes called the phase shift.

Before determining how to rewrite the general solution in this desired form lets compare
the two forms. When we keep it as the general solution is it easier to find the constants
c1 and c2. But the new form is easier to work with since we can immediately see the
amplitude making it much easier to graph. So ideally we will find the general solution,
solve for c1 and c2, and then convert to the final form.

Assume we have c1 and c2 how do we find R and δ? Consider Equation (3.328) we
can use a trig identity to write it as

u(t) = Rcos(δ )cos(ω0t)+Rsin(δ )sin(ω0t). (3.329)

Comparing this to the general solution, we see that

c1 = Rcos(δ ), c2 = Rsin(δ ). (3.330)

Notice

c2
1 + c2

2 = R2(cos2(δ )+ sin2(δ )) = R2, (3.331)

so that, assuming R > 0,

R =
√

c2
1 + c2

2. (3.332)

Also,

c2

c1
=

sin(δ )
cos(δ )

= tan(δ ). (3.333)

to find δ .

� Example 3.29 A 2kg object is attached to a spring, which it stretches by 5
8m. The object

is given an initial displacement of 1m upwards and given an initial downwards velocity of
4m/sec. Assuming there are no other forces acting on the spring-mass system, find the
displacement of the object at time t and express it as a single cosine.

The first step is to write down the initial value problem for this setup. We’ll need to
find an m and k. m is easy since we know the mass of the object is 2kg. How about k? We
know

k =
mg
L

=
(2)(10)

5
8

= 32. (3.334)

So our differential equation is

2u′′+32u = 0. (3.335)

The initial conditions are given by

u(0) =−1, u′(0) = 4. (3.336)
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The characteristic equation is

2r2 +32 = 0, (3.337)

and this has roots r1,2 = ±4i. Hence ω0 = 4. Check: ω0 =
√

k
m =

√
32/2 = 4. So our

general solution is

u(t) = c1 cos(4t)+ c2 sin(4t). (3.338)

Using our initial conditions, we see

−1 = u(0) = c1 (3.339)
4 = u′(0) = 4c2⇒ c2 = 1. (3.340)

So the solution is

u(t) =−cos(4t)+ sin(4t). (3.341)

We want to write this as a single cosine. Compute R

R =
√

c2
1 + c2

2 =
√

2. (3.342)

Now consider δ

tan(δ ) =
c2

c1
=−1. (3.343)

So δ is in Quadrants II or IV. To decide which look at the values of cos(δ ) and sin(δ ). We
have

sin(δ ) = c2 > 0 (3.344)
cos(δ ) = c1 < 0. (3.345)

So δ must be in Quadrant II, since there sin > 0 and cos < 0. If we take arctan(−1) =−π

4 ,
this has a value in Quadrant IV. Since tan is π-periodic, however, −π

4 + π = 3π

4 is in
Quadrant II and also has a tangent of −1 Thus our desired phase angle is

δ = arctan(
c2

c1
)+π = arctan(−1)+π =

3π

4
(3.346)

and our solution has the final form

u(t) =
√

2cos(4t− 3π

4
). (3.347)

�
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3.6.3 Free, Damped Motion
Now, let’s consider what happens if we add a damper into the system with damping
coefficient γ . We still consider free motion so F(t) = 0, and our differential equation
becomes

mu′′+ γu′+ ku = 0. (3.348)

The characteristic equation is

mr2 + γr+ k = 0, (3.349)

and has solution

r1,2 =
−γ±

√
γ2−4km

2m
. (3.350)

There are three different cases we need to consider, corresponding to the discriminant
being positive, zero, or negative.

(1) γ2−4mk = 0
This case gives a double root of r =− γ

2m , and so the general solution to our equation
is

u(t) = c1e
γ

2m + c2te−
γ

2m (3.351)

Notice that limt→∞ u(t) = 0, which is good, since this signifies damping. This is called
critical damping and occurs when

γ
2−4mk = 0 (3.352)

γ =
√

4mk = 2
√

mk (3.353)

This value of γ−2
√

mk is denoted by γCR and is called the critical damping coefficient.
Since this case separates the other two it is generally useful to be able to calculate this
coefficient for a given spring-mass system, which we can do using this formula. Critically
damped systems may cross u = 0 once but will never cross more than that. No oscillation

(2) γ2−4mk > 0
In this case, the discriminant is positive and so we will get two distinct real roots r1

and r2. Hence our general solution is

u(t) = c1er1t + c2er2t (3.354)

But what is the behavior of this solution? The solution should die out since we have
damping. We need to check limt→∞ u(t) = 0. Rewrite the roots

r1,2 =
−γ±

√
γ2−4mk

2m
(3.355)

=
−γ± γ(

√
1− 4mk

γ2 )

2m
(3.356)

= − γ

2m
(1±

√
1− 4mk

γ2 ) (3.357)
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By assumption, we have γ2 > 4mk. Hence

1− 4mk
γ2 < 1 (3.358)

and so√
1− 4mk

γ2 < 1. (3.359)

so the quantity in parenthesis above is guaranteed to be positive, which means both of our
roots are negative.

Thus the damping in this case has the desired effect, and the vibration will die out in
the limit. This case, which occurs when γ > γCR, is called overdamping. The solution
won’t oscillate around equilibrium, but settles back into place. The overdamping kills all
oscillation

(3) γ2 < 4mk
The final case is when γ < γCR. In this case, the characteristic equation has complex

roots

r1,2 =
−γ±

√
γ2−4mk

2m
= α + iβ . (3.360)

The displacement is

u(t) = c1eαt cos(β t)+ c2eαt sin(β t) (3.361)
= eαt(c1 cos(β t)+ c2 sin(β t)). (3.362)

In analogy to the free undamped case we can rewrite as

u(t) = Reαt cos(β t−δ ). (3.363)

We know α < 0. Hence the displacement will settle back to equilibrium. The difference is
that solutions will oscillate even as the oscillations have smaller and smaller amplitude.
This is called overdamped.

Notice that the solution u(t) is not quite periodic. It has the form of a cosine, but
the amplitude is not constant. A function u(t) is called quasi-periodic, since it oscillates
with a constant frequency but a varying amplitude. β is called the quasi-frequency of the
oscillation.

So when we have free, damped vibrations we have one of these three cases. A good
example to keep in mind when considering damping is car shocks. If the shocks are new
its overdamping, when you hit a bump in the road the car settles back into place. As the
shocks wear there is more of an initial bump but the car still settles does not bounce around.
Eventually when your shocks where and you hit a bump, the car bounces up and down for
a few minutes and then settles like underdamping. The critical point where the car goes
from overdamped to underdamped is the critically damped case.

Another example is a washing machine. A new washing machine does not vibrate
significantly due to the presence of good dampers. Old washing machines vibrate a lot.
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In practice we want to avoid underdamping. We do not want cars to bounce around on
the road or buildings to sway in the wind. With critical damping we have the right behavior,
but its too hard to achieve this. If the dampers wear a little we are then underdamped. In
practice we want to stay overdamped.

� Example 3.30 A 2kg object stretches a spring by 5
8m. A damper is attached that exerts a

resistive force of 48N when the speed is 3m/sec. If the initial displacement is 1m upwards
and the initial velocity is 2m/sec downwards, find the displacement u(t) at any time t.

This is actually the example from the last class with damping added and different
initial conditions. We already know k = 32. What is the damping coefficient γ? We know
|Fd|= 48 when the speed is |u′|= 3. So the damping coefficients is given by

γ =
|Fd|
|u′|

=
48
3

= 16. (3.364)

Thus the initial value problem is

2u′′+16u′+32u = 0, u(0) =−1, u′(0) = 2. (3.365)

Before we solve it, see which case we’re in. To do so, let’s calculate the critical damping
coefficient.

γCR = 2
√

mk = 2
√

64 = 16. (3.366)

So we are critically damped, since γ = γCR. This means we will get a double root. Solving
the characteristic equation we get r1 = r2 =−4 and the general solution is

u(t) = c1e−4t + c2te−4t . (3.367)

The initial conditions give coefficients c1 =−1 and c2 =−2. So the solution is

u(t) =−e−4t−2te−4t (3.368)

Notice there is no oscillations in this case. �

� Example 3.31 For the same spring-mass system as in the previous example, attach a
damper that exerts a force of 40N when the speed is 2m/s. Find the displacement at any
time t.

the only difference from the previous example is the damping force. Lets compute γ

γ =
|Fd|
|u′|

=
40
2

= 20. (3.369)

Since we computed γCR = 16, this means we are overdamped and the characteristic equation
should give us distinct real roots. The IVP is

2u′′+20u′+32u = 0, u(0) =−1, u(0) = 2. (3.370)

The characteristic equation has roots r1 =−8 and r2 =−2. So the general solution is

u(t) = c1e−8t + c2e−2t (3.371)
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The initial conditions give c1 = 0 and c2 =−1, so the displacement is

u(t) =−e−2t (3.372)

Notice here we do not actually have a "vibration" as we normally think of them. The
damper is strong enough to force the vibrations to die out so quickly that we do not notice
much if any of them. �

� Example 3.32 For the same spring-mass system as in the previous two examples, add a
damper that exerts a force of 16N when the speed is 2m/s.

In this case, the damping coefficient is

γ =
16
2

= 8, (3.373)

which tells us that this case is underdamped as γ < γCR = 16. We should expect complex
roots of the characteristic equation. The IVP is

2u′′+8u′+32u = 0, u(0) =−1, u′(0) = 3. (3.374)

The characteristic equation has roots

r1,2 =
−8±

√
192

4
=−2± i

√
12. (3.375)

Thus our general solution is

u(t) = c1e−2t cos(
√

12t)+ c2e2t sin(
√

12t) (3.376)

The initial conditions give the constants c1 = 1 and c2 =
1√
12

, so we have

u(t) =−e−2t cos(
√

12t)+
1√
12

e2t sin(
√

12t). (3.377)

Let’s write this as a single cosine

R =

√
(−1)2 +(

1√
12

)2 =

√
13
12

(3.378)

tan(δ ) = − 1√
12

(3.379)

As in the undamped case, we look at the signs of c1 and c2 to figure out what quadrant δ is
in. By doing so, we see that δ has negative cosine and positive sine, so it is in Quadrant II.
Hence we need to take the arctangent and add π to it

δ = arctan(− 1√
12

)+π. (3.380)

Thus our displacement is

u(t) =

√
13
12

e−2t cos(
√

12t− arctan(− 1√
12
−π). (3.381)

In this case, we actually get a vibration, even though its amplitude steadily decreases until
it is negligible. The vibration has quasi-frequency

√
12. �
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3.7 Forced Vibrations
Last Time: We studied non-forced vibrations with and without damping. We studied the
four forces acting on an object gravity, spring force, damping, and external forces.

3.7.1 Forced, Undamped Motion
What happens when the external force F(t) is allowed to act on our system. The function
F(t) is called the forcing function. We will consider the undamped case

mu′′+ ku = F(t). (3.382)

This is a nonhomogeneous equation, so we will need to find both the complimentary and
particular solution.

u(t) = uc(t)+Up(t), (3.383)

Recall that uc(t) is the solution to the associated homogeneous equation. We will use
undetermined coefficients to find the particular solution Up(t) (if F(t) has an appropriate
form) or variation of parameters.

We restrict our attention to the case which appears frequently in applications

F(t) = F0 cos(ωt) or F(t) = F0 sin(ωt) (3.384)

The force we are applying to our spring-mass system is a simple periodic function with
frequency ω . For now we assume F(t) = F0 cos(ωt), but everything is analogous if it is a
sine function. So consider

mu′′+ ku′ = F0 cos(ωt). (3.385)

Where the complimentary solution to the analogous free undamped equation is

uc(t) = c1 cos(ω0t)+ c2 sin(ω0t), (3.386)

where ω0 =
√

k
m is the natural frequency.

We can use the method of undetermined coefficients for this nonhomogeneous term
F(t). The initial guess for the particular solution is

Up(t) = Acos(ωt)+Bsin(ωt). (3.387)

We need to be careful, note that we are okay since ω0 6= ω , but if the frequency of the
forcing function is the same as the natural frequency, then this guess is the complimentary
solution uc(t). Thus, if ω0 =ω , we need to multiply by a factor of t. So there are two cases.

(1) ω 6= ω0
In this case, our initial guess is not the complimentary solution, so the particular

solution will be

Up(t) = Acos(ωt)+Bsin(ωt). (3.388)
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Differentiating and plugging in we get

mω
2(−Acos(ωt)−Bsin(ωt))+ k(Acos(ωt)+Bsin(ωt)) = F0 cos(ωt) (3.389)

(−mω
2A+ kA)cos(ωt)+(−mω

2B+ kB)sin(ωt) = F0 cos(ωt).(3.390)

Setting the coefficients equal, we get

cos(ωt) : (−mω
2 + k)A = F0 ⇒ A =

F0

k−mω2 (3.391)

sin(ωt) : (−mω
2 + k)B = 0 ⇒ B = 0. (3.392)

So our particular solution is

Up(t) =
F0

k−mω2 cos(ωt) (3.393)

=
F0

m( k
m −ω2)

cos(ωt) (3.394)

=
F0

m(ω2
0 −ω2)

cos(ωt). (3.395)

Notice that the amplitude of the particular solution is dependent on the amplitude of
the forcing function F0 and the difference between the natural frequency and the forcing
frequency.

We can write our displacement function in two forms, depending on which form we
use for complimentary solution.

u(t) = c1 cos(ω0t)+ c2 sin(ω0t)+
F0

m(ω2
0 −ω2)

cos(ωt) (3.396)

u(t) = Rcos(ω0t−δ )+
F0

m(ω2
0 −ω2)

cos(ωt) (3.397)

Again, we get an analagous solution if the forcing function were F(t) = F0 sin(ωt).
The key feature of this case can be seen in the second form. We have two cosine

functions with different frequencies. These will interfere with each other causing the net
oscillation to vary between great and small amplitude. This phenomena has a name "beats"
derived from musical terminology. Thing of hitting a tuning fork after it has already been
struck, the volume will increase and decrease randomly. One hears the waves created here
in the exact form of our solution.

(2) ω = ω0
If the frequency of the forcing function is the same as the natural frequency, so the

guess for the particular solution is

Up(t) = At cos(ω0t)+Bt sin(ω0t) (3.398)

Differentiate and plug in

(−mω
2
0 + k)At cos(ω0t)+(−mω

2
0 + k)Bt sin(ω0t)

+2mω0Bcos(ω0t)−2mω0Asin(ω0t) = F0 cos(ω0t).
(3.399)
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To begin simplification recall that ω2
0 = k

m , so mω2
0 = k. this means the first two terms will

vanish (expected since no analogous terms on right side), and we get

2mω0Bcos(ω0t)−2mω0Asin(ω0t) = F0 cos(ω0t). (3.400)

Now set the coefficients equal

cos(ω0t) : 2mω0B = F0 B =
F0

2mω0
(3.401)

sin(ω0t) : −2mω0A = 0 A = 0 (3.402)

Thus the particular solution is

Up(t) =
F0

2mω0
t sin(ω0t) (3.403)

and the displacement is

u(t) = c1 cos(ω0t)+ c2 sin(ω0t)+
F0

2mω0
t sin(ω0t) (3.404)

or

u(t) = Rcos(ω0t−δ )+
F0

2mω0
t sin(ω0t). (3.405)

What stands out most about this equation? Notice that as t→ ∞, u(t)→ ∞ due to the
form of the particular solution. Thus, in the case where the forcing frequency is the same
as the natural frequency, the oscillation will have an amplitude that continues to increase
for all time since the external force adds energy to the system in a way that reinforces the
natural motion of the system.

This phenomenon is called resonance. Resonance is the phenomenon behind mi-
crowave ovens. The microwave radiation strikes the water molecules in what’s being
heated at their natural frequency, causing them to vibrate faster and faster, which generates
heat. A similar trait is noticed in the Bay of Fundy, where tidal forces cause the ocean
to resonate, yielding larger and larger tides. Resonance in the ear causes us to be able to
distinguish between tones in sound.

A common example is the Tacoma Narrows Bridge. This is incorrect because the oscil-
lation that led to the collapse of the bridge was from a far more complicated phenomenon
than the simple resonance we’re considering now. In general, for engineering purposes,
resonance is something we would like to avoid unless we understand the situation and the
effect on the system.

In summary when we drive our system at a different frequency than the natural fre-
quency, the two frequencies interfere and we observe beats in motion. When the system is
driven at a natural frequency, the natural motion of the system is reinforced, causing the
amplitude of the motion to increase to infinity.

� Example 3.33 A 3kg object is attached to a spring, which it stretches by 40cm. There is
no damping, but the system is forced with the forcing function

F(t) = 10cos(ωt) (3.406)
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such that the system will experience resonance. If the object is initially displaced 20cm
downward and given an initial upward velocity of 10cm/s, find the displacement at any
time t.

We need to be aware of the units, convert all lengths to meters. Find k

k =
mg
L

=
(3)(10)

.4
= 75 (3.407)

Next, we are told the system experiences resonance. Thus the forcing frequency ω must
be the natural frequency ω0.

ω = ω0 =

√
k
m

=

√
75
3

= 5 (3.408)

Thus our initial value problem is

3u′′+75u = 10cos(5t) u(0) = .2, u′(0) =−.1 (3.409)

The complimentary solution is the general solution of the associated free, undamped case.
Since we have computed the natural frequency already, the complimentary solution is just

uc(t) = c1 cos(5t)+ c2 sin(5t). (3.410)

The particular solution (using formula derived above) is

1
3

t sin(5t), (3.411)

and so the general solution is

u(t) = c1 cos(5t)+ c2 sin(5t)+
1
3

t sin(5t). (3.412)

The initial conditions give c1 =
1
5 and c2 =− 1

50 , so the displacement can be given as

u(t) =
1
5

cos(5t)− 1
50

sin(5t)+
1
3

t sin(5t) (3.413)

Let’s convert the first two terms to a single cosine.

R =

√
(
1
5
)2 +(− 1

50
)2 =

√
101

2500
(3.414)

tan(δ ) =
− 1

50
1
5

=− 1
10

(3.415)

Looking at the signs of c1 and c2, we see that cos(δ ) > 0 and sin(δ ) < 0. Thus δ is in
Quadrant IV, and so we can just take the arctangent.

δ = arctan(− 1
10

) (3.416)

The displacement is then

u(t) =

√
101

2500
cos
(

5t− arctan(− 1
10

)

)
+

1
3

t sin(5t) (3.417)

�





4. Higher Order Linear Equations

4.1 General Theory for nth Order Linear Equations
Recall that an nth order linear differential equation is an equation of the form

Pn(t)
dny
dtn +Pn−1(t)

dn−1y
dtn−1 + ...+P1(t)

dy
dt

+P0(t)y = g(t). (4.1)

We will assume Pi(t) and g(t) are continuous on some interval α < t < β and Pn(t) is
nonzero on this interval. We can divide by Pn(t) and consider the equation as a linear
operator

L[y] =
dny
dtn + pn−1(t)

dn−1y
dtn−1 + ...+ p1(t)

dy
dt

+ p0(t)y = g(t). (4.2)

where pi(t) =
Pi(t)
Pn(t)

. The theory involved with an nth order equation is analogous to the
theory for second order linear equations. To obtain a unique solution we need n initial
conditions

y(t0) = y0, y′(t0) = y′0, ..., y(n−1)(t0) = y(n−1)
0 (4.3)

we have the following theorem regarding uniqueness of a solution

Theorem 4.1.1 If p0, p1, ...pn−1 and g are continuous on the open interval I, then there
exists exactly one solution y = φ(t) of the differential equation that also satisfies the
initial conditions. This solution exists on all of I. Note that the leading derivative (nth
order) must have the coefficient 1.

� Example 4.1 Determine the intervals in which a solution is sure to exist

(t−2)y′′′+
√

t +3y′′+ ln(t)y′+ ety = sin(t) (4.4)
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Ans: First put the equation in standard form

y′′′+
√

t +3
t−2

y′′+
ln(t)
t−2

y′+
et

t−2
y =

sin(t)
t−2

(4.5)

By Theorem 1 we are looking for the intervals where all the coefficients are continuous. The
coefficient for y′′ is continuous on [−3,2)∪ (2,∞), The coefficient for y′ is continuous on
(0,2)∪ (2,∞), the coefficient of y is continuous on (−∞,2)∪ (2,∞), and g(t) is continuous
on (−∞,2)∪ (2,∞). So the intervals where a solution exists are

(0,2)∪ (2,∞) (4.6)

�

Theorem 4.1.2 If the functions p1, p2, ..., pn are continuous on the open interval I, the
functions y1,y2, ...,yn are solutions of the homogeneous differential equation, and if
W (y1,y2, ...,yn)(t) 6= 0 for at least one point in I, then every solution on the differential
equation can be expressed as a linear combination of the solutions y1,y2, ...,yn ( Linear
Superposition).

Theorem 4.1.3 If y1(t),y2(t), ...,yn(t) form a fundamental set of solutions of the homo-
geneous differential equation on an interval I, then y1(t), ...,yn(t) are linearly indepen-
dent solutions of the equation on I, then they form a fundamental set of solutions for the
inhomogeneous equation on I.

� Example 4.2 Determine whether the given set of functions is linearly dependent or
linearly independent.

t2−1, t−1,2t +1 (4.7)

Consider

c1(t2−1)+ c2(t−1)+ c3(2t +1) = 0 (4.8)

So we need to match coefficients

c1 = 0 (4.9)
c2 +2c3 = 0 (4.10)
−c2 + c3 = 0 (4.11)

Rearrange the third equation c2 = c3 substitute into the second equation 3c2 = 0. Thus
c1 = c2 = c3 = 0. So the set of functions is linearly independent. �

4.2 Homogeneous Equations with Constant Coefficients
Last Time: We studied the general theory of nth order linear equations. Now we want
to find the general solution of an nth order equation using the methods developed for
homogeneous equations with constant coefficients.
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Consider the nth order linear homogeneous equation with constant coefficients

L[y] = any(n)+an−1y(n−1)+ ...+a1y′+any = 0 (4.12)

Just like in the second order case we have the characteristic equation

anrn + ...+a1r+an = 0 (4.13)

� Example 4.3 (Distinct Real Roots) Find the general solution of

y(4)+y′′′−7y′′−y′+6y = 0, y(0) = 1,y′(0) = 0,y′′(0) =−2,y′′′(0) =−1 (4.14)

So the characteristic equation is

r4 + r3−7r2− r+6 = 0. (4.15)

Thus the roots are 1,−1,2,−3. So the general solution is

y = c1et + c2e−t + c3e2t + c4e−3t (4.16)

Using the initial conditions we find c1 =
11
8 ,c2 =

5
12 ,c3 = −2

3 ,c4 = −1
8 . Therefore the

solution to the IVP is

y =
11
8

et +
5

12
e−t− 2

3
e2t− 1

8
e−3t (4.17)

�

� Example 4.4 (Complex Roots) Find the general solution of

y(4)− y = 0, y(0) = 7/2,y′(0) =−4,y′′(0) = 5/2,y′′′(0) =−2 (4.18)

The characteristic equation is

r4−1 = (r2 +1)(r2−1) = 0 (4.19)

Therefore the roots are 1,−1, i,−i. Thus the general solution is

y = c1et + c2e−t + c3 cos(t)+ c4 sin(t) (4.20)

By imposing the initial conditions we get

c1 = 0,c2 = 3,c3 = 1/2,c4 =−1 (4.21)

Thus the solution of the IVP is

y = 3e−t +
1
2

cos(t)− sin(t) (4.22)

�

� Example 4.5 (Repeated Roots) Find the general solution of

y(4)+2y′′+ y = 0. (4.23)

The characteristic equation is

r4 +2r2 +1 = (r2 +1)(r2 +1) = 0 (4.24)

The roots are i, i,−i,−i. So the general solution is

y = c1 cos(t)+ c2 sin(t)+ c3t cos(t)+ c4t sin(t) (4.25)

�
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5. Laplace Transforms

5.1 Definition of the Laplace Transform
Last Time: We studied nth order linear differential equations and used the method of
characteristics to solve them.

We have spent most of the course solving differential equations directly, but sometimes
a transformation of the problem can make it much easier. One such example is the Laplace
Transform.

5.1.1 The Definition
Definition 5.1.1 A function f is called piecewise continuous on an interval [a,b], if
[a,b] can be broken into a finite number of subintervals [an,bn] such that f is continuous
on each open subinterval (an,bn) and has a finite limit at each endpoint an,bn.

So a piecewise continuous function has only finitely many jumps and does not have
any asymptotes where it blows up to infinity or minus infinity.

Definition 5.1.2 (Laplace Transformation) Suppose that f (t) is a piecewise continuous
function. The Laplace Transform of f (t), denoted by L { f (t)}, is given by

L { f (t)}=
∫

∞

0
e−st f (t)dt. (5.1)

REMARK: There is an alternate notation for the Laplace Transform that we will
commonly use. Notice that the definition of L { f (t)} introduces a new variable, s, in the
definite integral with respect to t. As a result, computing the transform yields a function
which depends on s. Thus

L { f (t)}= F(s) (5.2)

It should also be noted that the integral definition of L { f (t)} is an improper integral.
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In our first examples of computing Laplace Transforms, we will review how to handle
them.

� Example 5.1 Compute L {1}. Plugging f (t) = 1 into the definition we have

L {1}=
∫

∞

0
e−stdt. (5.3)

Recall we need to convert the improper integral into a limit

= lim
N→∞

∫ N

0
e−stdt (5.4)

= lim
N→∞

[
−1

s
e−st]N

0 (5.5)

= lim
N→∞

(
−1

s
e−Ns +

1
s

)
(5.6)

Note the value of s will affect our answer. If s < 0, the exponent of our exponential is
positive, so the limit in question will diverge as the exponential goes to infinity. On the
other hand, if s > 0, the exponential will go to 0 and the limit will converge.

Thus, we restrict our attention to the case where s > 0 and conclude that

L {1}= 1
s

for s > 0 (5.7)

�

Notice that we had to put a restriction on the domain of our Laplace Transform. This
will always be the case: these integrals will not always converge for any s.

� Example 5.2 Compute L {eat} for a 6= 0.

By definition

L {eat} =
∫

∞

0
e−steatdt (5.8)

=
∫

∞

0
e(a−s)tdt (5.9)

= lim
N→∞

[ 1
a− s

e(a−s)t]N
0 (5.10)

= lim
N→∞

( 1
a− s

e(a−s)N− 1
a− s

)
(5.11)

=
1

s−a
for s > a. (5.12)

�

� Example 5.3 Compute L {sin(at)}.

L {sin(at)} =
∫

∞

0
e−st sin(at)dt (5.13)

= lim
N→∞

∫ N

0
e−st sin(at)dt (5.14)
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Integration By Parts (twice) yields

= lim
N→∞

(
1
a
(1−e−sN cos(aN)

)
− s

a

(
1
a

e−sN sin(aN)+
s
a

∫ N

0
e−st sin(at)dt

)
. (5.15)

After rewriting, we get

F(s) =
1
a
− s2

a2 F(s) (5.16)

L {sin(at)}= F(s) =
a

s2 +a2 provided s > 0. (5.17)

�

� Example 5.4 If f (t) is a piecewise continuous function with piecewise continuous
derivative f ′(t), express L { f ′(t)} in terms of L { f (t)}.

We plug f ′ into the definition for the Laplace transform

L { f ′} =
∫

∞

0
e−st f ′dt (5.18)

= lim
N→∞

∫ N

0
e−st f ′dt (5.19)

The next step is to integrate by parts

= lim
N→∞

(
e−st f |N0 + s

∫ N

0
e−st f dt

)
(5.20)

= lim
N→∞

e−sN f (N)− f (0)+ s
∫

∞

0
e−st f dt (5.21)

= sL { f (t)}− f (0) provided s > 0 (5.22)

�

Doing this repeatedly one finds

L { f (n)(t)}= snL { f (t)}−sn−1 f (0)−sn−2 f ′(0)− ...−s f (n−2)(0)− f (n−1)(0). (5.23)

� Example 5.5 If f (t) is a piecewise continuous function, express L {eat f (t)} in terms
of L {eat f (t)}

We begin by plugging into the definition

L {eat f (t)} =
∫

∞

0
e−steatdt (5.24)

=
∫

∞

0
e(a−s)t f (t)dt (5.25)

This looks like the definition of F(s), but its not the same, since the exponent is a− s.
However, if we substitute u = s−a, we get

=
∫

∞

0
e−ut f (t)dt (5.26)

= F(u) (5.27)
= F(s−a) (5.28)

Thus if we take the Laplace transform of a function multiplied by eat , we’ll get the
Laplace Transform of the original function shifted by a. �
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5.1.2 Laplace Transforms
In general, we won’t be using the definition we will be using a table of Laplace Transforms.
I would make an effort to know all the common transforms above as well as the definition.
From now on we will use a table, but be prepared on an exam to do a basic transform using
the definition.

Note the Laplace Transform is linear

Theorem 5.1.1 Given piecewise continuous functions f (t) and g(t),

L {a f (t)+bg(t)}= aL { f (t)}+bL {g(t)} (5.29)

for any constants a,b.

This follows from the linearity of integration. From a practical perspective we will not
have to worry about constants or sums. We can decompose our function into individual
pieces, transform them, and then put everything back together.

� Example 5.6 Find the Laplace Transforms of the following functions
(i) f (t) = 6e−5t + e3t +5t3−9

F(s) = L { f (t)} = 6L {e−5t}+L {e3t}+5L {t3}−9L {1} (5.30)

= 6
1

s− (−5)
+

1
s−3

+5
3!

s3+1 −9
1
s

(5.31)

=
6

s+5
+

1
s−3

+
30
s4 −

9
s

(5.32)

(ii) g(t) = 4cos(4t)−2sin(4t)−3cos(8t)

G(s) = L {g(t)} = 4L {cos(4t)}−2L {sin(4t)}−3L {cos(10t)} (5.33)

= 4
s

s2 +42 −2
4

s2 +42 −3
s

s2 +102 (5.34)

=
4s−8
s2 +16

− 3s
s2 +100

(5.35)

(iii) h(t) = e2t + cos(3t)+ e2t cos(3t)

H(t) = L {h(t)} = L {e2t}+L {cos(3t)}−L {e2t cos(3t)} (5.36)

=
1

s−2
+

s
s2 +32 −

s−2
(s−2)2 +32 (5.37)

=
1

s−2
+

2
s2 +9

− s−2
(s−2)2 +9

(5.38)

�

5.1.3 Initial Value Problems
We study Laplace Transforms to solve Initial Value Problems.

� Example 5.7 Solve the following initial value problem using Laplace Transforms.

y′′−6y′+5y = 7t, y(0) =−1, y′(0) = 2. (5.39)
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The first step is using the Laplace Transform to solve an IVP is to transform both sides
of the equation.

L {y′′}−6L {y′}+5L {y} = 7L {t} (5.40)

s2Y (s)− sy(0)− y′(0)−6
(
sY (s)− y(0)

)
+5Y (s) =

7
s2 (5.41)

s2Y (s)+ s−2−6
(
sY (s)+1

)
+5Y (s) =

7
s2 (5.42)

Now solve for Y (s).

(s2−6s+5)Y (s)+ s−8 =
7
s2 (5.43)

Y (s) =
7

s2(s2−6s+5)
+

8− s
s2−6s+5

(5.44)

Now we want to solve for y(t), but we have an expression for Y (s) = L {y(t)}. Thus to
finish solving this problem, we need the inverse Laplace Transform �

5.1.4 Inverse Laplace Transform
In this section we have F(s) and want to find f (t). f (t) is an inverse Laplace Transform of
F(s) with notation

f (t) = L −1{F(s)}. (5.45)

Our starting point is that the inverse Laplace Transform is linear.

Theorem 5.1.2 Given two Laplace Transforms F(s) and G(s),

L −1{aF(s)+bG(s)}= aL −1{F(s)}+bL −1{G(s)} (5.46)

for any constants a,b.

So we decompose our original transformed function into pieces, inverse transform, and
then put everything back together. Using the table we want to look at the denominator,
which will tell us what the original function will have to be, but sometimes we have to look
at the numerator to distinguish between two potential inverses (i.e. sin(at) and cos(at)).

� Example 5.8 Find the inverse transforms of the following
(i) F(s) = 6

s −
1

s−8 +
4

s−3
The denominator of the first term is s indicating that this will be the Laplace Transform

of 1. Since L {1}= 1
s , we will factor out the 6 before taking the inverse transform. For

the second term, this is just the Laplace Transform of e8t , and there’s nothing else to do
with it. The third term is also an exponential, e3t , and we’ll need to factor out the 4 in the
numerator before we take the inverse transform.

So we have

L −1{F(s)} = 6L −1{1
s
}−L −1{ 1

s−8
}+4L −1 1

s−3
(5.47)

f (t) = 6(1)− e8t +4(e3t) (5.48)
= 6− e8t +4e3t (5.49)
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(ii) G(s) = 12
s+3 −

1
2s−4 +

2
s4

The first term is just the transform of e−3t multiplied by 12, which we will factor out
before applying the inverse transform. The second term looks like it should be exponential,
but it has a 2s instead of an s in the denominator, and transforms of exponentials should
just have s. Fix this by factoring out the 2 in the denominator and then taking the inverse
transform. The third term has s4 as its denominator. This indicates that it will be related to
the transform of t3. The numerator is not correct since L {t3}= 3!

s3+1 =
6
s4 . So we would

need the numerator to be 6, and right now is 2. How do we fix this? We’ll multiply by 3
3 ,

absorb the top 3 into the transform, with these fixes incorporated we have

G(s) = 12
1

s− (−3)
− 1

2(s−2)
+

3
3

2
s4 (5.50)

= 12
1

s− (−3)
− 1

2
1

(s−2)
+

1
3

6
s4 (5.51)

Now we can take the inverse transform.

g(t) = 12e−3t− 1
2

e2t +
1
3

t3 (5.52)

(iv) H(s) = 4s
s2+25 +

3
s2+16

The denominator of the first term is, s2 +25, indicates that this should be the transform
of either sin(5t) or cos(5t). The numerator is 4s, which tells us that once we factor out the
4, it will be the transform of cos(5t). The second term’s denominator is s2 +16, so it will
be the transform of either sin(4t) or cos(4t). The numerator is a constant, 3, so it will be
the transform of sin(4t). The only problem is that the numerator of L {sin(4t)} should be
4, while here it is 3. We fix this by multiplying by 4

4 . Rewrite the transform

H(s) = 4
1

s2 +52 +
4
4

3
s2 +42 (5.53)

= 4
1

s2 +52 +
3
4

4
s2 +42 (5.54)

Then take the inverse

h(t) = 4cos(5t)+
3
4

sin(4t) (5.55)

�

Let’s do some examples which require more work.

� Example 5.9 Find the inverse Laplace Transforms for each of the following.
(i) F(s) = 3s−7

s2+16
Looking at the denominator, we recognize it will be a sine or cosine, since it has the

form s2 +a2. It is not either because it has both s and a constant in the numerator, while a
cosine just has s and the sine just has the constant. This is easy to compensate for, we split
the fraction into the difference of two fractions, then fix them up as we did in the previous
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example, we will be able to then take the Inverse Laplace Transform

F(s) =
3s−7
s2 +16

(5.56)

=
3s

s2 +16
− 7

s2 +16
(5.57)

= 3
s

s2 +16
− 4

4
7

s2 +16
(5.58)

= 3
s

s2 +16
− 7

4
4

s2 +16
(5.59)

Now each term is the correct form, and we can take the inverse transform.

f (t) = 3cos(4t)− 7
4

sin(4t) (5.60)

(ii) G(s) = 1−3s
s2+2s+10

If we look at the table of Laplace Transforms, we might see that there are no denomi-
nators that look like a quadratic polynomial. Also, this polynomial does not factor nicely
into linear terms. There are, however, some terms in the table with denominator of the
form (s−a)2 +b2. Those for eat cos(bt) and eat sin(bt). Put the denominator in this form
by completing the square.

s2 +2s+10 = s2 +2s+1−1+10 (5.61)
= s2 +2s+1+9 (5.62)
= (s+1)2 +9 (5.63)

Thus, our transformed function can be written as

G(s) =
1−3s

(s+1)2 +9
(5.64)

We will not split this into two pieces yet. First, we need the s in the numerator to be
s+1 so we can have the numerator of e−t cos(3t). We do this by adding and subtracting 1
from the s. This will produce some other constant term, which we will combine with the
already present constant and try to have the remaining terms look like the numerator for
e−t sin(3t).

G(s) =
1−3(s+1−1)
(s+1)2 +9

(5.65)

=
1−3(s+1)+3
(s+1)2 +9

(5.66)

=
−3(s+1)+4
(s+1)2 +9

(5.67)

Now we can break our transform up into two pieces, one of which will correspond to the
cosine and the other to the sine. At that point, fixing the numerators is the same as in the
last few examples.

G(s) = −3
s+1

(s+1)2 +9
+

4
3

3
(s+1)2 +9

(5.68)

g(s) = −3e−t cos(3t)+
4
3

e−t sin(3t) (5.69)
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(iii) H(s) = s+2
s2−s−12

This seems identical to the last example, but there is a difference. We can immediately
factor the denominator. This requires us to deal with the inverse transform differently.
Factoring we see

H(s) =
s+2

(s+3)(s−4)
. (5.70)

We know that if we have a linear denominator, that will correspond to an exponential. In
this case we have two linear factors. This by itself is not the denominator of an particular
Laplace Transform, but we know a method for turning certain rational functions with
factored denominators into a sum of more simple radical functions with those factors in
each denominator. This method is Partial Fractions Decomposition.

We start by writing

H(s) =
s+2

(s+3)(s−4)
=

A
s+3

+
B

s−4
. (5.71)

Multiply through by (s+3)(s−4):

s+2 = A(s−4) = B(s+3). (5.72)

This must be true for any value of s. As a result, we have two methods for determining A
and B.

Method 1: Match coefficients on functions of s just like in the method of undetermined
coefficients

s : 1 = A+B (5.73)
1 : 2 = −4A+3B (5.74)

Solving the system of two equations in two unknowns we get A = 1
7 and B = 6

7 .
Method 2: Choose values of s (since it must hold for all s) and solve for A and B.

s =−3 : −1 = −7A ⇒ A =
1
7

(5.75)

s = 4 : 6 = 7B ⇒ B =
6
7

(5.76)

Thus, our transform can be written as

H(s) =
1
7

s+3
+

6
7

s−4
(5.77)

and taking the inverse transforms, we get

h(t) =
1
7

e−3t +
6
7

e4t (5.78)

�
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REMARK: We could have done the the last example by completing the square. How-
ever, this would have left us with expressions involving the hyperbolic sine, sinh, and the
hyperbolic cosine, cosh. These are interesting functions which can be written in terms of
exponentials, but it will be much easier for us to work directly with the exponentials. So
we are better off just doing partial fractions even though it’s slightly more work.

Partial Fractions and completing the square are a part of life when it comes to Laplace
Transforms. Being good at this technique helps when solving IVPs, since most answers
have sines, cosines, and exponentials.

Here is a quick review of partial fractions. The first step is to factor the denominator as
much as possible. Then using the table above, we can find each of the terms for our partial
fractions decomposition. This table is not exhaustive, but we will only have these factors
in most if not all cases.

� Example 5.10 Find the inverse transform of each of the following.

(i) F(s) = 2s+1
(s−2)(s+3)(s−1)

The form of the decomposition will be

G(s) =
A

s−2
+

B
s+3

+
C

s−1
(5.79)

since all the factors in our denominator are linear. Putting the right hand side over a
common denominator and setting numerators equal, we have

2s+1 = A(s+3)(s−1)+B(s−2)(s−1)+C(s−2)(s+3) (5.80)

We can again use one of the two methods in Partial Fractions, where we choose key values
of s that will isolate the coefficients.

s = 2 : 5 = A(5)(1) ⇒ A = 1 (5.81)

s =−3 : −5 = B(−5)(−4) ⇒ B =−1
4

(5.82)

s = 1 : 3 = C(−1)(4) ⇒ C =−3
4

(5.83)

Thus, the partial fraction decomposition for this transform is

F(s) =
1

s−2
−

1
4

s+3
−

3
4

s−1
. (5.84)

The inverse transform is

f (t) = e2t− 1
4

e−3t− 3
4

et (5.85)
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(ii) G(s) = 2−3s
(s−2)(s2+3)

Now we have a quadratic in the denominator. Looking at the table we see the form of
the partial fractions decomposition will be

G(s) =
A

s−2
+

Bs+C
s2 +3

. (5.86)

If we multiply through by (s−2)(s2 +3), we get

2−3s = A(s2 +3)+(Bs+C)(s−2) (5.87)

Notice that we cannot use the second method from the previous example, since there are 2
key values of s, but we have 3 constants. Thus we must compare coefficients

2−3s = A(s2 +3)+(Bs+C)(s−2) (5.88)
= As2 +3A+Bs2−2Bs+Cs−2C (5.89)
= (A+B)s2 +(−2B+C)s+(3A−2C) (5.90)

We have the following system of equations to solve.

s2 : A+B = 0 (5.91)

s : −2B+C = −3 ⇒ A =−8
7

B =
8
7

C =−5
7

(5.92)

s0 = 1 : 3A−2C = 2 (5.93)

Thus the partial fraction decomposition is

G(s) = −
8
7

s−2
+

8
7s

s2 +3
−

5
7

s2 +3
(5.94)

= −8
7

1
s−2

+
8
7

2
s2 +3

− 5
7
√

3

√
3

s2 +3
(5.95)

and the inverse transform is

g(t) =−8
7

e2t +
8
7

cos(
√

3t)− 5
7
√

3
sin(
√

3t). (5.96)

(iii) H(s) = 2
s3(s−1)

The partial fraction decomposition in this case is

H(s) =
A
s
+

B
s2 +

C
s3 +

D
s−1

. (5.97)

Multiplying through by the denominator of H gives

2 = As2(s−1)+Bs(s−1)+C(s−1)+Ds3 (5.98)
= As3−As2 +Bs2−Bs+Cs−C+Ds3 (5.99)

and we have to solve the system of equations

s3 : A+D = 0 (5.100)
s2 : −A+B = 0 (5.101)
s : −B+C = 0 ⇒ A =−2 B =−2 C =−2 D = 2 (5.102)
1 : −C = 2 (5.103)
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Thus our partial fractions decomposition becomes

H(s) = −2
s
− 2

s2 −
2
s3 +

2
s−1

(5.104)

= −2
s
− 2

s2 −
2
2!

2!
s3 +

2
s−1

(5.105)

and the inverse transform is

h(t) =−2−2t− t2 +2et (5.106)

�

5.2 Laplace Transform for Derivatives
Last Time: We thoroughly studied Laplace and Inverse Laplace Transforms

Recall the following formula from a previous lecture

L { f (n)}= snF(s)− sn−1 f (0)− sn−2 f ′(0)− ...− s f (n−2)(0)− f (n−1)(0). (5.107)

We will be dealing exclusively with second order differential equations, so we will need to
remember

L {y′} = sY (s)− y(0) (5.108)
L {y′′} = s2Y (s)− sy(0)− y′(0) (5.109)

You should be familiar with the general formula from lecture 6.1.
REMARK: Notice that we must have our initial conditions at t = 0 to use Laplace

Transforms.

� Example 5.11 Solve the following IVP using Laplace Transforms

y′′−5y′−6y = 5t y(0) =−1 y′(0) = 2 (5.110)

We begin by transforming both sides of the equation:

L {y′′}−5L {y′}−6L {y} = 5L {t} (5.111)

s2Y (s)− sy(0)− y′(0)−5sY (s)+5y(0)−6Y (s) =
5
s2 (5.112)

(s2−5s−6)Y (s)+ s−2−5 =
5
s2 . (5.113)

As we have already begun doing, now we solve for Y (s).

Y (s) =
5

s2(s2−5s−6)
+

7− s
s2−5s−6

(5.114)

=
5

s2(s−6)(s+1)
+

7− s
(s−6)(s+1)

(5.115)

=
5+7s2− s3

s2(s−6)(s+1)
(5.116)
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We now have an expression for Y (s), which is the Laplace Transform of the solution
y(t) to the initial value problem. We have simplified as much as possible now we need
partial fractions decomposition to take the inverse transform

Y (s) =
A
s
+

B
s2 +

C
s−6

+
D

s+1
. (5.117)

Multiplying through by s2(s−6)(s+1) gives

6+7s2 + s3 = As(s−6)(s+1)+B(s−6)(s+1)+Cs2(s+1)+Ds2(s−6) (5.118)

We can find the constant by choosing key values of s

s = 0 : 6 = −6B ⇒ B =−1 (5.119)

s−6 : 42 = 252C ⇒ C =
1
6

(5.120)

s =−1 : 14 = −7D ⇒ A =
1
12

(5.121)

So

Y (s) =
1

12
1
s
− 1

s2 +
1
6

1
s−6

− 1
2

1
s+1

(5.122)

y(t) =
1

12
− t +

1
6

e6t− 1
2

e−t . (5.123)

�

EXERCISE: Solve the IVP in the previous example using the Method of Undetermined
Coefficients. Do you get the same thing? Which method took less work?

� Example 5.12 Solve the following initial value problem

y′′+2y′+5y = cos(t)−10t, y(0) = 0, y′(0) = 1 (5.124)

We begin by transforming the entire equation and solving for Y (s).

L {y′′}+2L {y′}+5L {y} = L {cos(t)}−10L {t}(5.125)

s2Y (s)− sy(0)− y′(0)+2(sY (s)− y(0))+5Y (s) =
s

s2 +1
− 10

s2 (5.126)

(s2 +2s+5)Y (s)−1 =
s

s2 +1
− 10

s2 (5.127)

So we have

Y (s) =
s

(s2 +1)(s2 +2s+5)
− 10

s2(s2 +2s+5)
+

1
s2 +2s+5

(5.128)

= Y1(s)+Y2(s)+Y3(s). (5.129)

Now we will have to take inverse transforms. This will require doing partial fractions on
the first two pieces.

Let’s start with the first one

Y1(s) =
s

(s2 +1)(s2 +2s+5)
=

As+B
s2 +1

+
Cs+D

s2 +2s+5
(5.130)
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Multiply through by (s2 +1)(s2 +2s+5)

2 = As(s2 +2s+5)+B(s2 +2s+5)+Cs(s2 +1)+D(s2 +1) (5.131)
= (A+C)s3 +(2A+B+D)s2 +(5A+2B+C)s+(5B+D) (5.132)

This gives us the following system of equations, which we solve

A+C = 0 (5.133)
2A+B+D = 0 (5.134)

5A+2B+C = 1 ⇒ A =
1
5

B =
1

10
C =−1

5
D =−1

2
(5.135)

5B+D = 0 (5.136)

Thus our first term becomes

Y1(s) =
1
5

s
s2 +1

+
1

10
1

s2 +1
− 1

5
s

s2 +2s+5
− 1

2
1

s2 +2s+5
. (5.137)

We will hold off on taking the inverse transform until we solve for Y2.

Y2(s) =−
10

s2(s2 +2s+5)
=

A
s
+

B
s2 +

Cs+D
s2 +2s+5

(5.138)

We multiply through by s2(s2 +2s+5)

−10 = As(s2 +2s+5)+B(s2 +2s+5)+Cs3 +Ds2 (5.139)
= (A+C)s3 +(2A+B+D)s2 +(5A+2B)s+5B (5.140)

This gives the following system of equations

A+C = 0 (5.141)
2A+B+D = 0 (5.142)

5A+2B = 0 ⇒ A =
4
5

B =−2 C =−4
5

D =
2
5

(5.143)

5B = −10 (5.144)

Thus we have

Y2(s) =
4
5

1
s
− 2

s2 −
4
5

s
s2 +2s+5

+
2
5

1
s2 +2s+5

. (5.145)

Let’s return to our original function

Y (s) = Y1(s)+Y2(s)+Y3(s) (5.146)

=
1
5

s
s2 +1

+
1
10

1
s2 +1

+
4
5

1
s
− 2

s2 +(−1
5
− 4

5
)

s
s2 +2s+5

+(−1
2
+

2
5
+1)

1
s2 +2s+5

(5.147)

=
1
5

s
s2 +1

+
1
10

1
s2 +1

+
4
5

1
s
− 2

s2 −
s

(s+1)2 +4
+

9
10

1
(s+1)2 +4

(5.148)
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Now we have to adjust the last two terms to make them suitable for the inverse transform.
Namely, we need to have s+1 in the numerator of the second to last term, and 2 in the
numerator of the last term.

=
1
5

s
s2 +1

+
1

10
1

s2 +1
+

4
5

1
s
− 2

s2 −
s+1−1

(s+1)2 +4
+

9
10

1
(s+1)2 +4

(5.149)

=
1
5

s
s2 +1

+
1

10
1

s2 +1
+

4
5

1
s
− 2

s2 −
s+1

(s+1)2 +4
+

19
10

1
(s+1)2 +4

(5.150)

=
1
5

s
s2 +1

+
1

10
1

s2 +1
+

4
5

1
s
− 2

s2 −
s+1

(s+1)2 +4
+

19
20

2
(s+1)2 +4

(5.151)

(5.152)

So our solution is

y(t) =
1
5

cos(t)+
1

10
sin(t)+

4
5
−2t− e−t cos(2t)+

19
20

e−t sin(2t). (5.153)

�

We could have done both the preceding examples using the method of Undetermined
Coefficients. In fact, it would have been a lot less work.

The following examples are to be done after learning Section 6.3. Let’s do some
involving step functions, which is where Laplace Transforms work great.

� Example 5.13 Solve the following initial value problem.

y′′− y′+6y = 2−u2(t)e2t−4 y(0) = 0 y′(0) = 0 (5.154)

As before, we begin by transforming everything. Before we do that, however, we need
to write the coefficient function u2(t) as a function evaluated at t−2.

y′′−5y′+6y = 2−u2(t)e2(t−2) (5.155)

Now we can transform

L {y′′}−5L {y′}+6L {y} = 2L {1}−L {u2(t)e2(t−2)}(5.156)

s2Y (s)− sy(0)− y′(0)−5sY (s)+5y(0)−6Y (s) =
2
s
− e−2sL {e2t} (5.157)

(s2−5s+6)Y (s) =
2
s
− e−2s 1

s−2
(5.158)

So we end up with

Y (s) =
2

s(s−3)(s−2)
− e−2s 1

(s−3)(s−2)2 (5.159)

= Y1(s)+ e−2sY2(s). (5.160)

Since one of the terms has an exponential, we will need to deal with each term separately.
I’ll leave it to you to check the partial fractions.

Y1(s) =
1
3

1
s
+

2
3

1
s−3

− 1
s−2

(5.161)

Y2(s) = − 1
s−3

+
1

s−2
+

1
(s−2)2 (5.162)
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Thus we have

Y (s) =
1
2

1
s
+

2
3

1
s−3

− 1
s−2

+ e−2s
(
− 1

s−3
+

1
s−2

+
1

(s−2)2

)
(5.163)

and taking the inverse transforms

y(t) =
1
2
+

2
3

e3t− e2t +u2(t)
(
−e3(t−2)+ e2(t−2)+(t−2)e2(t−2)

)
(5.164)

=
1
2
+

2
3

e3t− e2t +u2(t)
(
−e3t−6− e2t−4 + te2t−4

)
(5.165)

once we observe that L { 1
(s−a)2}= teat . �

� Example 5.14 Solve the following initial value problem

y′′+4y = 8+ tu4(t), y(0) = 0, y′(0) = 0 (5.166)

We need to first write the coefficient function of u4(t) in the form h(t−4) for some function
h(t). So we write h(t−4) = t = t−4+4 and conclude h(t) = t +4. So our equation is

y′′+4y = 8+
(
(t−4)+4

)
u4(t). (5.167)

Now, we want to Laplace Transform everything.

L {y′′}+4L {y} = 8L {1}+L {(t−4)+4)u4(t)} (5.168)

s2Y (s)− sy(0)− y′(0)+4Y (s) =
8
s
+ e−4sL {t +4} (5.169)

(s2 +4)Y (s) =
8
s
+ e−4s

(
1
s2 +

4
s

)
(5.170)

So we have

Y (s) =
8

s(s2 +4)
+ e−4s

(
1

s2(s2 +4)
+

4
s(s2 +4)

)
(5.171)

=
8

s(s2 +4)
+ e−4s 1+4s

s2(s2 +4)
(5.172)

= Y1(s)+ e−4sY2(s). (5.173)

where we have consolidated the two fractions being multiplied by the exponential to reduce
the number of partial fraction decompositions we need to compute. After doing partial
fractions (leaving the details for you), we have

Y1(s) =
2
s
− 2s

s2 +4
(5.174)

and

Y2(s) =
1
s
+

1
4

1
s2 −

s
s2 +4

− 1
4

1
s2 +4

. (5.175)
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so

Y (s) =
2
s
− 2s

s2 +4
+ e−4s

(
1
s
+

1
4

1
s2 −

s
s2 +4

− 1
4

1
s2 +4

)
(5.176)

=
2
s
−2

s
s2 +4

+ e−4s
(

1
s
+

1
4

1
s2 −

s
s2 +4

− 1
8

2
s2 +4

)
(5.177)

(5.178)

and the solution is

y(t) = 2−2cos(2t)+u4(t)
(

1− 1
4
(t−4)− cos(2(t−4))− 1

8
sin(2(t−4))

)
(5.179)

= 2−2cos(2t)+u4(t)
(

1
4

t− cos(2t−8)− 1
8

sin(2t−8)
)
. (5.180)

�

5.3 Step Functions
Last Time: We thoroughly studied the solution process for IVPs using Laplace Transform
Methods.

When we originally defined the Laplace Transform we said we could use it for piecewise
continuous functions, but so far we have only used it for continuous functions. We would
like to solve differential equations with forcing functions that were not continuous, but
had isolated points of discontinuity where the forcing function jumped from one value to
another abruptly. An example is a mechanical vibration where we add some extra force
later on in the process. Without Laplace Transforms we would have to split these IVPs
into several different problems, with initial conditions derived from previous solutions.

5.3.1 Step Functions
Consider the following function

u(t− c) = uc(t) =

{
0 if t < c
1 if t ≥ c

(5.181)

This function is called the step or Heavyside function at c. It represents a jump at t = c
from zero to one at t = c. One can think of a step function as a switch that turns on its
coefficient at a specific time. The step function takes only values of 0 or 1, but is easy
enough to give it any value desired by changing its coefficient. 4uc(t) has the value 4 at
t = c and beyond. We can produce a switch that turns off at t = c,

1−uc(t) =

{
1−0 = 1 if t < c
1−1 = 0 if t ≥ c

(5.182)

it will exhibit the desired behavior. This function will get any contribution we want prior
to t = c. This is the key to writing a piecewise continuous function as a single expression
instead of a system of cases.
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� Example 5.15 Write the following function in terms of step functions.

f (t) =


9 if t < 2
−6 if 2≤ t < 6
25 if 6≤ t < 9
7 if 9≤ t

(5.183)

There are three jumps in this function at t = 2, t = 6, and t = 9. So we will need a total
of three step functions, each of which will correspond to one of these jumps. In terms of
step functions,

f (t) = 9−15u(t−2)+31u(t−6)−18u(t−9) (5.184)

How did we come up with this?
When t < 2, all of the step functions have the value 0. So the only contributing term in

our expression for f (t) is 9, and on this region f (t) = 9.
On the next interval, 2≤ t < 6, we want f (t) =−6. The first step function u(t−2) is

on, while the others are off. Notice that 9 is still present and as a result, the coefficient of
u(t−2) will need to cause the sum of it and 9 to equal -6. So the coefficient must be -15.

On the third interval, 6≤ t < 9, we now have two functions turned on while the last
one is off. The first two terms contribute 9−15u(t−2). Thus the coefficient of u(t−6)
will need to combine with these to give our desired value of f (t) = 25. So it must be 31.

The last term, we have the interval 9≤ t. Now all the switches are turned on and the
coefficient of u(t−9), the step function corresponding to the final jump, should move us
from our previous value of 25 to our new value, f (t) = 7. As a result, it must be -18. �

We are not just interested in situations where our forcing function takes constant values
on intervals. In the case of mechanical vibrations of the sort we considered earlier, we
might want to add in a new external force which is sinusoidal.

So consider the following piecewise continuous function: g(t) = u(t − c) f (t − c),
where f (t) is some function. We shift it by c, the starting point of the step function, to
indicate that we want it to start working at t = c instead of t = 0, which it would normally.
Think of this graphically, to get the graph of g(t), what we want to do is take the graph
of f (t), starting at t = 0, and push it to start at t = c with the value of 0 prior to this time.
This requires shifting the argument of f by c.

5.3.2 Laplace Transform
What is the Laplace Transform L {g(t)}?

L {g(t)} = L {u(t− c) f (t− c)} (5.185)

=
∫

∞

0
u(t− c)e−st f (t− c)dt (5.186)

=
∫

∞

c
e−st f (t− c) using the definition of the step function (5.187)

Now this looks almost like a Laplace Transform, except that the integral starts at t = c
instead of t = 0. So we introduce a new variable y = t− c to shift the integral back to
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starting at 0.

G(s) =
∫

∞

0
e−s(u+c) f (u)du (5.188)

= e−sc
∫

∞

0
e−su f (u)du (5.189)

= e−scF(s) using the notationF(s) = L { f (u)}. (5.190)

Notice that the Laplace Transform we end up with is the Laplace Transform of the original
function f (t) multiplied by an exponential related to the step function’s "on" time, even
though we had shifted the function by c to begin with. Summarizing, we have the formula

L {uc(t) f (t− c)}= e−scF(s) = e−scL { f (t)}. (5.191)

It is critical that we write the function to be transformed in the correct form, as a
different function shifted by c, before we transform it using the above equation. We
compute the transform of f (t) NOT the shifted function f (t−c). This is the most common
mistake initially.

We can get a formula for a step function by itself. To do so, we consider a step function
multiplied by the constant function f (t) = 1. In this case f (t− c) = 1. So

L {uc(t)}= L {uc(t) ·1}= e−csL {1}= 1
s

e−cs. (5.192)

� Example 5.16 Find the Laplace Transforms of each of the following
(i) f (t) = 10u6(t)+3(t−4)2u4(t)− (1+ e10−2t)u5(t)
Recall that we must write each piece in the form uc(t)h(t − c) before we take the

transform. If it is not in that form, we have to put it in that form first. There are three terms
in f (t). We will use the linearity of the Laplace Transform to treat them separately, then
add them together in the end. Write

f (t) = f1(t)+ f2(t)+ f3(t) (5.193)

f1(t) = 10u6(t), so it is just a constant multiplied by a step function. We can thus us
Equation (5.192) to determine its Laplace Transform

L { f1(t)}= 10L {u6(t)}=
10e−6s

s
(5.194)

f2(t) = 3(t−4)2u4(t), so we have to do two things: 1. Write it as a function shifted by
4 (if not in that form already) and 2. Isolate the function that was shifted and transform it.
In this case, we are good: we can write f2(t) = h(t−4)u4(t), with h(t) = 3t2. Thus

L { f2(t)}= e−4sL {3t2}= 3e−4s 2
s3 =

6e−4s

s3 . (5.195)

Finally, we have f3(t) =−(1+e10−2t)u5(t). Again, we have to express it as a function
shifted by 5 and then identify the unshifted function so that we may transform it. This can
be accomplished by rewriting

f3(t) =−(1+ e−2(t−5))u5(t), (5.196)
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so, writing g3(t) = h(t−5)u5(t), we have h(t) =−(1+ e−2t) as the unshifted coefficient
function. Thus

L { f3(t)}= e−5sL {−(1+ e−2t)}=−e−5s
(

1
s
+

1
s+2

)
. (5.197)

Putting it all together,

F(s) =
10e−6s

s
+

6e−4s

s3 − e−5s
(

1
s
+

1
s+2

)
. (5.198)

(ii) g(t) = t2u2(t)− cos(t)u7(t)
In the last example, it turned out that all of the coefficient functions were pre-shifted

(the most we had to do was pull out a constant to see that). In this example, that is definitely
not the case. So what we want to do is to write each of our coefficient functions as the
shift (by whichever constant is appropriate for that step function) of a different function.
The idea is that we add and subtract the desired quantity, then simplify, keeping the correct
shifted term.

So, let’s write g(t) = g1(t)+g2(t) where

g1(t) = t2u2(t) (5.199)
g1(t) = (t−2+2)2u2(t) (5.200)

This is not quite there yet, use the Associative Property of Addition

g1(t) = ((t−2)+2)2u2(t) (5.201)
= ((t−2)2 +4(t−2)+4)u2(t). (5.202)

Now we can see that g1(t) = h(t−2)u2(t), where h(t) = t2 +4t +4.

L {g1(t)}= e−2sL {t2 +4t +4}= e−2s(
2
s3 +

4
s2 +

4
s
) (5.203)

The second term is similar. We start with

g2(t) =−cos(t)u7(t) =−cos((t−7)+7)u7(t) (5.204)

Here we need to use the trig identity

cos(a+b) = cos(a)cos(b)− sin(a)sin(b). (5.205)

This yields

g2(t) =−(cos(t−7)cos(7)− sin(t−7)sin(7))u7(t) (5.206)

Since cos(7) and sin(7) are just constants we get (after using the linearity of the Laplace
Transform)

L {g2(t)} = −e−7s(cos(7)L {cos(t)}− sin(7)L {sin(t)}) (5.207)

= −e−7s(
scos(7)
s2 +1

− sin(7)
s2 +1

). (5.208)



118 Chapter 5. Laplace Transforms

Piecing back together we get

G(s) = e−2s(
2
s3 +

4
s2 +

4
s
)− e−7s(

scos(7)− sin(7)
s2 +1

). (5.209)

(iii) f (t) =

{
t3 if t < 4
t3 +2sin( t

12 −
1
3) if 4≤ t

The first step is to write f (t) as a single equation using step functions.

f (t) = t3 +2sin(
t

12
− 1

3
)u4(t) (5.210)

Next, we want to write the coefficients of u4(t) as another function shifted by 4.

f (t) = t3 +2sin(
1

12
(t−4))u4(t). (5.211)

Since everything is shifted, we have

F(s) = L {t3}+2e−4sL {sin(
1

12
t)} (5.212)

=
3!
s4 +2e−4s

1
12

s2 +( 1
12)

2
(5.213)

=
6
s4 +

e−4s

12(s2 + 1
144)

(5.214)

=
6
s4 +

e−4s

12s2 + 1
12

. (5.215)

(iv) g(t) =

{
t if t < 2
3+(t−2)2 if 2≤ t

First, we need to write g(t) using step functions.

g(t) = t +(−t +3+(t−2)2)u2(t). (5.216)

Notice that we had to subtract t from the coefficient of u2(t) in order to make g(t) have the
correct value when t ≥ 2. However, this means that the coefficient function of u2(t) is no
longer properly shifted. As a result, we need to add and subtract 2 from that t to make it
have the proper form.

g(t) = t +(−(t−2+2)+3+(t−2)2)u2(t) (5.217)
= t +(−(t−2)−2+3+(t−2)2)u2(t) (5.218)
= t +(−(t−2)+1+(t−2)2)u2(t) (5.219)

So, we have

G(s) = L {t}+ e−2s(L {−t}+L {1}+L {t2}) (5.220)

=
1
s2 + e−2s(− 1

s2 +
1
s
+

2
s3 ). (5.221)

�

As you can see, taking the Laplace Transforms of the functions involving step functions
can be a bit more complicated than taking Laplace Transforms of original functions. It still
is not too bad, we have to make sure our coefficient functions are appropriately shifted.
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5.4 Differential Equations With Discontinuous Forcing Functions
Last Time: We considered the Laplace Transforms of Step Functions.

L {u(t− c) f (t− c)}= e−csL { f (t)} (5.222)

where f (t− c) is the coefficient function of u(t− c).

5.4.1 Inverse Step Functions
Now let’s look at some inverse transforms. The previous formula’s associated inverse
transform is

L −1{e−csF(s)}= u(t− c) f (t− c), (5.223)

where f (t) = L −1{F(s)}. So we need to be careful about the shifting. This time we shift
at the end of the calculation, after finding the inverse transform of the coefficient of the
exponential.

� Example 5.17 Find the inverse Laplace Transform of the following.
(i) F(s) = se−2s

(s−4)(s+3)
Whenever we do this, it is a good idea to ignore the exponential and determine the

inverse transform of what is left over first. In this case we cannot split anything up, since
there is only one exponential and no terms without an exponential. So we pull out the
exponential and ignore it for the time being

F(s) = e−2s s
(s−4)(s+3)

= e−2sH(s). (5.224)

We want to determine h(t) = L −1{H(s)}. Once we have that, the definition of the inverse
transform tells us that the inverse will be

f (t) = h(t−2)u(t−2). (5.225)

Now we need to use partial fractions on H(s) so that we can take its inverse transform.
The form of the decomposition is

H(s) =
A

s−4
+

B
s+3

(5.226)

So

s = A(s+3)+B(s−4) (5.227)

We can use the quick method of picking key values of s

s = 4 : 4 = 7A ⇒ A =
4
7

(5.228)

s =−3 : −3 = −7B ⇒ B =
3
7

(5.229)

So the partial fraction decomposition is

H(s) =
4
7

1
s−4

+
3
7

1
s+3

(5.230)

=
4
7

1
s−4

+
3
7

1
s+3

. (5.231)
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So we have

h(t) =
4
7

e4t +
3
7

e−3t . (5.232)

Thus, since f (t) = h(t−2)u(t−2),

f (t) = u(t−2)(
4
7

e4(t−2)+
3
7

e−3(t−2)) (5.233)

= u(t−2)(
4
7

e4t−8 +
3
7

e−3t+6). (5.234)

(ii) G(s) = 2e−3s+3e−7s

(s−3)(s2+9)
We write

G(s) = (2e−3s +3e−7s)
1

(s−3)(s2 +9)
= (2e−3s +3e−7s)H(s). (5.235)

We want to find the inverse transform of

H(s) =
1

(s−3)(s2 +9)
. (5.236)

The partial fraction decomposition is

H(s) =
A

s−3
+

Bs+C
s2 +9

=
A(s2 +9)+(Bs+C)(s−3)

(s−3)(s2 +9)
(5.237)

So we have the following

1 = A(s2 +0)+(Bs+C)(s−3) (5.238)
= (A+B)s2 +(−3B+C)s+(9A−3C) (5.239)

Setting the coefficients equal and solving gives

s2 : A+B = 0 (5.240)

s : −3B+C = 0 ⇒ A =
1

18
B =− 1

18
C =− 3

18
(5.241)

s0 : 9A−3C = 1 (5.242)

Substituting back into the transform, we get

H(s) =
1

18
(

1
s−3

+
−s−3
s2 +9

) (5.243)

=
1

18
(

1
s−3

− s
s2 +9

− 3
s2 +9

). (5.244)

Now, if we take the inverse transform, we get

h(t) =
1

18
(e3t− cos(3t)− sin(3t)). (5.245)
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Returning to the original problem, we had

G(s) = (2e−3s +3e−7s)H(s) (5.246)
= 2e−3sH(s)+3e−7sH(s). (5.247)

We had to distribute H(s) through the parenthesis and use the definition, since we must
end up with each term containing one step function and one coefficient function. So

g(t) = 2h(t−3)u(t−3)+3h(t−7)u(t−7)) (5.248)

=
u(t−3)

9
(e3(t−3)− cos(3(t−3))− sin(3(t−3))) (5.249)

+
3u(t−7)

18
(e3(t−7)− cos(3(t−7))− sin(3(t−7))) (5.250)

(iii) F(s) = e−4s

s2(s+1)
We write

F(s) = e−4s 1
s2(s+1)

= e−4sH(s) (5.251)

H(s) =
A
s2 +

B
s
+

C
s+1

(5.252)

1 = A(s+1)+Bs(s+1)+Cs2 (5.253)
= (B+C)s2 +(A+B)s+A (5.254)

So we have

B+C = 0 (5.255)
A+B = 0 ⇒ A = 1 B =−1 C = 1 (5.256)

A = 1 (5.257)

Thus H(s) and its inverse transform are

H(s) =
1
s2 −

1
s
+

1
s+1

(5.258)

h(t) = t−1+ e−t (5.259)

Our original transform function was

F(s) = e−4sH(s). (5.260)

By the definition of the inverse transform, it will be

f (t) = h(t−4)u(t−4) (5.261)

= ((t−4)−1+ e−(t−4))u(t−4) (5.262)
= (t−5+ e4−t)u(t−4) (5.263)

(iv) G(s) = s−e−2s

s2+2s+5
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In this case, we won’t have to do partial fractions, since the denominator does not
factor. Instead, we will have to complete the square and we get

G(s) =
s− e−2s

(s+1)2 +4
=

s
(s+1)2 +4

−e−2s 1
(s+1)2 +4

= G1(s)−e−2sG2(s) (5.264)

We need to treat G1(s) and G2(s) separately. G1(t) is almost fine, but we need the
numerator to contain s+1 instead of s. We do this by adding and subtracting 1 from the
numerator

G1(s) =
s+1−1

(s+1)2 +4
(5.265)

=
s+1

(s+1)2 +4
− 1

(s+1)2 +4
(5.266)

=
s+1

(s+1)2 +4
− 1

2
2

(s+1)2 +4
(5.267)

g1(t) = e−t cos(2t)− 1
2

e−t sin(2t). (5.268)

For G2(t), all we have to of is to make the numerator 2 instead of 1.

G2(s) =
1

(s+1)2 +4
(5.269)

=
1
2

2
(s+1)2 +4

(5.270)

g2(t) =
1
2

e−t sin(2t) (5.271)

Our original transform was

G(s) = G1(s)− e−2sG2(s) (5.272)

By the definition of the inverse transform

g(t) = g1(t)−g2(t−2)u(t−2) (5.273)

= e−t cos(2t)− 1
2

e−t sin(2t)− 1
2

e−(t−2) sin(2(t−2))u(t−2) (5.274)

= e−t cos(2t)− 1
2

e−t sin(2t)− 1
2

e2−t) sin(2t−4))u(t−2) (5.275)

�

HW 6.3 # 19,21

5.4.2 Solving IVPs with Discontinuous Forcing Functions
We want to now actually solve IVPs by using the Laplace Transform and our experience
with step functions.
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� Example 5.18 Find the solution to the initial value problem

y′′+ y = g(t), y(0) = 0, y′(0) = 1 (5.276)

where

g(t) =

{
2t if 0≤ t < 1
2 if 1≤ t < ∞

(5.277)

The Laplace Transform of the left side and using ICs we get

L {y′′+ y}= s2Y (s)− sy(0)− y′(0)+Y (s) = (s2 +1)Y (s)−1 (5.278)

From techniques in the previous section we know

L {g(s)}= G(s) =
(2−2e−s)

s2 (5.279)

So combining these two

(s2 +1)Y (s)−1 =
2−2e−s

s2 (5.280)

Solving for Y (s) we get

Y (s) =
2−2e−s

s2(s2 +1)
+

1
s2 +1

(5.281)

Note that if we use partial fractions decomposition

1
s2(s2 +1)

=
1
s2 −

1
s2 +1

(5.282)

So the equation becomes

Y (s) =

(
2−2e−s

s2 − 2−2e−s

s2 +1

)
+

1
s2 +1

(5.283)

=
2
s2 −

2e−s

s2 +
2e−s

s2 +1
− 1

s2 +1
(5.284)

From our table we know the inverse of 1/s2 is the function t, and the inverse transform of
1/(s2 +1) is sin(t). Thus

y(t) = 2t−2(t−1)u(t−1)+2u(t−1)sin(t−1)− sin(t) (5.285)

The function y(t) can also be written as

y(t) =

{
2t− sin(t) if 0≤ t < 1
2+2sin(t−1)− sin(t) if 1≤ t < ∞

(5.286)

�
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� Example 5.19 Actually #6 in Homework Section of book. Solve the following IVP

y′′+3y′+2y = u2(t), y(0) = 0, y′(0) = 1 (5.287)

Take the Laplace Transform of both sides of the ODE

s2Y (s)− sy(0)− y′(0)+3[sY (s)− y(0)]+2Y (s) =
e−2s

s
(5.288)

Applying the initial conditions,

s2Y (s)+3sY (s)+2Y (s)−1 =
e−2s

s
(5.289)

Solving for the transform

Y (s) =
1

s2 +3s+2
+

e−2s

s(s2 +3s+2)
. (5.290)

Using Partial Fractions Decomposition

1
s2 +3s+2

=
1

s+1
− 1

s+2
(5.291)

and

1
s(s2 +3s+2)

=
1
2

[
1
s
+

1
s+2

− 2
s+1

]
(5.292)

Taking the inverse transform term by term the solution is

y(t) = e−t− e−2t +

[
1
2
− e−(t−2)+

1
2

e−2(t−2)
]

u2(t). (5.293)

�

� Example 5.20 #5 in the Homework Section of the book. Solve the following IVP

y′′+3y′+2y = f (t), y(0) = 0, y′(0) = 0 (5.294)

where

f (t) =

{
1 if 0≤ t < 10
0 if 10≤ t < ∞

(5.295)

Finding the Laplace Transform of both sides of the ODE we have

s2Y (s)− sy(0)− y′(0)+3[sY (s)− y(0)]+2Y (s) = L { f (t)} (5.296)

Applying the Initial Conditions

s2Y (s)+3sY (s)+2Y (s) = L { f (t)} (5.297)
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The transform of the forcing function is

L { f (t)}= 1
s
− e−10s

s
. (5.298)

Solving for the transform gives

Y (s) =
1

s(s2 +3s+2)
− e−10s

s(s2 +3s+2)
. (5.299)

Using Partial Fractions Decomposition

1
s(s2 +3s+2)

=
1
2

[
1
s
+

1
s+2

− 2
s+1

]
. (5.300)

Thus

L −1
[

1
s(s2 +3s+2)

]
=

1
2
+

e−2t

2
− e−t . (5.301)

So using the inverse theorem for Step Functions

L −1
[

e−10s

s(s2 +3s+2)

]
=

[
1
2
+

e−2t

2
− e−t

]
u10(t). (5.302)

Hence the solution to the IVP is

y(t) =
1
2
[1−u10(t)]+

e−2t

2
− e−t− 1

2
[e−(2t−20)−2e−(t−10)]u10(t). (5.303)

�

5.5 Dirac Delta and the Laplace Transform
Last Time: We studied differential equations with discontinuous forcing functions. Now
we want to look at when that forcing function is a Dirac Delta. When we considered
step functions we considered these to be like switches which get turned on after a given
amount of time. In applications this represented a new external force applied at a certain
time. What if instead we wanted to apply a large force over a short period of time? In
applications this represents a hammer striking an object once or a force applied only at one
instant. We want to introduce the Dirac Delta "function" to accomplish this goal.

5.5.1 The Dirac Delta
Paul Dirac (1902 - 1984) was a British Physicist who studied quantum Mechanics. Famous
Quote on Poetry: "In Science one tries to tell people, in such a way as to be understood by
everyone, something that no one ever knew before. But in poetry, it’s exactly the opposite."

There are several ways to define the Dirac delta, but we will define it so it satisfies the
following properties:
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Definition 5.5.1 (Dirac Delta) The Dirac delta at t = c, denoted δ (t− c), satisfies the
following:
(1) δ (t− c) = 0, when t 6= c
(2)
∫ c+ε

c−ε
δ (t− c)dt = 1, for any ε > 0

(3)
∫ c+ε

c−ε
f (t)δ (t− c)dt = f (c), for any ε > 0.

We can think of δ (t− c) as having an "infinite" value at t = c, so that its total energy
is 1, all concentrated at a single point. So think of the Dirac delta as an instantaneous
impulse at time t = c. The second and third properties will not work when the limits
are the endpoints of any interval including t = c. This function is zero everywhere but
one point, and yet the integral is 1. This is why it is a "function", the Dirac delta is not
really a function, but in higher mathematics it is referred to as a generalized function or a
distribution.

5.5.2 Laplace Transform of the Dirac Delta
Before we try solving IVPs with Dirac Deltas, we will need to know its Laplace Transform.
By definition

L {δ (t− c)}=
∫

∞

0
e−st

δ (t− c)dt = e−cs (5.304)

by the third property of the Dirac delta. Notice that this requires c > 0 or the integral
would just vanish. Now let’s try solving some IVPs involving Dirac deltas

� Example 5.21 Solve the following initial value problem

y′′+3y′−10y = 4δ (t−2), y(0) = 2, y′(0) =−3 (5.305)

We begin by taking the Laplace Transform of both sides of the equation.

s2Y (s)− sy(0)− y′(0)+3(sY (s)− y(0))−10Y (s) = 4e−2s (5.306)
(s2 +3s−10)Y (s)−2s−3 = 4e−2s (5.307)

So

Y (s) =
4e−2s

(s+5)(s−2)
+

2s+3
(s+5)(s−2)

(5.308)

= Y1(s)e−2s +Y2(s) (5.309)

By partial fractions decomposition we have

Y1(s) =
4

(s+5)(s−2)
=

4
7

1
s−2

− 4
7

1
s+5

(5.310)

Y2(s) =
2s+3

(s+5)(s−2)
=

1
s−2

+
1

s+5
(5.311)

Take inverse Laplace Transforms to get

y1(t) =
4
7

e2t− 4
7

e−5t (5.312)

y2(t) = e2t + e−5t (5.313)
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and the solution is then

y(t) = y1(t−2)u2(t)+ y2(t) (5.314)

= u2(t)
(

4
7

e2(t−2)− 4
7

e−5(t−2)
)
+ e2t + e−5t (5.315)

= u2(t)
(

4
7

e2t−4− 4
7

e−5t−10
)
+ e2t + e−5t (5.316)

�

Notice that even though the exponential in the transform Y (s) came originally from the
delta, once we inverse the transform the corresponding term becomes a step function. This
is generally the case, because there is a relationship between the step function uc(t) and
the delta δ (t− c).

We begin with the integral

∫ t

−∞

δ (u− c)du =

{
0, t < c
1, t > c

(5.317)

= uc(t) (5.318)

The Fundamental Theorem of Calculus says

u′c(t) =
d
dt

(∫ t

−∞

δ (u− c)du
)
= δ (t− c) (5.319)

Thus the Dirac delta at t = c is the derivative of the step function at t = c, which we can
think of geometrically by remembering that the graph of uc(t) is horizonatal at every t 6= c,
hence at those points u′c(t) = 0 and it has a jump of one at t = c.

� Example 5.22 Solve the following initial value problem.

y′′+4y′+9y = 2δ (t−1)+ et , y(0) = 0, y′(0) =−1 (5.320)

First we Laplace Transform both sides and solve for Y (s).

s2Y (s)− sy(0)− y′(0)+4(sY (s)− y(0))+9Y (s) = 2e−s +
1

s−1
(5.321)

(s2 +4s+9)Y (s)+1 = 2e−s +
1

s−1
(5.322)

Thus

Y (s) =
2e−s

s2 +4s+9
+

1
(s−1)(s2 +4s+9)

− 1
s2 +4s+9

(5.323)

= Y1(s)e−s +Y2(s) = Y3(s) (5.324)

Next, we have to prepare Y (s) for the inverse transform. This will require completing
the square for Y1(s) and Y3(s), while we will need to first use partial fractions decomposition
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on Y2(s). I leave the details to you to verify, so we now have everything in the correct form
for the inverse transform

Y1(s) =
2

s2 +4s+9
=

2
(s+2)2 +5

=
2√
5

√
5

(s+2)2 +5

Y2 =
1

(s−1)(s2 +4s+9)
=

1
14

(
1

s−1
− s+5

(s+2)2 +5

)
=

1
14

(
1

s−1
− (s+2−2)+5

(s+2)2 +5

)
=

1
14

(
1

s−1
− s+2

(s+2)2 +5
− 3

(s+2)2 +5

)
=

1
14

(
1

s−1
− s+2

(s+2)2 +5
− 3√

5

√
5

(s+2)2 +5

)
Y3(s) =

1
(s2 +4s+9)

=
1

(s+2)2 +5

=
1√
5

√
5

(s+2)2 +5

So their inverse transforms are

y1(t) =
2√
5

3−2t sin(
√

5t) (5.325)

y2(t) =
1

14
(et− e−2t cos(

√
5t)− 3√

5
e−2t sin(

√
5t)) (5.326)

y3(t) =
1√
5

e−2t sin(
√

5t). (5.327)

Thus, since our original transformed function was

Y (s) = Y1(s)e−s +Y2(s)−Y3(s) (5.328)

we obtain

y(t) = u1(t)y1(t−1)+ y2(t)− y3(t) (5.329)

= u1(t)
(

2√
5

e−2t+2 sin(
√

5t−
√

5)
)

(5.330)

+
1

14

(
et− e−2t cos(

√
5t)− 3√

5
e−2t sin(

√
5t)
)

(5.331)

− 1√
5

e−2t sin(
√

5t). (5.332)

�

� Example 5.23 Solve the following initial value problem.

y′+16y = 2u3(t)+5δ (t−1), y(0) = 1, y′(0) = 2 (5.333)
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Again, we begin by taking the Laplace Transform of the entire equation and applying our
initial conditions, we get

s2Y (s)− sy(0)− y′(0)+16Y (s) =
2e−3s

s
+5e−s (5.334)

(s2 +16)Y (s)− s−2 =
2e−3s

s
+5e−s (5.335)

Solving for Y (s)

Y (s) =
2e−3s

s(s2 +16)
+

5e−s

s2 +16
+

s+2
s2 +16

(5.336)

= Y1(s)e−3s +Y2(s)e−s +Y3(s) (5.337)

The only one of these we need to use partial fractions on is the first one. The rest can be
dealt with directly, all they need is a little modification.

Y1(s) =
2

s(s2 +16)
=

1
8

1
s
− 1

8
s

s2 +16
(5.338)

Y2(s) =
5

s2 +16
=

5
4

4
s2 +16

(5.339)

Y3(s) =
s+2

s2 +16
=

s
s2 +16

+
1
2

4
s2 +16

(5.340)

and so the associated inverse transforms are

y1(t) =
1
8
− 1

8
cos(4t) (5.341)

y2(t) =
5
4

sin(4t) (5.342)

y3(t) = cos(4t)+
1
2

sin(4t). (5.343)

Our solution is the inverse transform of

Y (s) = Y1(s)e−3s +Y2(s)e−s +Y3(s) (5.344)

and this will be

y(t) = u3(t)y1(t−3)+u1(t)y2(t−1)+ y3(t) (5.345)

= u3(t)
(

1
8
− 1

8
cos(4(t−3))

)
+

5
4

u1(t)sin(4(t−1))+ cos(4t)+
1
2

sin(4t)(5.346)

= u3(t)
(

1
8
− 1

8
cos(4t−12)

)
+

5
4

u1(t)sin(4t−4)+ cos(4t)+
1
2

sin(4t)(5.347)

�
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6. Systems of Linear Differential Equations

6.1 Systems of Differential Equations
To this point we have focused on solving a single equation, but may real world systems are
given as a system of differential equations. An example is Population Dynamics, Normally
the death rate of a species is not a constant but depends on the population of predators. An
example of a system of first order linear equations is

x′1 = 3x1 + x2 (6.1)
x′2 = 2x1−4x2 (6.2)

We call a system like this coupled because we need to know what x1 is to know what x2 is
and vice versa. It is important to note that there will be a lot of similarities between our
discussion and the previous sections on second and higher order linear equations. This is
because any higher order linear equation can be written as a system of first order linear
differential equations.

� Example 6.1 Write the following second order differential equation as a system of first
order linear differential equations

y′′+4y′− y = 0, y(0) = 2, y′(0) =−2 (6.3)

All that is required to rewrite this equation as a first order system is a very simple
change of variables. In fact, this is ALWAYS the change of variables to use for a problem
like this. We set

x1(t) = y(t) (6.4)
x2(t) = y′(t) (6.5)

Then we have

x′1 = y′ = x2 (6.6)
x′2 = y′′ = y−4y′ = x1−4x2 (6.7)
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Notice how we used the original differential equation to obtain the second equation. The
first equation, x′1 = x2, is always something you should expect to see when doing this. All
we have left to do is to convert the initial conditions.

x1(0) = y(0) = 2 (6.8)
x2(0) = y′(0) =−2 (6.9)

Thus our original initial value problem has been transformed into the system

x′1 = x2, x1(0) = 2 (6.10)
x′2 = x1−4x2, x2(0) =−2 (6.11)

�

Let’s do an example for higher order linear equations.

� Example 6.2

y(4)+ ty′′′−2y′′−3y′− y = 0 (6.12)

as a system of first order differential equations.
We want to use a similar change of variables as the previous example. The only

difference is that since our equation in this example is fourth order we will need four new
variables instead of two.

x1 = y (6.13)
x2 = y′ (6.14)
x3 = y′′ (6.15)
x4 = y′′′ (6.16)

Then we have

x′1 = y′ = x2 (6.17)
x′2 = y′′ = x3 (6.18)
x′3 = y′′′ = x4 (6.19)

x′4 = y(4) = y+3y′+2y′′− ty′′′ = x1 +3x2 +2x3− tx4 (6.20)

as our system of equations. To be able to solve these, we need to review some facts about
systems of equations and linear algebra. �

6.2 Review of Matrices
6.2.1 Systems of Equations

In this section we will restrict our attention only to the linear algebra that might come up
when studying systems of differential equations. This is far from a complete treatment, so
if you’re curious, taking a linear algebra course is either mandatory for your major or a
good idea to be more well-rounded.
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Suppose we start with a system of n equations with n unknowns x1,x2, ...,xn.

a11x1 +a12x2 + ...+a1nxn = b1 (6.21)
a21x1 +a22x2 + ...+a2nxn = b2 (6.22)

. . . (6.23)
an1x1 +an2x2 + ...+annxn = bn (6.24)

(6.25)

Here’s the basic fact about linear systems of equations with the same number of
unknowns as equations.

Theorem 6.2.1 Given a system of n equations with n unknowns, there are three possi-
bilities for the number of solutions:
(1) No Solutions
(2) Exactly One Solution
(3) Infinitely Many Solutions

Definition 6.2.1 A system of equations is called nonhomogeneous if at least one bi 6= 0.
If every bi = 0, the system is called homogeneous. A homogeneous system has the
following form:

a11x1 +a12x2 + ...+a1nxn = 0 (6.26)
a21x1 +a22x2 + ...+a2nxn = 0 (6.27)

. . . (6.28)
an1x1 +an2x2 + ...+annxn = 0 (6.29)

(6.30)

Notice that there is always at least one solution given by

x1 = x2 = ...= xn = 0 (6.31)

This solution is called the trivial solution. This means that it is impossible for a
homogeneous system to have zero solutions, and Theorem 1 can be modified as follows

Theorem 6.2.2 Given a homogeneous system of n equations with n unknowns, there
are two possibilities for the number of solutions:
(1) Exactly one solution, the trivial solution
(2) Infinitely many non-zero Solutions in addition to the trivial solution.

6.2.2 Linear Algebra
While we could solve the homogeneous and nonhomogeneous systems directly, we have
very powerful tools available to us. The main objects of study in linear algebra are
Matrices and Vectors.

An n×n matrix (referred to as an n-dimensional matrix) is an array of numbers with n
rows and n columns. It is possible to consider matrices with different numbers of rows and
columns, but this is more general than we need for this course. An n×n matrix has the
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form

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n

 (6.32)

There is one special matrix we will need to be familiar with. This is the n-dimensional
Identity Matrix.

In =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 (6.33)

We will focus on 2×2 matrices in this class. The principles we discuss extend to higher
dimensions, but computationally 2×2 matrices are much easier.

Matrix addition and subtraction are fairly straightforward. Do everything component-
wise. If we multiply by a constant, Scalar Multiplication, we multiply each component
by a constant.

� Example 6.3 Given the matrices

A =

(
3 1
−2 5

)
B =

(
−2 0
1 4

)
(6.34)

compute A−2B.
The first thing to do is compute 2B

2B = 2
(
−2 0
1 4

)
=

(
−4 0
2 8

)
(6.35)

Then we have

A−2B =

(
3 1
−2 5

)
−
(
−4 0
2 8

)
(6.36)

=

(
7 1
−4 −3

)
. (6.37)

�

Notice that these operations require the dimensions of the matrices to be equal. A
vector is a one-dimensional array of numbers. For example

x =


x1
x2
...

xn

 (6.38)

is a vector of n unknowns. We can think of a vector as a 1×n or an n×1 dimensional
matrix with regards to matrix operations.
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We can multiply two matrices A and B together by "multiplying" each row in A by each
column of B. That is, to find the element in the ith row and the jth column, we multiply
the corresponding elements in the ith row of the first matrix and jth column of the second
matrix and add these products together.

� Example 6.4 Compute AB, where

A =

(
1 2
−1 3

)
and B =

(
0 1
2 −3

)
. (6.39)

So

AB =

(
1 2
−1 3

)(
0 1
2 −3

)
(6.40)

=

(
1(0)+2(2) 1(1)+2(−3)
−1(0)+3(2) −1(1)+3(−3)

)
(6.41)

=

(
4 −5
6 −10

)
(6.42)

�

Notice that AB 6= BA in general. Matrix Multiplication is NOT commutative. We must
pay special attention to the dimensions of the matrices being multiplied. If the number
of columns of A do not match the number of rows of B, we cannot compute AB. Also,
the identity matrix In is the identity for matrix multiplication, i.e. InA = AIn = A for any
matrix A.

In particular, we can multiply an n-dimensional matrix over a vector with n-components
together as in the following example

� Example 6.5 Compute(
2 −1
3 2

)(
−1
4

)
(6.43)

We proceed by "multiplying" each row in the matrix by the vector.(
2 −1
3 2

)(
−1
4

)
=

(
2(−1)+−1(4)
3(−1)+2(4)

)
(6.44)

=

(
−6
5

)
(6.45)

�

R Multiplication of a matrix with a vector yields another vector. We then have an
interpretation of a matrix A as a linear function on vectors.

Definition 6.2.2 (Determinants) Every square (n×n) matrix has a number associated
to it, called the determinant. We will not learn how to compute determinants for n > 2,
as the process gets more and more complicated as n increases. The standard notation
for the determinant of a matrix is

det(A) = |A| (6.46)
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For a 2×2 matrix, the determinant is computed using the following formula∣∣∣∣ a b
c d

∣∣∣∣= ad−bc. (6.47)

that is, the determinant is the product of the main diagonal minus the product of the off
diagonal.

� Example 6.6 Compute the determinants of

A =

(
2 3
1 2

)
and B =

(
1 2
2 4

)
(6.48)

There is not much to do here but us the definition.

det(A) = 2(2)−3(1) = 4−3 = 1 (6.49)
det(B) = 1(4)−2(2) = 4−4 = 0 (6.50)

�

We call a matrix A singular if det(A) = 0 and nonsingular otherwise. In the previous
example, the first matrix was nonsingular while the second was singular.

Determinants give us important information about the existence of an inverse for a
given matrix. The inverse of a matrix A, denoted A−1, satisfies

AA−1 = A−1A = In (6.51)

Inverses do not necessarily exist for a given matrix.

Theorem 6.2.3 Given a matrix A,
(1) If A is nonsingular an inverse, A−1, will exist.
(2) If A is singular, no inverse, A−1, will exist.

A−1 =
1

ad−bc

(
d −b
−c a

)
(6.52)

Definition 6.2.3 The Transpose of a matrix is switching the rows and columns so that
ai j = aT

ji.

A =

(
1 2
3 4

)
, AT =

(
1 3
2 4

)
(6.53)

6.3 Linear Independence, Eigenvalues and Eigenvectors
We return our attention now to the system of equations

a11x1 +a12x2 + ...+a1nxn = b1 (6.54)
a21x1 +a22x2 + ...+a2nxn = b2 (6.55)

... (6.56)
an1x1 +an2x2 + ...+annxn = bn (6.57)

(6.58)
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To express this system of equations in matrix form, we start by writing both sides as vectors.


a11x1 +a12x2 + ...+a1nxn
a21x1 +a22x2 + ...+a2nxn

...
an1x1 +an2x2 + ...+annxn

 (6.59)

Notice that the left side of the equation can be rewritten as a matrix-vector product.
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n




x1
x2
...

xn

=


b1
b2
...

bn

 (6.60)

We can simplify this notation by writing

Ax = b (6.61)

where x is the vector whose entries are variables in the system, A is the matrix of coefficients
of the system (called the coefficient matrix), and b is the vector whose entries are the
right-hand side of the equations. We call Equation (6.61) the matrix form of the system
of equations.

We know that the system of equations has zero one or infinitely many solutions.
Suppose det(A) 6= 0, i.e. A is nonsingular. Then Equation (6.61) has only one solution

x = A−1b. (6.62)

So we can rewrite our earlier Theorem from last lecture as

Theorem 6.3.1 Given the system of equations (6.61),
(1) If det(A) 6= 0, there is exactly one solution,
(2) If det(A) = 0, there are either zero or infinitely many solutions.

Recall that if the system were homogeneous, each bi = 0, we always have the trivial so-
lution xi = 0. Denoting the vector with entries all 0 by 0, the matrix form of a homogeneous
system is

Ax = 0 (6.63)

Thus we can express the earlier Theorem 2 from last lecture as

Theorem 6.3.2 Given the homogeneous system of equations,
(1) If det(A) 6= 0, there is exactly one solution x = 0,
(2) If det(A) = 0, there will be infinitely many nonzero solutions.

6.3.1 Eigenvalues and Eigenvectors
The following is probably the most important aspect of linear algebra. We have already
observed if we multiply a vector by a matrix, we get another vector, i.e.,

Aη = y (6.64)
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A natural question to ask is when y is just a scalar multiple of η . In other words, for what
vectors η is multiplication by A equivalent to scaling η , or

Aη = λη (6.65)

If (6.65) is satisfied for some constant λ and some vector η , we call η an eigenvector
of A with eigenvalue λ . We first notice if η = 0, (6.65) will be satisfied for any λ . We are
not interested in that case, so in general we will assume η 6= 0.

So how can we find solutions to (6.65)? Start by rewriting it, recalling that I is the
2×2 identity matrix.

Aη = λη (6.66)
Aη−λ Iη = 0 (6.67)
(A−λ I)η = 0 (6.68)

We had to multiply λ by the identity I before we could factor it out. This is because
we cannot subtract a constant from a matrix. The last equation is the matrix form for a
homogeneous system of equations. By Theorem 3 form last lecture, if A−λ I is nonsingular
(det(A) 6= 0), the only solution is the trivial solution η = 0, which we have already said
we are not interested in. On the other hand, if A−λ I is singular, we will have infinitely
many nonzero solutions. Thus the condition that we will need to find any eigenvalues and
eigenvectors that may exist for A is for

det(A−λ I) = 0 (6.69)

It is a basic fact that this equation is an nth degree polynomial if A is an n×n matrix. This
is called the characteristic equation of the matrix A.

As a result, the Fundamental Theorem of Algebra tells us that an n×n matrix A has n
eigenvalues, counting multiplicities. To find them, all we have to do is to find the roots of
an nth degree polynomial, which is no problem for small n. Suppose we have found these
eigenvalues. What can we conclude about their associated eigenvectors?

Definition 6.3.1 We call k vectors x1,x2, ...,xk linearly independent if the only con-
stants c1,c2, ...,ck satisfying

c1x1 + c2x2 + ...+ ckxk = 0 (6.70)

are c1 = c2 = ... = ck = 0. This definition should look familiar. This is an identical
definition to our earlier definition of linear independence for functions.

Theorem 6.3.3 If λ1,λ2, ...,λn is the complete list of eigenvalues of A, including multi-
plicities, then
(1) If λ occurs only once in the list it is called simple
(2) If λ occurs k > 1 times it has multiplicity k
(3) If λ1,λ2, ...,λk(k ≤ n) are the simple eigenvalues of A with corresponding eigenvec-
tors η(1),η(2), ...,η(k), then these eigenvectors η(i) are linearly independent.
(4) If λ is an eigenvalue with multiplicity k, then λ will have anywhere from 1 to k
linearly independent eigenvectors.
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This fact should look familiar from our discussion of second and higher order equations.
This theorem tells us when we have linearly independent eigenvectors, which is useful
when trying to solve systems of differential equations. Now once we have the eigenvalues,
how do we find the associated eigenvectors?

� Example 6.7 Find the eigenvalues and eigenvectors of

A =

(
3 4
2 1

)
. (6.71)

The first thing we need to do is to find the roots of the characteristic equation of the
matrix

A−λ I =
(

3 4
2 1

)
−λ

(
1 0
0 1

)
=

(
3−λ 4

2 1−λ

)
(6.72)

This is

0 = det(A−λ I) = (3−λ )(1−λ )−8 = λ
2−4λ −5 = (λ −5)(λ +1). (6.73)

This the two eigenvalues of A are λ1 = 5 and λ2 =−1. Now to find the eigenvectors we
need to plug each eigenvalue into (A−λ I)η = 0 and solve for η .

(1) λ1 = 5

In this case, we have the following system(
−2 4
2 −4

)
η = 0 (6.74)

Next, we will write out components of the two vectors and multiply through(
−2 4
2 −4

)(
η1
η2

)
=

(
0
0

)
(6.75)(

−2η1 +4η2
2η1−4η2

)
=

(
0
0

)
(6.76)

For this vector equation to hold, the components must match up. So we have got to find a
solution to the system

−2η1 +4η2 = 0 (6.77)
2η1−4η2 = 0. (6.78)

Notice that these are the same equation, but differ by a constant, in this case −1. This will
always be the case if we have found our eigenvalues correctly, since we know that A−λ I
is singular and so our system should have infinitely many solutions.

Since the equations are basically the same we need to choose one and obtain a relation
between eigenvector components η1 and η2. Let’s choose the first. This gives

2η1 = 4η2. (6.79)
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and so we have η1 = 2η2. As a result, any eigenvector corresponding to λ1 = 5 has the
form

η =

(
η1
η2

)
=

(
2η2
η2

)
. (6.80)

There are infinitely many vectors of this form, we need only one. We can select one by
choosing a value for η2. The only restriction is we do not want to pick η2 = 0, since then
η = 0, which we want to avoid. We may choose, for example, η2 = 1, and then we have

η
(1) =

(
2
1

)
. (6.81)

(2) λ2 =−1
In the previous case we went into more detail than we will in future examples. The

process is the same. Plugging λ2 into (A−λ I)η = 0 gives the system(
4 4
2 2

)(
η1
η2

)
=

(
0
0

)
(6.82)(

4η1 +4η2
2η1 +2η2

)
=

(
0
0

)
(6.83)

The two equations corresponding to this vector equation are

4η1 +4η2 = 0 (6.84)
2η1 +2η2 = 0. (6.85)

Once again, these differ by a constant factor. Solving the first equation we find

η1 =−η2 (6.86)

and so any eigenvector has the form

η =

(
η1
η2

)
=

(
−η2
η2

)
. (6.87)

We can choose η2 = 1, giving us a second eigenvector of

η
(2) =

(
−1
1

)
. (6.88)

Summarizing the eigenvalue/eigenvector pairs of A are

λ1 = 5 η
(1) =

(
2
1

)
(6.89)

λ2 = −1 η
(2) =

(
−1
1

)
. (6.90)

�

REMARK: We could have ended up with any number of different values for our
eigenvectors η(1) and η(2), depending on the choices we made at the end. However, they
would have only differed by a multiplicative constant.
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� Example 6.8 Find the eigenvalues and eigenvectors of

A =

(
2 −1
5 4

)
. (6.91)

The characteristic equation for this matrix is

0 = det(A−λ I) =

∣∣∣∣ 2−λ −1
5 4−λ

∣∣∣∣ (6.92)

= (2−λ )(4−λ )+5 (6.93)
= λ

2−6λ +13 (6.94)

By completing the square (or quadratic formula), we see that the roots are r1,2 = 3±2i. If
we get complex eigenvalues, to find the eigenvectors we proceed as we did in the previous
example.

(1) λ1 = 3+2i
Here the matrix equation

(A−λ I)η = 0 (6.95)

becomes(
−1−2i −1

5 1−2i

)(
η1
η2

)
=

(
0
0

)
(6.96)(

(−1−2i)η1−η2
5η1 +(1−2i)η2

)
=

(
0
0

)
(6.97)

So the pair of equations we get are

(−1−2i)η1−η2 = 0 (6.98)
5η1 +(1−2i)η2 = 0. (6.99)

It is not as obvious as the last example, but these two equations are scalar multiples. If
we multiply the first equation by −1+2i, we recover the second. Now we choose one of
these equations to work with. Let’s use the first. This gives us that η2 = (−1−2i)η1, so
any vector has the form

η =

(
η1
η2

)
=

(
η1

(−1−2i)η1

)
. (6.100)

Choosing η1 = 1 gives a first eigenvector of

η
(1) =

(
1

−1−2i

)
(6.101)

(2) λ1 = 3−2i
Here the matrix equation

(A−λ I)η = 0 (6.102)
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becomes(
−1+2i −1

5 1+2i

)(
η1
η2

)
=

(
0
0

)
(6.103)(

(−1+2i)η1−η2
5η1 +(1+2i)η2

)
=

(
0
0

)
(6.104)

So the pair of equations we get are

(−1+2i)η1−η2 = 0 (6.105)
5η1 +(1+2i)η2 = 0 (6.106)

Let’s use the first equation again. This gives us that η2 = (−1+2i)η1, so any eigenvector
has the form

η =

(
η1
η2

)
=

(
η1

(−1+2i)η1

)
. (6.107)

Choosing η1 = 1 gives a second eigenvector of

η
(2) =

(
1

−1+2i

)
. (6.108)

To summarize, A has the following eigenvalue/eigenvector pairs

λ1 = 3−2i
(

1
−1−2i

)
(6.109)

λ2 = 3+2i
(

1
−1+2i

)
(6.110)

�

R Notice that the eigenvalues came in complex conjugate pairs, i.e. in the form a±bi.
This is always the case for complex roots, as we can easily see from the quadratic
formula. Moreover, the complex entries in the eigenvectors were also complex
conjugates, and the real entries were the same up to multiplication by a constant. This
is always the case as long as A does not have any complex entries.

6.4 Homogeneous Linear Systems with Constant Coefficients
Last Time: We studied linear independence, eigenvalues, and eigenvectors.

6.4.1 Solutions to Systems of Differential Equations
A two-dimensional equation has the form

x′ = ax+by (6.111)
y′ = cx+dy (6.112)
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Suppose we have got our system written in matrix form

x′ = Ax (6.113)

How do we solve this equation? If A were a 1× 1 matrix, i.e. a constant, and x were a
vector with 1 component, the differential equation would be the separable equation

x′ = ax (6.114)

We know this is solved by

x(t) = ceat . (6.115)

One might guess, then, that in the n×n case, instead of a we have some other constant in
the exponential, and instead of the constant of integration c we have some constant vector
η . So our guess for the solution will be

x(t) = ηert . (6.116)

Plugging the guess into the differential equation gives

rηert = Aηert (6.117)
(Aη− rη)ert = 0 (6.118)
(A− rI)ηert = 0. (6.119)

Since ert 6= 0, we end up with the requirement that

(A− rI)η = 0 (6.120)

This should seem familiar, it is the condition for η to be an eigenvector of A with eigenvalue
r. Thus, we conclude that for (6.116) to be a solution of the original differential equation,
we must have η an eigenvalue of A with eigenvalue r.

That tells us how to get some solutions to systems of differential equations, we find the
eigenvalues and vectors of the coefficient matrix A, then form solutions using (6.116). But
how will we form the general solution?

Thinking back to the second/higher order linear case, we need enough linearly indepen-
dent solutions to form a fundamental set. As we noticed last lecture, if we have all simple
eigenvalues, then all the eigenvectors are linearly independent, and so the solutions formed
will be as well. We will handle the case of repeated eigenvalues later.

So we will find the fundamental solutions of the form (6.116), then take their linear
combinations to get our general solution.

6.4.2 The Phase Plane
We are going to rely on qualitatively understanding what solutions to a linear system
of differential equations look like, this will be important when considering nonlinear
equations. We know the trivial solution x = 0 is always a solution to our homogeneous
system x′ = Ax. x = 0 is an example of an equilibrium solution, i.e. it satisfies

x′ = Ax = 0 (6.121)
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and is a constant solution. We will assume our coefficient matrix A is nonsingular (det(A) 6=
0), thus x = 0 is the only equilibrium solution.

The question we want to ask is whether other solutions move towards or away from
this constant solution as t→±∞, so that we can understand the long term behavior of the
system. This is no different than what we did when we classified equilibrium solutions for
first order autonomous equations, we will generalize the ideas to systems of equations.

When we drew solution spaces then, we did so on the ty-plane. To do something
analogous we would require three dimensions, since we would have to sketch both x1 and
x2 vs. t. Instead, what we do is ignore t and think of our solutions as trajectories on the
x1x2-plane. Then our equilibrium solution is the origin. The x1x2-plane is called the phase
plane. We will see examples where we sketch solutions, called phase portraits.

6.4.3 Real, Distinct Eigenvalues
Lets get back to the equation x′=Ax. We know if λ1 and λ2 are real and distinct eigenvalues
of the 2×2 coefficient matrix A associated with eigenvectors η(1) and η(2), respectively.
We know from above η(1) and η(2) are linearly independent, as λ1 and λ2 are simple. Thus
the solutions obtained from them using (6.116) will also be linearly independent, and in
fact will form a fundamental set of solutions. The general solution is

x(t) = c1eλ1t
η
(1)+ c2eλ2t

η
(2) (6.122)

So if we have real, distinct eigenvalues, all that we have to do is find the eigenvectors,
form the general solution as above, and use any initial conditions that may exist.

� Example 6.9 Solve the following initial value problem

x′ =
(
−2 2
2 1

)
x x(0) =

(
5
0

)
(6.123)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ −2−λ 2
2 1−λ

∣∣∣∣ (6.124)

= λ
2 +λ −6 (6.125)

= (λ −2)(λ +3) (6.126)

So the eigenvalues are λ1 = 2 and λ2 =−3. Next we need the eigenvectors.

(1) λ1 = 2

(A−2I)η = 0 (6.127)(
−4 2
2 −1

)(
η1
η2

)
=

(
0
0

)
(6.128)

So we will want to find solutions to the system

−4η1 +2η2 = 0 (6.129)
2η1−η2 = 0. (6.130)
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Using either equation we find η2 = 2η1, and so any eigenvector has the form

η =

(
η1
η2

)
=

(
η1

2η1

)
(6.131)

Choosing η1 = 1 we obtain the first eigenvector

η
(1) =

(
1
2

)
. (6.132)

(2) λ2 =−3

(A+3I)η = 0 (6.133)(
1 2
2 4

)(
η1
η2

)
=

(
0
0

)
(6.134)

So we will want to find solutions to the system

η1 +2η2 = 0 (6.135)
2η1 +4η2 = 0. (6.136)

Using either equation we find η1 =−2η2, and so any eigenvector has the form

η =

(
η1
η2

)
=

(
−2η2

η2

)
. (6.137)

Choosing η2 = 1 we obtain the second eigenvector

η
(2) =

(
−2
1

)
. (6.138)

Thus our general solution is

x(t) = c1e2t
(

1
2

)
+ c2e−3t

(
−2
1

)
. (6.139)

Now let’s use the initial condition to solve for c1 and c2. The condition says(
5
0

)
= x(0) = c1

(
1
2

)
+ c2

(
−2
1

)
. (6.140)

All that’s left is to write out is the matrix equation as a system of equations and then solve.

c1−2c2 = 5 (6.141)
2c1 + c2 = 0 ⇒ c1 = 1,c2 =−2 (6.142)

Thus the particular solution is

x(t) = e2t
(

1
2

)
−2e−3t

(
−2
1

)
. (6.143)

�
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� Example 6.10 Sketch the phase portrait of the system from Example 1.
In the last example we saw that the eigenvalue/eigenvector pairs for the coefficient

matrix were

λ1 = 2 η
(1) =

(
1
2

)
(6.144)

λ2 = −3 η
(2) =

(
−2
1

)
. (6.145)

The starting point for the phase portrait involves sketching solutions corresponding to the
eigenvectors (i.e. with c1 or c2 = 0). We know that if x(t) is one of these solutions

x′(t) = Acieλitη(i) = ciλieλitη(i). (6.146)

This is just, for any t, a constant times the eigenvector, which indicates that lines in the di-
rection of the eigenvector are these solutions to the system. There are called eigensolutions
of the system.

Next, we need to consider the direction that these solutions move in. Let’s start with
the first eigensolution, which corresponds to the solution with c2 = 0. The first eigenvalue
is λ1 = 2 > 0. This indicates that this eigensolution will grow exponentially, as the
exponential in the solution has a positive exponent. The second eigensolution corresponds
to λ2 = −3 < 0, so the exponential in the appropriate solution is negative. Hence this
solution will decay and move towards the origin.

What does the typical trajectory do (i.e. a trajectory where both c1,c2 6= 0)? The
general solution is

x(t) = c1e2t
η
(1)+ c2e−3t

η
(2). (6.147)

Thus as t→ ∞, this solution will approach the positive eigensolution, as the component
corresponding to the negative eigensolution will decay away. On the other hand, as
t→−∞, the trajectory will asymptotically reach the negative eigensolution, as the positive
eigensolution component will be tiny. The end result is the phase portrait as in Figure 1.
When the phase portrait looks like this (which happens in all cases with eigenvalues of
mixed signs), the equilibrium solution at the origin is classified as a saddle point and is
unstable.

�

� Example 6.11 Solve the following initial value problem.

x′1 = 4x1 + x2 x1(0) = 6 (6.148)
x′2 = 3x1 +2x2 x2(0) = 2 (6.149)

Before we can solve anything, we need to convert this system into matrix form. Doing so
converts the initial value problem to

x′ =
(

4 1
3 2

)
x x(0) =

(
6
2

)
. (6.150)
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Figure 6.1: Phase Portrait of the saddle point in Example 1

To solve, the first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ 4−λ 1
3 2−λ

∣∣∣∣ (6.151)

= λ
2−6λ +5 (6.152)

= (λ −1)(λ −5) (6.153)

So the eigenvalues are λ1 = 1 and λ2 = 5. Next, we find the eigenvectors.
(1) λ1 = 1

(A− I)η = 0 (6.154)(
3 1
3 1

)(
η1
η2

)
=

(
0
0

)
(6.155)

So we will want to find solutions to the system

3η1 +η2 = 0 (6.156)
3η1 +η2 = 0. (6.157)

Using either equation we find η2 =−3η1, and so any eigenvector has the form

η =

(
η1
η2

)
=

(
η1
−3η1

)
(6.158)

Choosing η1 = 1 we obtain the first eigenvector

η
(1) =

(
1
−3

)
. (6.159)

(2) λ2 = 5
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(A−5I)η = 0 (6.160)(
−1 1
3 −3

)(
η1
η2

)
=

(
0
0

)
(6.161)

So we will want to find solutions to the system

−η1 +η2 = 0 (6.162)
3η1−3η2 = 0. (6.163)

Using either equation we find η1 = η2, and so any eigenvector has the form

η =

(
η1
η2

)
=

(
η2
η2

)
. (6.164)

Choosing η2 = 1 we obtain the second eigenvector

η
(2) =

(
1
1

)
. (6.165)

Thus our general solution is

x(t) = c1et
(

1
−3

)
+ c2e5t

(
1
1

)
. (6.166)

Now using our initial conditions we solve for c1 and c2. The condition gives(
6
2

)
= x(0) = c1

(
1
−3

)
+ c2

(
1
1

)
. (6.167)

All that is left is to write out this matrix equation as a system of equations and then solve

c1 + c2 = 6 (6.168)
−3c1 + c2 = 2⇒ c1 = 1,c2 = 5 (6.169)

Thus the particular solution is

x(t) = et
(

1
−3

)
+5e5t

(
1
1

)
. (6.170)

�

� Example 6.12 Sketch the phase portrait of the system from Example 3.
In the last example, we saw that the eigenvalue/eigenvector pairs for the coefficient

matrix were

λ1 = 1 η
(1) =

(
1
−3

)
. (6.171)

λ2 = 5 η
(2) =

(
1
1

)
. (6.172)
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Figure 6.2: Phase Portrait of the unstable node in Example 2

We begin by sketching the eigensolutions (these are straight lines in the directions of
the eigenvectors). Both of these trajectories move away from the origin, though, as the
eigenvalues are both positive.

Since |λ2| > |λ1|, we call the second eigensolution the fast eigensolution and the
first one the slow eigensolution. The term comes from the fact that the eigensolution
corresponds to the eigenvalue with larger magnitude will either grow or decay more quickly
than the other one.

As both grow in forward time, asymptotically, as t → ∞, the fast eigensolution will
dominate the typical trajectory, as it gets larger much more quickly than the slow eigen-
solution does. So in forward time, other trajectories will get closer and closer to the
eigensolution corresponding to η(2). On the other hand, as t→−∞, the fast eigensolution
will decay more quickly than the slow one, and so the eigensolution corresponding to η(1)

will dominate in backwards time.
Thus the phase portrait will look like Figure 2. Whenever we have two positive

eigenvalues, every solution moves away from the origin. We call the equilibrium solution
at the origin, in this case, a node and classify it as being unstable.

�

� Example 6.13 Solve the following initial value problem.

x′1 = −5x1 + x2 x1(0) = 2 (6.173)
x′2 = 2x1−4x2 x2(0) =−1 (6.174)

We convert this system into matrix form.

x′ =
(
−5 1
2 −4

)
x x(0) =

(
2
−1

)
. (6.175)
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To solve, the first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ −5−λ 1
2 −4−λ

∣∣∣∣ (6.176)

= λ
2 +9λ +18 (6.177)

= (λ +3)(λ +6) (6.178)

So the eigenvalues are λ1 =−3 and λ2 =−6. Next, we find the eigenvectors.
(1) λ1 =−3

(A+3I)η = 0 (6.179)(
−2 1
2 −1

)(
η1
η2

)
=

(
0
0

)
(6.180)

So we will want to find solutions to the system

−2η1 +η2 = 0 (6.181)
2η1−η2 = 0. (6.182)

Using either equation we find η2 = 2η1, and so any eigenvector has the form

η =

(
η1
η2

)
=

(
η1

2η1

)
(6.183)

Choosing η1 = 1 we obtain the first eigenvector

η
(1) =

(
1
2

)
. (6.184)

(2) λ2 =−6

(A+6I)η = 0 (6.185)(
1 1
2 2

)(
η1
η2

)
=

(
0
0

)
(6.186)

So we will want to find solutions to the system

η1 +η2 = 0 (6.187)
2η1 +2η2 = 0. (6.188)

Using either equation we find η1 =−η2, and so any eigenvector has the form

η =

(
η1
η2

)
=

(
−η2
η2

)
. (6.189)

Choosing η2 = 1 we obtain the second eigenvector

η
(2) =

(
−1
1

)
. (6.190)
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Thus our general solution is

x(t) = c1e−3t
(

1
2

)
+ c2e−6t

(
−1
1

)
. (6.191)

Now using our initial conditions we solve for c1 and c2. The condition gives(
2
−1

)
= x(0) = c1

(
1
2

)
+ c2

(
−1
1

)
. (6.192)

All that is left is to write out this matrix equation as a system of equations and then solve

c1− c2 = 2 (6.193)

2c1 + c2 = −1⇒ c1 =
1
3
,c2 =−

5
3

(6.194)

Thus the particular solution is

x(t) =
1
3

e−3t
(

1
2

)
− 5

3
e−6t

(
−1
1

)
. (6.195)

�

� Example 6.14 Sketch the phase portrait of the system from Example 5.
In the last example, we saw that the eigenvalue/eigenvector pairs for the coefficient

matrix were

λ1 = −3 η
(1) =

(
1
2

)
(6.196)

λ2 = −6 η
(2) =

(
−1
1

)
. (6.197)

We begin by sketching the eigensolutions. Both of these trajectories decay towards the
origin, since both eigenvalues are negative. Since |λ2| > |λ1|, the second eigensolution
is the fast eigensolution and the first one the slow eigensolution. In the general solution,
both exponentials are negative and so every solution will decay and move towards the
origin. Asymptotically, as t → ∞ the trajectory gets closer and closer to the origin, the
slow eigensolution will dominate the typical trajectory, as it dies out less quickly than the
fast eigensolution. So in forward time, other trajectories will get closer and closer to the
eigensolution corresponding to η(1). On the other hand, as t→−∞, the fast solution will
grow more quickly than the slow one, and so the eigensolution corresponding to η(2) will
dominate in backwards time.

Thus the phase portrait will look like Figure 3. Whenever we have two negative
eigenvalues, every solution moves toward the origin. We call the equilibrium solution at
the origin, in this case, a node and classify it as being asymptotically stable.

�

6.5 Complex Eigenvalues
Last Time: We studied phase portraits and systems of differential equations with real
eigenvalues.
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Figure 6.3: Phase Portrait of the Stable Node in Example 3

We are looking for solutions to the equation x′ = Ax. What happens when the eigenval-
ues are complex?

We still have solutions of the form

x = ηeλ t (6.198)

where η is an eigenvector of A with eigenvalue λ . However, we want real-valued solutions,
which we will not have if they remain in this form.

Our strategy will be similar in this case: we’ll use Euler’s formula to rewrite

e(a+ib)t = eat cos(bt)+ eat isin(bt) (6.199)

then we will write out one of our solutions fully into real and imaginary parts. It will turn
out that each of these parts gives us a solution, and in fact they will also form a fundamental
set of solutions.

� Example 6.15 Solve the following initial value problem.

x′ =
(

3 6
−2 −3

)
x x(0) =

(
2
4

)
(6.200)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ 3−λ 6
−2 −3−λ

∣∣∣∣ (6.201)

= λ
2 +3 (6.202)

(6.203)

So the eigenvalues are λ1 =
√

3i and λ2 =−
√

3i. Next we need the eigenvectors. It turns
out we will only need one. Consider λ1 =

√
3i.

(A−
√

3iI)η∗ = 0 (6.204)(
3−
√

3i 6
−2 −3−

√
3i

)(
η1
η2

)
=

(
0
0

)
(6.205)
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The system of equations to solve is

(3−
√

3i)η1 +6η2 = 0 (6.206)

−2η1 +(−3−
√

3i)η2 = 0. (6.207)

We can use either equation to find solutions, but lets solve the second one. This gives
η1 =

1
2(−3−

√
3i)η2. Thus any eigenvector has the form

η =

( 1
2(−3−

√
3i)η2

η2

)
(6.208)

and choosing η2 = 2 yields the first eigenvector

η
(1) =

(
−3−

√
3i

2

)
. (6.209)

Thus we have a solution

x1(t) = e
√

3it
(
−3−

√
3i

2

)
(6.210)

Unfortunately, this is complex-valued, and we would like a real-valued solution. We he
had a similar problem in the chapter on second order equations. What did we do then? We
use Euler’s formula to expand this imaginary exponential into sine and cosine terms, then
split the solution into real and imaginary parts. This gave two fundamental solutions we
needed.

We will do the same thing here. Using Euler’s Formula to expand

e
√

3it = cos(
√

3t)+ isin(
√

3t). (6.211)

then multiply it through the eigenvector. After separating into real and complex parts using
the basic matrix arithmetic operations, it will turn out that each of these parts is a solution.
They are linearly independent and give us a fundamental set of solutions.

x1(t) = (cos(
√

3t)+ isin(
√

3t))
(
−3−

√
3i

2

)
(6.212)

=

(
(−3cos(

√
3t)−3isin(

√
3t)−

√
3icos(

√
3t)+

√
3sin(

√
3t)

2cos(
√

3t)+2isin(
√

3t)

)
(6.213)

=

((
−3cos(

√
3t)+

√
3sin(

√
3t)

2cos(
√

3t)

)
+ i
(
−3sin(

√
3t)−

√
3cos(

√
3t)

2sin(
√

3t)

))
(6.214)

= u(t)+ iv(t) (6.215)

Both u(t) and v(t) are real-valued solutions to the differential equation. Moreover, they
are linearly independent. Our general solution is then

x(t) = c1u(t)+ c2v(t) (6.216)

= c1

(
−3cos(

√
3t)+

√
3sin(

√
3t)

2cos(
√

3t)

)
+ c2

(
−3sin(

√
3t)−

√
3cos(

√
3t)

2sin(
√

3t)

)
(6.217)
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Figure 6.4: Phase Portrait of the center point in Example 1

Finally, we need to use the initial condition to get c1 and c2. It says(
−2
4

)
= x(0) = c1

(
−3
2

)
+ c2

(
−
√

3
0

)
. (6.218)

This translates into the system

−3c1−
√

3c2 = −2 (6.219)

2c1 = 4 ⇒ c1 = 2 c2 =−
4√
3
. (6.220)

Hence our particular solution is

x(t) = 2
(
−3cos(

√
3t)+

√
3sin(

√
3t)

2cos(
√

3t)

)
− 4√

3

(
−3sin(

√
3t)−

√
3cos(

√
3t)

2sin(
√

3t)

)
(6.221)

�

� Example 6.16 Sketch the phase portrait of the system in Example 1.
The general solution to the system in Example 1 is

x(t) = c1

((
−3cos(

√
3t)+

√
3sin(

√
3t)

2cos(
√

3t)

)
+c2

(
−3sin(

√
3t)−

√
3cos(

√
3t)

2sin(
√

3t)

))
(6.222)

Every term in this solution is periodic, we have cos(
√

3t) and sin(
√

3t). Thus both x1
and x2 are periodic functions for any initial conditions. On the phase plane, this translates
to trajectories which are closed, that is they form circles or ellipses. As a result, the phase
portrait looks like Figure 1.
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This is always the case when we have purely imaginary eigenvalues, as the exponentials
turn into a combination of sines and cosines. In this case, the equilibrium solution is called
a center and is neutrally stable or just stable, note that it is not asymptotically stable.

The only work left to do in these cases is to figure out the eccentricity and direction
that the trajectory traveled. The eccentricity is difficult, and we usually do not care that
much about it. The direction traveled is easier to find. We can determine whether the
trajectories orbit the origin in a clockwise or counterclockwise direction by calculating the
tangent vector x′ at a single point. For example, at the point (1,0) in the previous example,
we have

x′ =
(

3 6
−2 −3

)(
1
0

)
=

(
3
−2

)
(6.223)

Thus at (1,0), the tangent vector points down and to the right. This can only happen is the
trajectories circle to origin in a clockwise direction. �

� Example 6.17 Solve the following initial value problem.

x′ =
(

6 −4
8 −2

)
x x(0) =

(
1
3

)
(6.224)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ 6−λ −4
8 −2−λ

∣∣∣∣ (6.225)

= λ
2−4λ +20 (6.226)

(6.227)

So the eigenvalues, using the Quadratic Formula are λ1,2 = 2± 4i. Next we need the
eigenvectors. It turns out we will only need one. Consider λ1 = 2+4i.

(A− (2+4i)I)η∗ = 0 (6.228)(
4−4i −4

8 −4−4i

)(
η1
η2

)
=

(
0
0

)
(6.229)

The system of equations to solve is

(4−4i)η1−4η2 = 0 (6.230)
8η1 +(−4−4i)η2 = 0. (6.231)

We can use either equation to find solutions, but lets solve the first one. This gives
η2 = (1− i)η1. Thus any eigenvector has the form

η =

(
η1

(1− i)η1

)
(6.232)

and choosing η1 = 1 yields the first eigenvector

η
(1) =

(
1

1− i

)
. (6.233)
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Thus we have a solution

x1(t) = e(2+4i)t
(

1
1− i

)
(6.234)

Using Euler’s Formula to expand

= e2ie4it
(

1
1− i

)
(6.235)

= e2t(cos(4t)+ isin(4t))
(

1
1− i

)
(6.236)

= e2t
(

cos(4t)+ isin(4t)
cos(4t)+ isin(4t)− icos(4t)+ sin(4t)

)
(6.237)

=

((
cos(4t)

cos(4t)+ sin(4t)

)
+ i
(

sin(4t)
sin(4t)− cos(4t)

))
(6.238)

= u(t)+ iv(t) (6.239)

Our general solution is then

x(t) = c1u(t)+ c2v(t) (6.240)

= c1e2t
(

cos(4t)
cos(4t)+ sin(4t)

)
+ c2e2t

(
sin(4t)

sin(4t)− cos(4t)

)
(6.241)

Finally, we need to use the initial condition to get c1 and c2. It says(
1
3

)
= x(0) = c1

(
1
1

)
+ c2

(
0
−1

)
. (6.242)

This translates into the system

c1 = 1 (6.243)
c1− c2 = 3 ⇒ c1 = 1 c2 =−2. (6.244)

Hence our particular solution is

x(t) = e2t
(

cos(4t)
cos(4t)+ sin(4t)

)
−2e2t

(
sin(4t)

sin(4t)− cos(4t)

)
(6.245)

�

� Example 6.18 Sketch the phase portrait of the system in Example 3.
The only difference between the general solution to this example

x(t) = c1e2t
(

cos(4t)
cos(4t)+ sin(4t)

)
+ c2e2t

(
sin(4t)

sin(4t)− cos(4t)

)
(6.246)

and the one in Example 1 is the exponential sitting out front of the periodic terms. This will
make the solution quasi-periodic, rather than actually periodic. The exponential, having
a positive exponent, will cause the solution to grow as t→ ∞ away from the origin. The
solution will still rotate, however, as the trig terms will cause the oscillation. Thus, rather
than forming closed circles or ellipses, the trajectories will spiral out of the origin.
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Figure 6.5: Phase Portrait of the unstable spiral in Example 3

As a result, when we have complex eigenvalues λ1,2 = a± bi, we call the solution
spiral. In this case, as the real part a (which affects the exponent) is positive, and the
solution grows, the equilibrium at the center is unstable. If a is negative, then spiral would
decay into the origin, and the equilibrium would have been asymptotically stable.

So what is there to calculate if we recognize we have a stable/unstable spiral? We still
need to know the direction of rotation. This requires, as with the center, that we calculate
the tangent vector at a point or two. In this case, the tangent vector at the point (1,0) is

x′ =
(

6 −4
7 2

)(
1
0

)
=

(
6
7

)
. (6.247)

Thus the tangent vector at (1,0) points up and to the right. Combined with the knowledge
that the solution is leaving the origin, this can only happen if the direction of rotation of
the spiral is counterclockwise. We obtain a picture as in Figure 2.

�

6.6 Repeated Eigenvalues
Last Time: We studied phase portraits and systems of differential equations with complex
eigenvalues.

In the previous cases we had distinct eigenvalues which led to linearly independent
solutions. Thus, all we had to do was calculate those eigenvectors and write down solutions
of the form

xi(t) = η
(i)eλit . (6.248)

When we have an eigenvalue of multiplicity 2, however, Theorem 3 from a previous
lecture tells us that we could have either one or two eigenvectors up to linear independence.
If we have two, we are ok, if not then we have more work to do.
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6.6.1 A Complete Eigenvalue
We call a repeated eigenvalue complete if it has two distinct (linearly independent) eigen-
vectors. Suppose our repeated eigenvalue λ has two linearly independent eigenvectors η(1)

and η(2). Then we can proceed as before and our general solution is

x(t) = c1eλ t
η
(1)+ c2eλ t

η
(2) (6.249)

= eλ t(c1η
(1)+ c2η

(2)). (6.250)

It is a basic fact from linear algebra that given two linearly independent vectors such as
η(1) and η(2), we can form any other two-dimensional vector out of a linear combination
of these two. So any vector function of the form x(t) = eλ tη is a solution. As discussed
earlier, this can only happen if η is an eigenvector of the coefficient matrix with eigenvalue
λ . The conclusion, is that if λ has two linearly independent eigenvectors, every vector is
an eigenvector.

This only happens if the coefficient matrix A is a scalar multiple of the identity matrix,
since we need

Aη = λη = λ Iη (6.251)

for every vector η . Thus, this case only arises when

A =

(
λ 0
0 λ

)
(6.252)

or when the original system is

x1 = λx1 (6.253)
x2 = λx2 (6.254)

What does the phase portrait look like in this case? Since every vector is an eigenvector,
every trajectory that is not a constant solution at the origin is an eigensolution and hence a
straight line. We call such the equilibrium solution, in this case a star node and its stability
is determined by the sign of λ .
(1) If λ > 0 all the eigensolutions grow away from the origin and the origin is unstable.
(2) If λ < 0 every eigensolution decays to the origin and the origin is asymptotically stable.
We get Figure 8.5.1.

This is a fairly degenerate situation that will not come up in any further discussion, but
is important to keep in mind when it happens.

6.6.2 A Defective Eigenvalue
The other possibility is that λ only has a single eigenvector η up to linear independence.
In this case, to form the general solution we need two linearly independent solutions, but
we only have one.

x1(t) = eλ t
η (6.255)

In this case, we say that λ is defective or incomplete. What should we do in this case?
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Figure 6.6: Phase Portrait of a star node

We had a similar problem in the second order linear case. When we ran into this
situation there, we were able to work around it by multiplying the solution be t. What if
we try that here?

x(t) = teλ t
η (6.256)

is a solution

x′ = Ax (6.257)
ηeλ t +ληteλ t = Aηteλ t (6.258)

Matching coefficients, in order for this guess to be a solution we require

η = 0 ⇒ η = 0 (6.259)
ληeλ t = Aηeλ t ⇒ (A−λ I)η = 0 (6.260)

Thus we need η to be an eigenvector of A, which we knew it was, but we also need η = 0,
which cannot be since an eigenvector by definition is nonzero. We need another approach.

The problem with the last attempt is we ended up with a term that did not have a t, but
rather just an exponential in it, and this term caused us to require η = 0. A possible fix
might be to add in another term in our guess that only involves an exponential and some
other vector ρ . Let’s guess that the form of the solution is

x(t) = teλ t
η + eλ t

ρ (6.261)

and see what conditions on ρ we can derive.

x′ = Ax (6.262)
ληteλ t +ηeλ t +λρeλ t = A(ηteλ t +ρeλ t) (6.263)

(η +λρ +ληt)eλ t = Aηteλ t +Aρeλ t (6.264)
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Thus, setting the coefficients equal and we have

Aη = λη ⇒ (A−λ I)η = 0 (6.265)
η +λρ = Aρ ⇒ (A−λ I)ρ = η (6.266)

The first condition only tells us that η is an eigenvector of A, which we knew. But the
second condition is more useful. It tells us that (A−λ I)ρ = η , then

x(t) = ηteλ t +ρeλ t (6.267)

will be a solution to the differential equation.
A vector ρ satisfying

(A−λ I)ρ = η (6.268)

is called a generalized eigenvector, while (A−λ I)ρ 6= 0, it is not hard to verify

(A−λ I)2
ρ = 0 (6.269)

So as long as we can reproduce a generalized eigenvector ρ , this formula will give a second
solution and we can form a general solution.

� Example 6.19 Find the general solution to the following problem.

x′ =
(
−6 −5
5 4

)
x (6.270)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ −6−λ −5
5 4−λ

∣∣∣∣ (6.271)

= λ
2 +2λ +1 (6.272)

= (λ +1)2 (6.273)

So we have a repeated eigenvalue of λ =−1. Due to the form of the matrix, we can also
figure out from our previous discussion that λ will only have one eigenvector up to linear
independence. Let’s calculate it by solving (A+ I)η = 0.(

−5 −5
5 5

)(
η1
η2

)
=

(
0
0

)
(6.274)

So the system of equations we want to solve is

−5η1−5η2 = 0 (6.275)
5η1 +5η2 = 0. (6.276)

This is solved by anything of the form η1 = −η2. So if we choose η2 = 1, we get the
eigenvector of

η =

(
−1
1

)
. (6.277)
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This isn’t enough. We also need to find a generalized eigenvector ρ . So we need to solve
(A+ I)ρ = η , or(

−5 −5
5 5

)(
ρ1
ρ2

)
=

(
−1
1

)
⇒ ρ1 =

1
5
−ρ2 (6.278)

So our generalized eigenvector has the form

ρ =

( 1
5 −ρ2

ρ2

)
. (6.279)

Choose ρ2 = 0 gives

ρ =

( 1
5
0

)
. (6.280)

Thus our general solution is

x(t) = c1eλ t
η + c2(teλ t

η + eλ t
ρ) (6.281)

= c1e−t
η

(
−1
1

)
+ c2

[
te−t

(
−1
1

)
+ e−t

( 1
5
0

)]
. (6.282)

�

� Example 6.20 Sketch the Phase Portrait for the system in Example 1.
We begin by drawing our eigensolution. Note that in this case, we only have one,

unlike the case where we had a (nondegenerate) node. The eigensolution is the straight

line in the direction
(
−1
1

)
, as indicated in Figure 8.5.1. As the eigenvalue is negative,

the solution will decay towards the origin.
But what happens to the other trajectories? First, let’s just consider the general solution

x(t) = c1e−t
η

(
−1
1

)
+ c2

[
te−t

(
−1
1

)
+ e−t

( 1
5
0

)]
(6.283)

with c2 6= 0. All three terms have the same exponential, but as t→±∞ the te−t term will
have a larger magnitude than the other two. Thus in both the forward and backward time,
we would get that the trajectories will become parallel to the single eigensolution.

Now, since λ < 0 and exponentials decay faster than polynomials grow, we can see
that as t→ ∞, every solution will decay to the origin. So the origin will be asymptotically
stable. We also call the origin a degenerate node in this case, since it behaves like the a
node, but has a single eigensolution.

Consider a node with two close eigenvalues. Then try to imagine what happens to the
general solution as we bring the eigenvalues together. The eigensolutions will collapse
together, but the non-eigensolution trajectories would keep their asymptotic behavior with
regard to this collapsed eigensolution.

Notice that, as illustrated in Figure 8.5.1 we end up with a large degree of rotation of
the solution. The solution has to turn around to be able to be asymptotic to the solution in
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Figure 6.7: Phase Portrait for the asymptotically stable degenerate node in Example 1

both forward and backward time. This is because degenerate nodes are the borderline case
between nodes and spirals. Suppose our characteristic equation is

0 = λ
2 +bλ + c. (6.284)

The eigenvalues are then, by the quadratic formula

λ =
−b±

√
b2−4c

2a
(6.285)

The discriminant of this equation is positive in the node case and negative in the spi-
ral/center cases. We get degenerate nodes when the solutions transition between these two
cases and the discriminant becomes zero. So for degenerate nodes the solutions are trying
to wind around in a spiral, but they do not quite make it due to the lack of complexity of
the eigenvalue.

But how do we know the direction of rotation? We do the same thing we did in the
spiral case, compute the tangent vector at a point. Combined with our knowledge of the
stability of the origin, will tell us how the non-eigensolutions must turn.

Let’s start by considering the point (1,0). At this point,(
−6 −5
5 4

)(
1
0

)
=

(
−6
5

)
. (6.286)

Since we know our solution is asymptotically stable, the tangent vector can only point up
and to the left if the solution rotates counterclockwise as they start to approach the origin.

�

� Example 6.21 Find the general solution to the following system.

x′ =
(

12 4
−16 −4

)
x (6.287)

The first thing we need to do is to find the eigenvalues of the coefficient matrix.

0 = det(A−λ I) =

∣∣∣∣ 12−λ 4
−16 −4−λ

∣∣∣∣ (6.288)

= λ
2−8λ +16 (6.289)

= (λ −4)2 (6.290)
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So we have a repeated eigenvalue of λ = 4. Let’s calculate it by solving (A−4I)η = 0.(
8 4
−16 −8

)(
η1
η2

)
=

(
0
0

)
(6.291)

So the system of equations we want to solve is

8η1 +4η2 = 0 (6.292)
−16η1−8η2 = 0. (6.293)

This is solved by anything of the form η2 = −2η1. So if we choose η1 = 1, we get the
eigenvector of

η =

(
1
−2

)
. (6.294)

We also need to find a generalized eigenvector ρ . So we need to solve (A−4I)ρ = η , or(
8 4
−16 −8

)(
ρ1
ρ2

)
=

(
1
−2

)
⇒ ρ2 =

1
4
−2ρ1 (6.295)

So our generalize eigenvector has the form

ρ =

(
ρ1

1
4 −2ρ1

)
. (6.296)

Choose ρ1 = 0 gives

ρ =

(
0
1
4

)
. (6.297)

Thus our general solution is

x(t) = c1eλ t
η + c2(teλ t

η + eλ t
ρ) (6.298)

= c1e−t
ρ =

(
1
−2

)
+ c2(te−t

(
1
−2

)
+ e−t

(
0
1
4

)
. (6.299)

�

� Example 6.22 Sketch the Phase Portrait of the system in Example 3.
Everything is completely analogous to the previous example’s phase portrait. We

sketch the eigensolution, and note that it will grow away from the origin as t→ ∞, so the
origin will in this case be an unstable degenerate node.

Typical trajectories will once again come out of the origin parallel to the eigensolution
and rotate around to be parallel to them again, and all we would need to do is to calculate
the direction of rotation by computing the tangent vector at a point or two. At (1,0), we
would get

x′ =
(

16
12

)
. (6.300)

which can only happen given that the solutions are growing if the direction of rotation is
clockwise. Thus we get Figure 3.

�



166 Chapter 6. Systems of Linear Differential Equations

Figure 6.8: Phase Portrait of the unstable degenerate node in Example 3.



7. Nonlinear Systems of Differential Equations

7.1 Phase Portrait Review
Last Time: We studied phase portraits and systems of differential equations with repeated
eigenvalues.

Note in the last 3 sections 7.5, 7.6, 7.8 we have covered the information in Section
9.1, which is sketching phase portraits, and identifying the three distinct cases for 1. Real
Distinct Eigenvalues, 2. Complex Eigenvalues, and 3. Repeated Eigenvalues. Think of this
section as a good review.

In Chapter 1 and Section 2.5 we considered the autonomous equations

dy
dt

= f (y) (7.1)

Consider the simplest system, a second order linear homogeneous system with constant
coefficients. Such a system has the form

dx
dt

= Ax (7.2)

where A is a 2×2 matrix. We spent three sections solving these types of systems. Recall
we seek solutions of the form x = ηert , then if we substitute this into the equation we
found

(A− rI)η = 0 (7.3)

Thus r is an eigenvalue and η the corresponding eigenvector.
Definition 7.1.1 Points where Ax = 0 correspond to equilibrium or constant solutions,
and are called critical points. Note if A is nonsingular, then the only critical point is
x = 0.

We must consider the five possible situations we could be in.
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Figure 7.1: Phase Portrait of the Nodal Sink

Figure 7.2: Phase Portrait of the Nodal Source

7.1.1 Case I: Real Unequal Eigenvalues of the Same Sign

The general solution of x′ = Ax is

x = c1η
(1)eλ1t + c2η

(2)eλ2t (7.4)

where λ1 and λ2 are either both positive or both negative. Suppose first that λ1 < λ2 < 0.
Both exponentials decay, so as t→ ∞, then x(t)→ 0 regardless of the values of c1 and c2.
Note the eigenvalue with the bigger magnitude, |λi|, will determine where the trajectories
are directed to. So the trajectories will tend towards η(1).

Definition 7.1.2 The type of critical point where all solutions decay to the origin is a
node or nodal sink.

If λ1 and λ2 are both positive and 0 < λ2 < λ1, then the trajectories have the same
pattern as the previous case but as t → ∞ the solutions blow up so all arrows change
direction and move away from the origin. The critical point is still called a node or nodal
source. Notice it is a source because trajectories come from it and leave, whereas the
nodal sink before sucked all trajectories towards itself.
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Figure 7.3: Phase Portrait of the saddle point

7.1.2 Case II: Real Eigenvalues of Opposite Signs
The general solution of x′ = Ax is

x = c1η
(1)eλ1t + c2η

(2)eλ2t (7.5)

where λ1 > 0 and λ2 < 0. Notice as t → ∞ the second term decays to zero and the first
eigenvector becomes dominant. So as time goes to infinity all trajectories asymptotically
approach η(1). The only solutions that approach 0 are the ones which start on η(2). This is
because c1 = 0 and all terms would decay as time increases.

Definition 7.1.3 The origin where some solutions tend towards it and some tend away
is called a saddle point.

7.1.3 Case III: Repeated Eigenvalues
Here λ1 = λ2 = λ . We have two subcases.

Case IIIa: Two Independent Eigenvectors
The general solution of x′ = Ax is

x = c1η
(1)eλ t + c2η

(2)eλ t (7.6)

where the eigenvectors are linearly independent. Every trajectory lies on a straight line
through the origin. If λ < 0 all solutions decay to the origin, if λ > 0 then all solutions
move away from the origin.

Definition 7.1.4 In either case, the critical point is called a proper node or a star
point.

Case IIIb: One Independent Eigenvector
The general solution in this case is

x = c1ηeλ t + c2(ηteλ t +ρeλ t). (7.7)

where η is the eigenvector and ρ is the generalized eigenvector. For t large, c2ηteλ t

dominates. Thus as t → ∞ every trajectory approaches the origin tangent to the line
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Figure 7.4: Phase Portrait of a star node

Figure 7.5: Phase Portrait for the asymptotically stable degenerate node

through the eigenvector. If the λ > 0 the trajectories move away from the origin, and if
λ < 0 the trajectories moved towards the origin.

Definition 7.1.5 When a repeated eigenvalue has only a single independent eigenvector,
the critical point is called an improper or degenerate node.

7.1.4 Case IV: Complex Eigenvalues
Suppose the eigenvalues are α± iβ , where α and β are real. In this case critical points are
called spiral point. Depending on if the trajectories move toward or away from the origin
it could be characterized as a spiral sink or source.

In the phase portrait we either spiral towards or away from the origin. If the real
part α > 0, then trajectories spiral away from the origin. If the real part α < 0, then the
trajectories spiral towards the origin.

7.1.5 Case V: Pure Imaginary Eigenvalues
Here α = 0 and λ = ±β i. In this case the critical point is called a center, because the
trajectories are concentric circles around the origin. We can determine the direction of the
circle by finding the tangent vector at a point like (1,0).
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Figure 7.6: Phase Portrait of the unstable degenerate node

Figure 7.7: Phase Portrait of the unstable spiral

Figure 7.8: Phase Portrait of the center point



172 Chapter 7. Nonlinear Systems of Differential Equations

Eigenvalues Type of Critical Point Stability
λ1 > λ2 > 0 Node Source Unstable
λ1 < λ2 < 0 Node Sink Asymptotically Stable
λ2 < 0 < λ1 Saddle Point Unstable
λ1 = λ2 > 0 Proper or Improper Node Unstable
λ1 = λ2 < 0 Proper or Improper Node Asymptotically Stable

λ1,λ2 = α + iβ
α > 0 Spiral Source Unstable
α < 0 Spiral Sink Asymptotically Stable

λ =±iβ Center Stable

Table 7.1: Stability Properties of Linear Systems x′=Ax with det(A−rI) = 0 and det(A) 6=
0.

7.1.6 Summary and Observations
1. After a long time, each trajectory exhibits one of only three types of behavior. As t→∞,
each trajectory approaches the critical point x = 0, repeatedly traverses a closed curve
around the critical point, or becomes unbounded.

2. For each point there is only one trajectory. The trajectories do not cross each other.
The only solutions passing through the critical point are x = 0, all other solutions only
approach the origin as t→ ∞ or −∞.

3. In each of the five cases we have one of three situations:
(1) All trajectories approach the critical point x = 0 as t→ ∞. This is the case if the

eigenvalues are real and negative or complex with negative real part. The origin is nodal or
a spiral sink.

(2) All trajectories remain bounded but do not approach the origin as t→ ∞. This is
the case if the eigenvalues are pure imaginary. The origin is a center.

(3) Some trajectories, and possibly all trajectories except x = 0, become unbounded as
t→ ∞. This is the case if at least one of the eigenvalues is positive or if the eigenvalues
have positive real part. The origin is a nodal source, a spiral source, or a saddle point.

7.2 Autonomous Systems and Stability
What is an Autonomous System?

Definition 7.2.1 A system of two simultaneous differential equations of the form

dx
dt

= F(x,y),
dy
dt

= G(x,y) (7.8)

where F and G are continuous and have continuous partial derivatives in some domain
D. From Theorem 7.1 we know there exists a unique solution x = φ(t),y = ψ(t) of the
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system satisfying the initial conditions

x(t0) = x0, y(t0) = y0 (7.9)

The property that makes the system autonomous is that F and G only depend on x and
y and not t.

7.2.1 Stability and Instability

Consider the autonomous system of the form

x′ = f(x) (7.10)

Definition 7.2.2 The points where f(x) = 0 are the critical points, which correspond to
constant or equilibrium solutions of the autonomous system.

Definition 7.2.3 A critical point x0 is said to be stable if, given any ε > 0, there is a
δ > 0 such that every solution x = φ(t), which at t = 0 satisfies

||φ(0)− x0||< δ (7.11)

exists for all positive t and satisfies

||φ(t)− x0||< ε (7.12)

for all t ≥ 0. It’s asymptotically stable if

||φ(0)− x0||< δ (7.13)

then

lim
t→∞

φ(t) = x0 (7.14)

Finally, it is unstable if a solution does not approach a critical point as t→ ∞.

� Example 7.1 Find the critical points of

dx
dt

=−(x− y)(1− x− y),
dy
dt

= x(2+ y). (7.15)

We find the critical points by solving the algebraic equations

(x− y)(1− x− y) = 0 (7.16)
x(2+ y) = 0 (7.17)

One way to satisfy the second equation is to choose x = 0. Then the first equation becomes
y(1− y) = 0, so y = 0 or y = 1. Now let’s choose y =−2, then the first equation becomes
(x+2)(3−x) = 0 so x=−2 or x= 3. So the four critical points are (0,0),(0,1),(−2,−2),
and (3,−2). �
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7.3 Locally Linear Systems
We start with a few key theorem in this section. Consider the linear system

x′ = Ax (7.18)

Theorem 7.3.1 The critical point x = 0 of the linear system above is asymptotically
stable if the eigenvalues r1, r2 are real and negative or have negative real part; stable, but
not asymptotically stable if r1 and r2 are pure imaginary; unstable if r1 and r2 are real
and either positive or if they have positive real part.

7.3.1 Introduction to Nonlinear Systems
The general form of the two dimensional system of differential equations is

x′1 = f1(x1,x2) (7.19)
x′2 = f2(x1,x2) (7.20)

For systems like this it is hard to find trajectories analytically, as we did for linear systems.
Thus we need to discuss the behavior of these solutions.

There are some features of nonlinear phase portraits that we should be aware of:

(1) The fixed or critical points which are the equilibrium or steady-state solutions. These
correspond to points x satisfying f(x) = 0. So x1 and x2 are zeroes for both f1 and f2.
(2) The closed orbits, which correspond to solutions that are periodic for both x1 and x2.
(3) How trajectories are arranged, new fixed points and closed orbits.
(4) The stability or instability of fixed points and closed orbits, which of these attract
nearby trajectories and which repel them?

Theorem 7.3.2 (Existence and Uniqueness) Consider the initial value problem

x′ = f(x) x(0) = x0 (7.21)

If f is continuous and its partial derivatives on some region containing x0, then the initial
value problem has a unique solution x(t) on some interval near t = 0.

Note: The theorem asserts that no two trajectories can intersect.

7.3.2 Linearization around Critical Points
To begin we always start by finding the critical points, which correspond to the equilibrium
solutions of the system. If the system is linear the only critical point is the origin, (0,0).
Nonlinear systems can have many fixed points and we want to determine the behavior of
the trajectories near these points. Consider,

x′ = f (x,y) (7.22)
y′ = g(x,y) (7.23)

The goal of linearization is to use our knowledge of linear systems to conclude what
we can about the phase portrait near (x0,y0). We will try to approximate our nonlinear
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system by a linear system, which we can then classify. Since (x0,y0) is a fixed point, and
the only fixed point of a linear system is the origin, we will want to change variables so
that (x0,y0) becomes the origin of the new coordinate system. Thus, let

u = x− x0 (7.24)
v = y− y0. (7.25)

We need to rewrite our differential equation in terms of u and v.

u′ = x′ (7.26)
= f (x,y) (7.27)
= f (x0 +u,y0 + v) (7.28)

The natural thing to do is a Taylor Expansion of f near (x0,y0).

= f (x0,y0)+u
∂ f
∂x

(x0,y0)+ v
∂ f
∂y

(x0,y0)+higher order terms (7.29)

= u
∂ f
∂x

(x0,y0)+ v
∂ f
∂y

(x0,y0)+H.O.T. (7.30)

recall that f (x0,y0) = 0 (since it is a fixed point). To simplify notation we will sometimes
write ∂ f

∂x and ∂ f
∂y which are evaluated at (x0,y0), but it is important to keep this in mind.

The partial derivatives are numbers not functions. Also, recall we are considering what
happens very close to our fixed point, u and v are both small, and hence the higher order
terms are smaller still and will be disregarded in computations. By a similar computation
we have

v′ = u
∂g
∂x

+ v
∂g
∂y

+H.O.T. (7.31)

Ignoring the small higher order terms, we can write this system of rewritten differential
equations in matrix form. The linearized system near (x0,y0) is

(
u′

v′

)
=

(
∂ f
∂x (x0,y0)

∂ f
∂y (x0,y0)

∂g
∂x (x0,y0)

∂g
∂y (x0,y0)

)(
u
v

)
. (7.32)

We will use, from this point on, the notation fx =
∂ f
∂x . The matrix

A =

(
fx(x0,y0) fy(x0,y0)
gx(x0,y0) gy(x0,y0)

)
(7.33)

is called the Jacobian Matrix at (x0,y0) of the vector-valued function f(x)=
(

f (x1,x2)
g(x1,x2)

)
.

In multivariable calculus, the Jacobian matrix is appropriate analogue of the single variable
calculus derivative. We then study this linear system with standard techniques.



176 Chapter 7. Nonlinear Systems of Differential Equations

7.4 Predator-Prey Equations
Recall from Chapter 1 we discussed equations representing populations of animals which
grow without predators. Now we want to consider a system where one species (predator)
preys on the other species (prey), while the prey lives on another food source.

An example is a closed forest where foxes prey on rabbits and rabbits eat vegetation.
At a lake, ladybugs are predators and aphids are prey.

We denote by x and y the populations of prey and predators respectively, at time t. We
need the following assumptions to construct our model.

(1) In the absence of a predator, the prey grows at a rate proportional to the current
population. So dx

dt = ax, when y = 0.

(2) In the absence of the prey, the predator dies out. Thus dy
dt =−cy where c> 0 when x= 0.

(3) Then number of encounters between predator and prey is proportional to the product of
their populations. Each such encounter tends to promote the growth of the predator and to
inhibit the growth of the prey. Thus the growth rate of the predator is increased by a term
of the form γxy, while the growth rate of the prey is decreased by a term −αxy, where γ

and α are positive constants.
From these assumptions we can form the following equations

dx
dt

= ax−αxy = x(a−αy), (7.34)

dy
dt

= −cy+ γxy = y(−c+ γy) (7.35)

The constants a,c,α, and γ are all positive constants. a and c are the growth rate of
the prey and the death rate of the predators respectively. α and γ are measures of the
effect of interaction between the two species. Equations (7.34)-(7.35) are known as the
Lotka-Volterra equations.

The goal is to determine the qualitative behavior of the solutions (trajectories) of the
system (7.34)-(7.35) for arbitrary positive initial values of x and y.

� Example 7.2 Describe the solutions to the system
dx
dt

= x−0.5xy = F(x,y) (7.36)

dy
dt

= −0.75y+0.25xy = G(x,y) (7.37)

for x and y positive.
First we begin with techniques learned in 9.2 and find the critical points. The critical

points of the system are the solutions of the equations

x−0.5xy = 0, −0.75y+0.25xy = 0 (7.38)

So the critical points are (0,0) and (3,2).
Next using 9.3, we want to consider the local behavior of the solutions near each critical

point. At (0,0) consider the Jacobian

J =

(
Fx Fy
Gx Gy

)
=

(
1−0.5y −0.5x

0.25y −0.75+0.25x

)
(7.39)
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For (0,0) the Jacobian is

J =

(
1 0
0 −0.75

)
(7.40)

The eigenvalues are λ1 = 1 and λ2 =−0.75, since they are real of opposite signs Theorem
5 from Section 9.3 says we have a saddle point and thus (0,0) is unstable.

At (3,2) the Jacobian is

J =

(
0 −1.5

0.5 0

)
(7.41)

The eigenvalues λ1 =
√

3i
2 and λ2 =−

√
3i

2 . Since the eigenvalues are pure imaginary, (3,2)
is a center and thus a stable critical point. Besides solutions starting on coordinate axes, all
solutions will circle around (3,2). �

Using this example consider the general system (7.34)-(7.35). First find the critical
points of the system which are solutions to

x(a−αy) = 0, y(−c+ γx) = 0 (7.42)

so the critical points are (0,0) and ( c
γ
, a

α
). We first examine the solutions near each critical

point. The Jacobian is

J =

(
Fx Fy
Gx Gy

)
=

(
a−αy −αx

γy −c+ γx

)
(7.43)

Consider (0,0), which has Jacobian(
a 0
0 −c

)
(7.44)

The eigenvalues are a and −c. Recall a and c are both positive real constants. So the
eigenvalues are real values of opposite signs, thus (0,0) is a saddle point and unstable.
This makes sense since if we move slightly away from zero and introduce predators and
prey, then the system would take off and the prey population would grow away from 0,
while if we introduced a predator and no prey it would decay to zero.

Next consider ( c
γ
, a

α
). The Jacobian is(

0 −αc
γ

γa
α

0

)
(7.45)

which has eigenvalues λ1,2 = ±i
√

ac. So the eigenvalues are pure imaginary and the
critical point is a stable center. The direction field for all predator prey equations will have
those components and the direction fields will look like Figure 1 and Figure 2.

If we use the fact they are separable equations and solve for the trajectories we find
that the solutions are ellipses, so ( c

γ
, a

α
) is a center.

This is what we expect, because a predator-prey system should be cyclic. When the
predator population gets to high there is not enough prey and predators die out. When the
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Figure 7.9: Direction Field for the critical point (0,0)

Figure 7.10: Direction Field for the critical point ( c
γ
, a

α
)
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prey population is high the system can support more predators. These systems are always
cyclic. The solutions to this system are

x =
c
γ
+

c
γ

K cos(
√

act +Φ) (7.46)

y =
a
α
+

a
α

K sin(
√

act +Φ) (7.47)

where K and Φ are determined by the initial conditions.
From these solutions we get four main conclusions about predator prey models:

(1) The sizes of the predator and prey populations vary sinusoidally with period 2π√
ac .

This period of oscillation is independent of initial conditions.

(2) The predator and prey populations are out of phase by one quarter of a cycle. The prey
leads and the predator lags as can be seen by plotting these due to sin and cos.

(3) The amplitudes of the oscillations are Kc
γ

for the prey and a
√

cK
α
√

a for the predator
and hence depend on the initial conditions as well as the parameters of the problem.

(4) The average populations of predator and prey over one complete cycle are c
γ

and
a
α

, respectively. These are the same as the equilibrium populations.
One criticism of this model is in the absence of a predator the prey grows without

bound, which is not realistic due to a finite amount of food available for the prey. This is a
basic model which is decently accurate and a building block for many advanced models.
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8. Introduction to Partial Differential Equations

8.1 Two-Point Boundary Value Problems and Eigenfunctions

8.1.1 Boundary Conditions

Up until now, we have studied ordinary differential equations and initial value problems.
Now we shift to partial differential equations and boundary value problems. Partial
differential equations are much more complicated, but are essential in modeling many
complex systems found in nature. We need to specify how the solution should behave
on the boundary of the region our equation is defined on. The data we prescribe are the
boundary values or boundary conditions, and a combination of a differential equation
and boundary conditions is called a boundary value problem.

Boundary Conditions depend on the domain of the problem. For an ordinary differential
equation our domain was usually some interval on the real line. With a partial differential
equation our domain might be an interval or it might be a square in the two-dimensional
plane. To see how boundary conditions effect an equation let’s examine how they affect
the solution of an ordinary differential equation.

� Example 8.1 Let’s consider the second order differential equation y′′+y= 0. Specifying
boundary conditions for this equation involves specifying the values of the solution (or its
derivatives) at two points, recall this is because the equation is second order. Consider the
interval (0,2π) and specify the boundary conditions y(0) = 0 and y(2π) = 0. We know
the solutions to the equation have the form

y(x) = Acos(x)+Bsin(x). (8.1)

by the method of characteristics. Applying the first boundary condition we see 0= y(0)=A.
Applying the second condition gives 0 = y(2π) = Bsin(2π), but sin(2π) is already zero
so B can be any number. So the solutions to this boundary value problem are any functions
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of the form

y(x) = Bsin(x). (8.2)

�

� Example 8.2 Consider y′′+y = 0 with boundary conditions y(0) = y(6) = 0. this seems
similar to the previous problem, the solutions still have the general form

y(x) = Acos(x)+Bsin(x) (8.3)

and the first condition still tells us A = 0. The second condition tells us that 0 = y(6) =
Bsin(6). Now since sin(6) 6= 0, so we must have B = 0 and the entire solution is y(x) = 0.
�

Boundary value problems occur in nature all the time. Examine the examples physically.
We know from previous chapters y′′+ y = 0 models an oscillator such as a rock hanging
from a spring. The rock will oscillate with frequency 1

2π
. The condition y(0) = 0 just

means that when we start observing, we want the rock to be at the equilibrium spot. If we
specify y(2π) = 0, this will automatically happen, since the motion is 2π periodic. On the
other hand, it is impossible for the rock to return to the equilibrium point after 6 seconds.
It will come back in 2π seconds, which is more than 6. So the only possible way the rock
can be at equilibrium after 6 seconds is if it does not leave, which is why the only solution
is the zero solution.

The previous examples are homogeneous boundary value problems. We say that a
boundary problem is homogeneous if the equation is homogeneous and the two boundary
conditions involve zero. That is, homogeneous boundary conditions might be one of these
types

y(x1) = 0 y(x2) = 0 (8.4)
y′(x1) = 0 y(x2) = 0 (8.5)
y(x1) = 0 y′(x2) = 0 (8.6)
y′(x1) = 0 y′(x2) = 0. (8.7)

On the other hand, if the equation is nonhomogeneous or any of the boundary conditions do
not equal zero, then the boundary value problem is nonhomogenous or inhomogeneous.
Let’s look at some examples of nonhomogeneous boundary value problems.

� Example 8.3 Take y′′+9y = 0 with boundary conditions y(0) = 2 and y(π

6 ) = 1. The
general solution to the differential equation is

y(x) = Acos(3x)+Bsin(3x). (8.8)

The two conditions give

2 = y(0) = A (8.9)

1 = y(
π

6
) = B (8.10)

so that the solution is

y(x) = 2cos(3x)+ sin(3x) (8.11)

�
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� Example 8.4 Take y′′+9y = 0 with boundary conditions y(0) = 2 and y(2π) = 2. The
general solution to the differential equation is

y(x) = Acos(3x)+Bsin(3x). (8.12)

The two conditions give

2 = y(0) = A (8.13)
2 = y(2π) = A. (8.14)

This time the second condition did not give and new information, like in Example 1 and B
does not affect whether or not the solution satisfies the boundary conditions or not. We
then have infinitely many solutions of the form

y(x) = 2cos(3x)+Bsin(3x) (8.15)

�

� Example 8.5 Take y′′+9y = 0 with boundary conditions y(0) = 2 and y(2π) = 4. The
general solution to the differential equation is

y(x) = Acos(3x)+Bsin(3x). (8.16)

The two conditions give

2 = y(0) = A (8.17)
4 = y(2π) = A. (8.18)

On one hand, A= 2 and by the second equation A= 4. This is impossible and this boundary
value problem has no solutions. �

These examples illustrate that a small change to the boundary conditions can dra-
matically change the problem, unlike small changes in the initial data for initial value
problems.

8.1.2 Eigenvalue Problems
Recall the system studied extensively in previous chapters

Ax = λx (8.19)

where for certain values of λ , called eigenvalues, there are nonzero solutions called
eigenvectors. We have a similar situation with boundary value problems.

Consider the problem

y′′+λy = 0 (8.20)

with boundary conditions y(0) = 0 and y(π) = 0. The values of λ where we get nontrivial
(nonzero) solutions will be eigenvalues. The nontrivial solutions themselves are called
eigenfunctions.

We need to consider three cases separately.
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(1) If λ > 0, then it is convenient to let λ = µ2 and rewrite the equation as

y′′+µ
2y = 0 (8.21)

The characteristic polynomial is r2 +µ2 = 0 with roots r =±iµ . So the general solution
is

y(x) = Acos(µx)+Bsin(µx) (8.22)

Note that µ 6= 0 since λ > 0. Recall the boundary conditions are y(0) = 0 and y(π) = 0.
So the first boundary condition gives A = 0. The second boundary condition reduces to

Bsin(µπ) = 0 (8.23)

For nontrivial solutions B 6= 0. So sin(µπ) = 0. Thus µ = 1,2,3, ... and thus the eigenval-
ues λn are 1,4,9, ...,n2. The eigenfunctions are only determined up to arbitrary constant,
so convention is to choose the arbitrary constant to be 1. Thus the eigenfunctions are

y1(x) = sin(x) y2(x) = sin(2x), ...,yn(x) = sin(nx) (8.24)

(2) If λ < 0, let λ =−µ2. So the above equation becomes

y′′−µ
2y = 0 (8.25)

The characteristic equation is r2−µ2 = 0 with roots r =±µ , so its general solution can
be written as

y(x) = Acosh(µx)+Bsinh(µx) =Ceµx +De−µx (8.26)

The first boundary condition, if considering the first form, gives A = 0. The second
boundary condition gives Bsinh(µπ) = 0. Since µ 6= 0, then sinh(µπ) 6= 0, and therefore
B = 0. So for λ < 0 the only solution is y = 0, there are no nontrivial solutions and thus
no eigenvalues.

(3) If λ = 0, then the equation above becomes

y′′ = 0 (8.27)

and the general solution if we integrate twice is

y(x) = Ax+B (8.28)

The boundary conditions are only satisfied when A = 0 and B = 0. So there is only the
trivial solution y = 0 and λ = 0 is not an eigenvalue.

To summarize we only get real eigenvalues and eigenvectors when λ > 0. There may
be complex eigenvalues. A basic problem studied later in the chapter is

y′′+λy = 0, y(0) = 0, y(L) = 0 (8.29)

Hence the eigenvalues and eigenvectors are

λn =
n2π2

L2 , yn(x) = sin(
nπx

L
) for n = 1,2,3, ... (8.30)

This is the classical Euler Buckling Problem.
Review Euler’s Equations:
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� Example 8.6 Consider equation of the form

t2y′′+ ty′+ y = 0 (8.31)

and let x = ln(t). Then

dy
dt

=
dy
dx

dx
dt

=
1
t

dy
dx

(8.32)

d2y
dx2 =

d
dt
(
dy
dx

)
1
t
+

dy
dx

(
1
t
)
dy
dx

(8.33)

=
d2y
dx2

1
t2 +

dy
dx

(− 1
t2 ) (8.34)

(8.35)

Plug these back into the original equation

t2y′′+ ty+ y =
d2y
dx2 −

dy
dx

+
dy
dx

+ y = 0 (8.36)

= y′′+ y = 0 (8.37)

Thus the characteristic equation is r2 + 1 = 0, which has roots r = ±i. So the general
solution is

ŷ(x) = c1 cos(x)+ c2 sin(x) (8.38)

Recalling that x = ln(t) our final solution is

y(x) = c1 cos(ln(t))+ c2 sin(ln(t)) (8.39)

�

8.2 Fourier Series
Last lecture, we identified solutions of the heat equation having the form

ut = uxx (8.40)

0 < x < l, t > 0, with homogeneous Dirichlet conditions at u(0, t) = u(l, t) = 0, had the
form

u(x, t) =
∞

∑
n=1

Ane−(
nπ

l )2kt sin(
nπx

l
). (8.41)

while the heat equation with homogeneous Neumann conditions ux(0, t) = ux(l, t) = 0 had
solutions of the form

u(x, t) =
1
2

A0 +
∞

∑
n=1

Ane−(
nπ

l )2kt cos(
nπx

l
). (8.42)
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For this to make sense given an initial condition u(x,0) = f (x), for the Dirichlet case we
need to be able to write f (x) as

f (x) =
∞

∑
n=1

An sin(
nπx

l
) (8.43)

for some coefficients An, while in the Neumann case it must have the form

f (x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
) (8.44)

for appropriate coefficients. Equation (8.348) is called a Fourier Sine Series of f (x) and
an expression like Equation (8.363) is called a Fourier Cosine Series of f (x).

There are two key things to keep in mind:

(1) Is it possible to find appropriate coefficients for the Fourier Sine and Cosine series for a
given f (x)?

(2) For which f (x) will the Fourier series converge, if any? What will the Fourier Series
converge to?

8.2.1 The Euler-Fourier Formula
We have a famous formula for the Fourier Coefficients, called the Euler-Fourier Formula.

Fourier Sine Series
Start by considering the Fourier Sine Series

f (x) =
∞

∑
n=1

An sin(
nπx

l
). (8.45)

How can we find the coefficients An? Observe that sine functions have the following
property∫ l

0
sin(

nπx
l

)sin(
mπx

l
)dx = 0 (8.46)

if m 6= n are both positive integers. This can be seen by direct integration. Recall the trig
identity

sin(a)sin(b) =
1
2

cos(a−b)− 1
2

cos(a+b). (8.47)

Then the integral in Equation (8.253) equals

l
2(m−n)π

sin(
(m−n)πx

l
)|l0−

l
2(m+n)π

sin(
(m+n)πx

l
)|l0 (8.48)

so long as m 6= n. But these terms are just linear combinations of sin((m±n)π) and sin(0),
and thus everything is zero.
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Now, fix m and multiply Equation (8.348) (Fourier Sine Series) by sin(mπx
l ). Integrating

term by term we get∫ l

0
f (x)sin(

mπx
l

)dx =
∫ l

0

∞

∑
n=1

An sin(
nπx

l
)sin(

mπx
l

)dx (8.49)

=
∞

∑
n=1

∫ l

0
sin(

nπx
l

)sin(
mπx

l
)dx. (8.50)

Due to the above work the only term that remains is when m = n. So all we have left is∫ l

0
f (x)sin(

mπx
l

)dx = Am

∫ l

0
sin2(

mπx
l

) =
1
2

lAm (8.51)

and so

Am =
2
l

∫ l

0
f (x)sin(

mπx
l

)dx. (8.52)

In summary. If f (x) has a Fourier sine expansion, the coefficients must be given by
Equation (8.313). These are the only possible coefficients for such a series, but we have
not shown that the Fourier Sine Series is a valid expression for f (x).

� Example 8.7 Compute a Fourier Sine Series for f (x) = 1 on 0≤ x≤ l.
By Equation (8.313), the coefficients must be given by

Am =
2
l

∫ l

0
sin(

mπx
l

)dx. (8.53)

= − 2
mπ

cos(
mπx

l
)|l0 (8.54)

=
2

mπ
(1− cos(mπ)) =

2
mπ

(1− (−1)m). (8.55)

So we have Am = 4
mπ

if m is odd and Am = 0 if m is even. Thus, on (0, l)

1 =
4
π
(sin(

πx
l
)+

1
3

sin(
3πx

l
)+

1
5

sin(
5πx

l
)+ ...) (8.56)

=
4
π

∞

∑
n=1

1
2n−1

sin(
(2n−1)πx

l
). (8.57)

�

� Example 8.8 Compute the Fourier Sine Series for f (x) = x on 0≤ x≤ l.
In this case Equation (8.313) yields a formula for the coefficients

Am =
2
l

∫ l

0
xsin(

mπx
l

)dx (8.58)

= − 2x
mπ

cos(
mπx

l
)|l0 +

2l
m2π2 sin(

mπx
l

)|l0 (8.59)

= − 2l
mπ

cos(mπ)+
2l

m2π2 sin(mπ) (8.60)

= (−1)m+1 2l
mπ

. (8.61)
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So on (0, l), we have

x =
2l
π

(
sin(

πx
l
)− 1

2
sin(

2πx
l

)+
1
3

sin(
3πx

l
)− ...

)
(8.62)

=
2l
π

∞

∑
n=1

1
2n−1

sin
(
(2n−1)πx

l

)
− 1

2n
sin
(

2nπx
l

)
. (8.63)

�

Fourier Cosine Series
Now let’s consider the Fourier Cosine Series

f (x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
). (8.64)

We can use the following property of cosine∫ l

0
cos(

nπx
l

)cos(
mπx

l
)dx = 0. (8.65)

Verify this for an exercise.
By the exact same computation as before for sines, we replace sines with cosines, if

m 6= 0 we get∫ l

0
f (x)cos(

mπx
l

)dx = Am

∫ l

0
cos2(

mπx
l

)dx =
1
2

lAm. (8.66)

If m = 0, we have∫ l

0
f (x) ·1dx =

1
2

A0

∫ l

0
12 =

1
2

lA0. (8.67)

Thus, for all m > 0, we have

Am =
2
l

∫ l

0
f (x)cos(

mπx
l

)dx. (8.68)

This is why we have the 1
2 in front of A0 (so it has the same form as Am for m 6= 0).

� Example 8.9 Compute the Fourier Cosine Series for f (x) = 1 on 0≤ x≤ l.
By Equation (8.103), the coefficients when m 6= 0 are

Am =
2
l

∫ l

0
cos(

mπx
l

)dx (8.69)

=
2

mπ
sin(

mπx
l

)|l0 (8.70)

=
2

mπ
sin(mπ) = 0. (8.71)

So the only coefficient we have occurs are A0, and this Fourier Cosine Series is then trivial

1 = 1+0cos(
πx
l
)+0cos(

2πx
l

)+ ... (8.72)

�
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� Example 8.10 Compute the Fourier Cosine Series for f (x) = x.
For m 6= 0,

Am =
2
l

∫ l

0
xcos(

mπx
l

)dx (8.73)

=
2x
mπ

sin(
mπx

l
)+

2l
m2π2 cos(

mπx
l

)|l0 (8.74)

=
2l

mπ
sin(mπ)+

2l
m2π2 (cos(mπ)−1) (8.75)

=
2l

m2π2 ((−1)m−1) (8.76)

=

{
− 4l

m2π2 m odd
0 m even

. (8.77)

If m = 0, we have

A0 =
2
l

∫ l

0
xdx = l. (8.78)

So on (0, l), we have the Fourier Cosine Series

x =
l
2
− 4l

π2

(
cos(

πx
l
)+

1
9

cos(
3πx

l
)+

1
25

cos(
5πx

l
)+ ...

)
(8.79)

=
l
2
+

4l
π2

∞

∑
n=1

1
(2n−1)2 cos

(
(2n−1)πx

l

)
. (8.80)

�

Full Fourier Series
The full Fourier Series of f (x) on the interval −l < x < l, is defined as

f (x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
)+Bn sin(

nπx
l

). (8.81)

REMARK: Be careful, now the interval we are working with is twice as long −l < x < l.
The computation of the coefficients for the formulas is analogous to the Fourier Sine

and Cosine series. We need the following set of identities:∫ l

−l
cos(

nπx
l

)sin(
mπx

l
)dx = 0 for n,m (8.82)∫ l

−l
cos(

nπx
l

)cos(
mπx

l
)dx = 0 for n 6= m (8.83)∫ l

−l
sin(

nπx
l

)sin(
mπx

l
)dx = 0 for n 6= m (8.84)∫ l

−l
1 · cos(

nπx
l

)dx = 0 =
∫ l

−l
1 · sin(

nπx
l

)dx. (8.85)

Thus, using the same procedure as above for sine and cosine, we can get the coefficients.
We fix m and multiply by cos(mπx

l ), and do the same for sin(mπx
l ). So we need to calculate

the integrals of the squares∫ l

−l
cos2(

nπx
l

)dx = 1 =
∫ l

−l
sin2(

nπx
l

)dx and
∫ l

−l
12dx = 2l (8.86)
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EXERCISE: Verify the above integrals.
So we get the following formulas

Am =
1
l

∫ l

−l
f (x)cos(

mπx
l

)dx (n = 1,2,3, ...) (8.87)

Bm =
1
l

∫ l

−l
f (x)sin(

mπx
l

)dx (n = 1,2,3, ...) (8.88)

for the coefficients of the full Fourier Series. Notice that the first equation is exactly the
same as we got when considering the Fourier Cosine Series and the second equation is the
same as the solution for the Fourier Sine Series. NOTE: The intervals of integration are
different!

� Example 8.11 Compute the Fourier Series of f (x) = 1+ x.
Using the above formulas we have

A0 =
1
l

∫ l

−l
(1+ x)dx = 2 (8.89)

Am =
1
l

∫ l

−l
(1+ x)cos(

mπx
l

)dx (8.90)

=
1+ x
mπ

sin(
mπx

l
)+

1
m2π2 cos(

mπx
l

)|l−l (8.91)

=
1

m2π2 (cos(mπ)− cos(−mπ)) = 0 m 6= 0 (8.92)

Bm =
1
l

∫ l

−l
(1+ x)sin(

mπx
l

)dx (8.93)

= −1+ x
mπ

cos(
mπx

l
)+

1
m2π2 sin(

mπx
l

)|l−l (8.94)

= − 2l
mπ

cos(mπ) = (−1)m+1 2l
mπ

. (8.95)

So the full Fourier series of f (x) is

1+ x = 1+
2l
π
(sin(

πx
l
)− 1

2
sin(

2πx
l

)+
1
3

sin(
3πx

l
)− ...) (8.96)

= 1+
2l
π

∞

∑
n=1

1
2n−1

sin(
(2n−1)πx

l
)− 1

2n
sin(

2nπx
l

). (8.97)

�

8.3 Convergence of Fourier Series
Last class we derived the Euler-Fourier formulas for the coefficients of the Fourier Series
of a given function f (x). For the Fourier Sine Series of f (x) on the interval (0, l)

f (x) =
∞

∑
n=1

An sin(
nπx

l
), (8.98)

we have

An =
2
l

∫ l

0
f (x)sin(

nπx
l

)dx, (8.99)
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where n = 1,2,3, ... For the Fourier Cosine Series of f (x) on (0, l),

f (x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
), (8.100)

with the coefficients given by

An =
2
l

∫ l

0
f (x)cos(

nπx
l

)dx, (8.101)

where n = 1,2,3, ... Finally, for the full Fourier Series of f (x), which is valid on the
interval (−l, l) (Note: Not the same interval as the previous two cases!),

f (x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
)+Bn sin(

nπx
l

), (8.102)

the coefficients are given by

An =
1
l

∫ l

−l
f (x)cos(

nπx
l

)dx n = 1,2,3, ... (8.103)

Bn =
1
l

∫ l

−l
f (x)sin(

nπx
l

)dx n = 1,2,3, ... (8.104)

� Example 8.12 Compute the Fourier Series for f (x) =

{
2 −2≤ x <−1
1− x −1≤ x < 2

on the

interval (−2,2).
We start by using the Euler-Fourier Formulas. For the Cosine terms we find

A0 =
1
2

∫ 2

−2
f (x)dx

=
1
2

(∫ −1

−2
2dx+

∫ 2

−1
1− xdx

)
=

1
2
(2+

3
2
) =

7
4

and

An =
1
2

∫ 2

−2
f (x)cos(

nπx
2

)dx

=
1
2

(∫ −1

−2
2cos(

nπx
2

)dx+
∫ 2

−1
(1− x)cos(

nπx
2

)dx
)

=
1
2

(
4

nπ
sin(

nπx
2

)|−1
−2 +

2(1− x)
nπ

sin(
nπx

2
)|2−1−

4
n2π2

(
cos(

nπx
2

)|2−1

))
=

1
2

(
− 4

nπ
sin(

nπ

2
)+

4
nπ

sin(
nπ

2
)− 4

n2π2 (cos(nπ)− cos(
nπ

2
))

)

=


2

n2π2 n odd
0 n = 4m
− 4

n2π2 n = 4m+2
.
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Also, for the sine terms

Bn =
1
2

∫ 2

−2
f (x)sin(

nπx
2

)dx

=
1
2

(∫ −1

−2
2sin(

nπx
2

)dx+
∫ 2

−1
(1− x)sin(

nπx
2

)dx
)

=
1
2

(
− 4

nπ
cos(

nπx
2

)|−1
−2−

2(1− x)
nπ

cos(
nπx

2
)|2−1−

4
n2π2 (sin(

nπx
2

)|2−1

)
=

1
2

(
6

nπ
cos(nπ)− 4

n2π2 sin(
nπ

2
)

)

=


3

nπ
neven

− 3
nπ
− 2

n2π2 n = 4m+1
− 3

nπ
+ 2

n2π2 n = 4m+3
.

So we have

f (x) =
7
8

+
∞

∑
m=1

2
(4m+1)2π2 cos

(
(4m+1)πx

2

)
+

(
− 3
(4m+1)π

− 2
(4m+1)2π2

)
sin
(
(4m+1)πx

2

)
− 4

(4m+2)2π2 cos
(
(4m+2)πx

2

)
+

3
(4m+2)π

sin
(
(4m+2)πx

2

)
+

2
(4m+3)2π2 cos

(
(4m+3)πx

2

)
+

(
− 3
(4m+3)π

+
2

(4m+3)2π2

)
sin
(
(4m+3)πx

2

)
+

3
4mπ

sin
(

4mπx
2

)
.

�

This example represents a worst case scenario. There are a lot of Fourier coefficients
to keep track of. Notice that for each value of m, the summand specifies four different
Fourier terms (for 4m,4m+1,4m+2,4m+3). This can often happen and depending on l,
even more terms maybe required.

8.3.1 Convergence of Fourier Series
So we know that if a function f (x) is to have a Fourier Series on an appropriate interval,
the coefficients have to be in the form of a Fourier Sine series (8.348) on (0, l), a Fourier
Cosine Series (8.363) on (0, l), or the full Fourier Series (8.253) on (−l, l). What do these
series converge to? First consider the full Fourier Series.

We require that f (x) is piecewise smooth. This is even stronger than the piecewise
continuity we saw with Laplace Transforms. We want to divide (−l, l) into a finite number
of subintervals so that both f (x) and its derivative f ′(x) are continuous on each interval.
We also require that the only discontinuities at the boundary points of the subintervals are
jump discontinuities (not asymptotically approaching infinity).

� Example 8.13 Any continuous function with continuous derivative on the desired
interval is automatically piecewise smooth. This is proven later in an advanced analysis
class. �
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� Example 8.14 Consider the function from Example 1

f (x) =

{
2 −2≤ x <−1
1− x −1≤ x≤ 2

. (8.105)

f (x) is continuous for all x in (−2,2), but the derivative f ′(x) has a discontinuity at x =−1.
This is a jump discontinuity, with limx→−1− f ′(x) = 0 and limx→−1+ f ′(x) = −1. Thus,
f (x) is piecewise smooth. �

The next thing to note is that even though we only need f (x) to be defined on (−l, l)
to compute the Fourier Series, the Fourier Series itself is defined for all x. Also, all of
the terms in a Fourier Series are 2l-periodic. They are either constants of have the form
sin(nπx

l ) or cos(nπx
l ). So we can regard the Fourier Series either as the expansion of a

function on (−l, l) or as the expansion of a 2l-periodic function on −∞ < x < ∞.
What will this 2l-periodic function be? It will have to coincide on (−l, l) with f (x)

(since it is also the expansion of f (x) on that interval) and still be 2l-periodic. Define the
periodic extension of f (x) to be

fper(x) = f (x−2lm) for − l +2lm < x < l +2lm (8.106)

for all integers m.
REMARK: The definition (8.106) does not specify what the periodic extension is at

the endpoints x = l +2lm. This is because the extension will, in general, have jumps at
these points. This happens when f (−l+) 6= f (l−).

No what does the Fourier Series of f (x) converge to?

Theorem 8.3.1 (Fourier Convergence Theorem) Suppose f (x) is piecewise smooth on
(−l, l). Then at x = x0, the Fourier Series of f (x) will converge to
(1) fper(x0) if fper is continuous at x0 or
(2) The average of the one sided limits 1

2 [ fper(x+0 )+ fper(x−0 )] is fper has a jump discon-
tinuity at x = x0.

Theorem 1 tells us that on the interval (−l, l) the Fourier Series will almost converge
to the original function f (x), with the only problems occurring at the discontinuities.

� Example 8.15 What does the Fourier Series of f (x) =

{
1 −3≤ x≤ 0
2x 0 < x≤ 3

will con-

verge to at x =−2,0,3,5,6?
The first two points are inside the original interval of definition of f (x), so we can just

directly consider fper(x). The only discontinuity of f (x) occurs at x = 0. So at x = −2,
f (x) is nice and continuous. The Fourier Series will converge to f (−2) = 1. On the other
hand, at x = 0 we have a jump discontinuity, so the Fourier Series will converge to the
average of the one-sided limits. f (0+) = limx→0+ f (x) = 0 and f (0−) = limx→0− f (x) = 1,
so the Fourier Series will converge to 1

2 [ f (0
+)+ f (0−)] = 1

2 .
What happens at the other points? Here we consider fper(x) and where it has jump

discontinuities. These can only occur either at x = x0 +2lm where −l < x0 < l is a jump
discontinuity of f (x) or at endpoints x =±l +2lm, since the periodic extension might not
"sync up" at these points, producing a jump discontinuity.
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At x = 3, we are at one of these "boundary points" and the left-sided limit is 6 while the
right-sided limit is 1. Thus the Fourier Series will converge here to 6+1

2 = 7
2 . x= 5 is a point

of continuity for fper(x) and so the Fourier Series will converge to fper(5) = f (−1) = 1.
x = 6, is a jump discontinuity (corresponding to x = 0), so the Fourier Series will converge
to 1

2 . �

� Example 8.16 Where does the Fourier Series for f (x) =

{
2 −2≤ x <−1
1− x −1≤ x≤ 2

con-

verge at x =−7,−1,6?
None of the points are inside (−2,2) where f (x) is discontinuous. The only points

where the periodic extension might be discontinuous are the "boundary points" x=±2+4k.
In fact, since f (−2) 6= f (2), these will be points of discontinuity. So fper(x) is continuous
at x = −7, since it is not a boundary point and we have fper(−7) = f (1) = 0, which is
what the Fourier Series will converge to. The same for x = −1, the Fourier Series will
converge to f (−1) = 2+2

2 = 2.
For x = 6 we are at an endpoint. The left-sided limit is -1, while the right-sided limit is

2, so the Fourier Series will converge to their average 1
2 . �

8.4 Even and Odd Functions
Before we can apply the discussion from Section 10.3 to the Fourier Sine and Cosine
Series, we need to review some facts about Even and Odd Functions.

Recall that an even function is a function satisfying

g(−x) = g(x). (8.107)

This means that the graph y= g(x) is symmetric with respect to the y-axis. An odd function
satisfies

g(−x) =−g(x) (8.108)

meaning that its graph y = g(x) is symmetric with respect to the origin.

� Example 8.17 A monomial xn is even if n is even and odd if n is odd. cos(x) is even
and sin(x) is odd. Note tan(x) is odd. �

There are some general rules for how products and sums behave:
(1) If g(x) is odd and h(x) is even, their product g(x)h(x) is odd.
(2) If g(x) and h(x) are either both even or both odd, g(x)h(x) is even.
(3) The sum of two even functions or two odd functions is even or odd, respectively.
To remember the rules consider how many negative signs come out of the arguments.
EXERCISE: Verify these rules.
(4) The sum of an even and an odd function can be anything. In fact, any function on (−l, l)
can be written as a sum of an even function, called the even part, and an odd function,
called the odd part.
(5) Differentiation and Integration can change the parity of a function. If f (x) is even, d f

dx
and

∫ x
0 f (s)ds are both odd, and vice versa.

The graph of an odd function g(x) must pass through the origin by definition. This also
tells us that if g(x) is even, as long as g′(0) exists, then g′(0) = 0.
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Definite Integrals on symmetric intervals of odd and even functions have useful proper-
ties ∫ l

−l
(odd)dx = 0 and

∫ l

−l
(even)dx = 2

∫ l

0
(even)dx (8.109)

Given a function f (x) defined on (0, l), there is only one way to extend it to (−l, l) to
an even or odd function. The even extension of f (x) is

feven(x) =

{
f (x) for 0 < x < l
f (−x) for − l < x < 0.

(8.110)

This is just its reflection across the y-axis. Notice that the even extension is not necessarily
defined at the origin.

The odd extension of f (x) is

fodd(x) =


f (x) for 0 < x < l
− f (−x) for − l < x < 0
0 for x = 0

. (8.111)

This is just its reflection through the origin.

8.4.1 Fourier Sine Series
Each of terms in the Fourier Sine Series for f (x), sin(nπx

l ), is odd. As with the full Fourier
Series, each of these terms also has period 2l. So we can think of the Fourier Sine Series as
the expansion of an odd function with period 2l defined on the entire line which coincides
with f (x) on (0, l).

One can show that the full Fourier Series of fodd is the same as the Fourier Sine Series
of f (x). Let

1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
)+Bn sin(

nπx
l

) (8.112)

be the Fourier Series for fodd(x), with coefficients given in Section 10.3

An =
1
l

∫ l

−l
fodd(x)cos(

nπx
l

)dx = 0 (8.113)

But fodd is odd and cos is even, so their product is again odd.

Bn =
1
l

∫ l

−l
fodd(x)sin(

nπx
l

)dx (8.114)

But both fodd and sin are odd, so their product is even.

Bn =
2
l

∫ l

0
fodd(x)sin(

nπx
l

)dx (8.115)

=
2
l

∫ l

0
f (x)sin(

nπx
l

)dx, (8.116)
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which are just the Fourier Sine coefficients of f (x). Thus, as the Fourier Sine Series of
f (x) is the full Fourier Series of fodd(x), the 2l-periodic odd function that the Fourier Sine
Series expands is just the periodic extension fodd .

This goes both ways. If we want to compute a Fourier Series for an odd function on
(−l, l) we can just compute the Fourier Sine Series of the function restricted to (0, l). It
will almost converge to the original function on (−l, l) with the only issues occurring at
any jump discontinuities. The only works for odd functions. Do not use the formula for
the coefficients of the Sine Series, unless you are working with an odd function.

� Example 8.18 Write down the odd extension of f (x) = l− x on (0, l) and compute its
Fourier Series.

To get the odd extension of f (x) we will need to see how to reflect f across the origin.
What we end up with is the function

fodd(x) =

{
l− x 0 < x < l
−l− x − l < x < 0

. (8.117)

Now. what is the Fourier Series of fodd(x)? By the previous discussion, we know that
is will be identical to the Fourier Sine Series of f (x), as this will converge on (−l,0) to
fodd . So we have

fodd(x) =
∞

∑
n=1

An sin(
nπx

l
), (8.118)

where

An =
2
l

∫ l

0
(l− x)sin(

nπx
l

)dx (8.119)

=
2
l
[− l(l− x)

nπ
cos(

nπx
l

)− l2

n2π2 sin(
nπx

l
)]l0 (8.120)

=
2l
nπ

. (8.121)

Thus the desired Fourier Series is

fodd(x) =
2l
π

∞

∑
n=1

1
n

sin(
nπx

l
). (8.122)

�

You might wonder how we were able a few lectures ago to compute the Fourier Sine
Series of a constant function like f (x) = 1 which is even. It is important to remember that
if we are computing the Fourier Sine Series for f (x), it only needs to converge to f (x) on
(0, l), where issues of evenness and oddness do not occur. The Fourier Sine Series will
converge to the odd extension of f (x) on (−l, l).

� Example 8.19 Find the Fourier Series for the odd extension of

f (x) =

{
3
2 0 < x < 3

2
x− 3

2
3
2 < x < 3.

(8.123)
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on (−3,3).
The Fourier Series for fodd(x) on (−3,3) will just be the Fourier Sine Series for f (x)

on (0,3). The Fourier Sine coefficients for f (x) are

An =
2
3

∫ 3

0
f (x)sin(

nπx
l

)dx (8.124)

=
2
3

(∫ 3
2

0

3
2

sin(
nπx

3
)dx+

∫ 3

3
2

(x− 3
2
)sin(

nπx
3

)

)
(8.125)

=
2
3

(
− 9

2nπ
cos(

nπx
3

)|
3
2
0 +

3(x− 3
2)

nπ
cos(

nπx
3

)|33
2
+

9
n2π2 sin(

nπx
3

)|33
2

)
(8.126)

=
2
3

(
− 9

2nπ
(cos(

nπ

2
)−1)− 9

2nπ
cos(nπ)− 9

n2π2 sin(
nπx

2
)

)
(8.127)

=
2
3
(

9
2nπ

(1− cos(
nπ

2
)+(−1)n+1)− 9

n2π2 sin(
nπ

2
)

)
(8.128)

=
3

nπ

(
1− cos(

nπ

2
)+(−1)n+1− 2

nπ
sin(

nπ

2
)

)
(8.129)

and the Fourier Series is

fodd(x) =
3
π

∞

∑
n=1

1
n
[1− cos(

nπ

2
)+(−1)n+1− 2

nπ
sin(

nπ

2
)]sin(

nπx
3

). (8.130)

�

EXERCISE: Sketch the Odd Extension of f (x) given in the previous Example and
write down the formula for it.

8.4.2 Fourier Cosine Series
Now consider what happens for the Fourier Cosine Series of f (x) on (0, l). This is
analogous to the Sine Series case. Every term in the Cosine Series has the form

An cos(
nπx

l
) (8.131)

and hence is even, so the entire Cosine Series is even. So the Cosine Series must converge
on (−l, l) to an even function which coincides on (0, l) with f (x). this must be the even
extension

feven(x) =

{
f (x) 0 < x < l
f (−x) − l < x < 0

. (8.132)

Notice that this definition does not specify the value of the function at zero, the only
restriction on an even function at zero is that, if it exists, the derivative should be zero.

It is straight forward enough to show that the Fourier coefficients of feven(x) coincide
with the Fourier Cosine coefficients of f (x). The Euler-Fourier formulas give

An =
1
l

∫ l

−l
feven(x)cos(

nπx
l

)dx (8.133)

=
2
l

∫ l

0
feven(x)cos(

nπx
l

)dx since feven(x)cos(
nπx

l
) is even (8.134)

=
2
l

∫ l

0
feven(x)cos(

nπx
l

)dx (8.135)
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which are the Fourier Cosine coefficients of f (x) on (0, l)

Bn =
1
l

∫ l

−l
feven(x)sin(

nπx
l

)dx = 0 (8.136)

since feven(x)sin(nπx
l ) is odd. Thus the Fourier Cosine Series of f (x) on (0, l) can be

considered as the Fourier expansion of feven(x) on (−l, l), and therefore also as expansion
of the periodic extension of feven(x). It will converge as in the Fourier Convergence
Theorem to this periodic extension.

This also means that if we want to compute the Fourier Series of an even function, we
can just compute the Fourier Cosine Series of its restriction to (0, l). It is very important
that this only be attempted if the function we are starting with is even.

� Example 8.20 Write down the even extension of f (x) = l− x on (0, l) and compute its
Fourier Series.

The even extension will be

feven(x) =

{
l− x 0 < x < l
l + x − l < x < 0

. (8.137)

Its Fourier Series is the same as the Fourier Cosine Series of f (x), by the previous
discussion. So we can just compute the coefficients. Thus we have

feven(x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
), (8.138)

where

A0 =
2
l

∫ l

0
f (x)dx =

2
l

∫ l

0
(l− x)dx = l (8.139)

An =
2
l

∫ l

0
f (x)cos(

nπx
l

)dx (8.140)

=
2
l

∫ l

0
(l− x)cos(

nπx
l

)dx (8.141)

=
2
l
[
l(l− x)

nπ
sin(

nπx
l

)− l2

n2π2 cos(
nπx

l
)]l0 (8.142)

=
2
l

(
l2

n2π2 (−cos(nπ)+ cos(0))
)

(8.143)

=
2l

n2π2 ((−1)n+1 +1). (8.144)

So we have

feven(x) =
l
2
+

∞

∑
n=1

2l
n2π2 ((−1)n+1 +1). (8.145)

�

� Example 8.21 Write down the even extension of

f (x) =

{
3
2 0≤ x < 3

2
x− 3

2
3
2 ≤ x≤ 3

(8.146)
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and compute its Fourier Series.
Using Equation (8.132) we see that the even extension is

feven(x) =


x− 3

2
3
2 < x < 3

3
2 0≤ x < 3

2
3
2 − 3

2 < x < 0
−x− 3

2 −3≤ x≤−3
2

. (8.147)

We just need to compute the Fourier Cosine coefficients of the original f (x) on (0,3).

A0 =
2
3

∫ 3

0
f (x)dx (8.148)

=
2
3

(∫ 3/2

0

3
2

dx+
∫ 3

3/2
x− 3

2
dx
)

(8.149)

=
2
3
(
9
4
+

9
8
) =

9
4

(8.150)

An =
2
3

∫ 3

0
f (x)cos(

nπx
3

)dx (8.151)

=
2
3

(∫ 3/2

0

3
2

cos(
nπx

3
)dx+

∫ 3

3/2
(x− 3

2
)cos(

nπx
3

)dx
)

(8.152)

=
2
3

(
9

2nπ
sin(

nπx
3

)|3/2
0 +

3(x− 3
2)

nπ
sin(

nπx
3

)|33/2 +
9

n2π2 cos(
nπx

3
)|33/2

)
(8.153)

=
2
3

(
9

2nπ
sin(

nπ

2
)+

9
n2π2

(
cos(nπ)− cos(

nπ

2
)

))
(8.154)

=
6

nπ

(
1
2

sin(
nπ

2
)+

1
nπ

(
(−1)n− cos(

nπ

2
)

))
(8.155)

=
6

nπ

(
1

nπ
((−1)n− cos(

nπ

2
))+

1
2

sin(
nπ

2
)

)
. (8.156)

So the Fourier Series is

feven =
9
8
+

6
π

∞

∑
n=1

1
n

(
1

nπ

(
(−1)n− cos(

nπ

2
)
)
+

1
2

sin(
nπ

2
)

)
cos(

nπx
3

). (8.157)

�

8.5 The Heat Equation
We will soon see that partial differential equations can be far more complicated than
ordinary differential equations. For PDEs, there is no general theory, the methods need
to be adapted for smaller groups of equations. This course will only do an introduction,
you can find out much more in advanced courses. We will be focusing on a single
solution method called Separation of Variables, which is pervasive in engineering and
mathematics.

The first partial differential equation to consider is the famous heat equation which
models the temperature distribution in some object. We will focus on the one-dimensional
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Figure 8.1: Heat Flux across the boundary of a small slab with length ∆x. The graph is the
graph of temperature at a given time t. In accordance with Fourier’s Law, the heat leaves
or enters the boundary by flowing from hot to cold; hence at x the flux is opposing the sign
of ux, while at x+∆x it is agreeing.

heat equation, where we want to find the temperature distributions in a one-dimensional
bar of length l. In particular we will assume that our bar corresponds to the interval (0, l)
on the real line.

The assumption is made purely for simplicity. If we assume we have a real bar, the
one-dimensional assumption is equivalent to assuming at every lateral cross-section and
every instant of time, the temperature is constant. While this is unrealistic it is not a terrible
assumption. Also, if the length is much larger than the width in advanced mathematics
one can assume the width is 0 since it is such a small fraction of the length. We are also
assuming the bar is perfectly insulated, so the only way heat can enter or leave the bar is
through the ends x = 0 and x = l. So any heat transfer will be one-dimensional.

8.5.1 Derivation of the Heat Equation
Many PDEs come from basic physical laws. Let u(x, t) denote the temperature at a point
x at time t. c will be the specific heat of the material the bar is made from (which is the
amount of heat needed to raise one unit of mass of this material by one temperature unit)
and ρ is the density of the rod. Note that in general, the specific heat and density of the
rods do not have to be constants, they may vary with x. We greatly simplify the problem
by allowing them to be constant.

Let’s consider a small slab of length ∆x. We will let H(t) be the amount of heat
contained in this slab. The mass of the slab is ρ∆x and the heat energy contained in this
small region is given by

H(t) = cuρ∆x (8.158)

On the other hand, within the slab, heat will flow from hot to cold (this is Fourier’s Law).
The only way heat can leave is by leaving through the boundaries, which are at x and
x+∆x (This is the Law of Conservation of Energy). So the change of heat energy of
the slab is equal to the heat flux across the boundary. If κ is the conductivity of the bar’s
material

dH
dt

= κux(x+∆x, t)−κux(x, t) (8.159)

This is illustrated in Figure 8.5.1. Setting the derivative of H(t) from above equal to the
previous equations we find

(cu(x, t)ρ∆x)t = κux(x+∆x, t)−κux(x, t) (8.160)
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Figure 8.2: Temperature versus position on a bar. The arrows show time dependence in
accordance with the heat equation. The temperature graph is concave up, so the left side of
the bar is warming up. While on the right the temperature is concave down and so th right
side is cooling down..

or

cρut(x, t) =
κux(x+∆x, t)−κux(x, t)

∆x
. (8.161)

If we take the limit as ∆x→ 0, the right hand side is just the x-derivative of κux(x, t) or

cρut(x, t) = κuxx(x, t). (8.162)

Setting k = κ

cρ
> 0, we have the heat equation

ut = kuxx. (8.163)

Notice that the heat equation is a linear PDE, since all of the derivatives of u are only
multiplied by constants. What is the constant k? It is called the Thermal Diffusivity of
the bar and is a measure of how quickly heat spreads through a given material.

How do we interpret the heat equation? Graph the temperature of the bar at a fixed
time. Suppose it looks like Figure 2. On the left side the bar is concave up. If the graph
is concave up, that means that the second derivative of the temperature (with respect to
position x) is positive. The heat equation tells us that the time derivative of the temperature
at any of the points on the left side of the bar will be increasing. The left side of the bar will
be warming up. Similarly, on the right side of the bar, the graph is concave down. Thus the
second x-derivative of the temperature is negative, and so will be the first t-derivative, and
we can conclude that the right side of the bar is cooling down.

8.6 Separation of Variables and Heat Equation IVPs
8.6.1 Initial Value Problems

Partial Differential Equations generally have a lot of solutions. To specify a unique one,
we will need additional conditions. These conditions are motivated by physics and are
initial or boundary conditions. An IVP for a PDE consists for the heat equation, initial
conditions, and boundary conditions.

An initial condition specifies the physical state at a given time t0. For example, and
initial condition for the heat equation would be the starting temperature distribution

u(x,0) = f (x) (8.164)
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This is the only condition required because the heat equation is first order with respect to
time. The wave equation, considered in a future section is second order in time and needs
two initial conditions.

PDEs are only valid on a given domain. Boundary conditions specify how the solution
behaves on the boundaries of the given domain. These need to be specified, because
the solution does not exist on one side of the boundary, we might have problems with
differentiability there.

Our heat equation was derived for a one-dimensional bar of length l, so the relevant
domain in question can be taken to be the interval 0 < x < l and the boundary consists of
the two points x = 0 and x = l. We could have derived a two-dimensional heat equation,
for example, in which case the domain would be some region in the xy-plane with the
boundary being some closed curve.

It will be clear from the physical description of the problem what the appropriate
boundary conditions are. We might know at the endpoints x = 0 and x = l, the temperature
u(0, t) and u(l, t) are fixed. Boundary conditions that give the value of the solution are
called Dirichlet Boundary Conditions. Or we might insulate the ends of the bar, meaning
there should be no heat flow out of the boundary. This would yield the boundary conditions
ux(0, t) = ux(l, t) = 0. If the boundary conditions specify the derivative at the boundary,
they are called Neumann Conditions. If the boundary conditions specify that we have
one insulated end and at the other we control the temperature. This is an example of a
Mixed Boundary Condition.

As we have seen, changing boundary conditions can significantly change the solution.
Initially, we will work with homogeneous Dirichlet conditions u(0, t) = u(l, t) = 0, giving
us the following initial value problem

(DE) : ut = kuxx (8.165)
(BC) : u(0, t) = u(l, t) = 0 (8.166)

(IC) : u(x,0) = f (x) (8.167)

After we have seen the general method, we will see what happens with homogeneous
Neumann conditions. We will discuss nonhomogeneous equations later.

8.6.2 Separation of Variables
Above we have derived the heat equation for the bar of length L. Suppose we have an
initial value problem such as Equation (8.165)-(8.167). How should we proceed? We want
to try to build a general solution out of smaller solutions which are easier to find.

We start by assuming we have a separated solution, where

u(x, t) = X(x)T (t). (8.168)

Our solution is the product of a function that depends only on x and a function that depends
only on t. We can then try to write down an equation depending only on x and another
solution depending only on t before using our knowledge of ODEs to try and solve them.

It should be noted that this is a very special situation and will not occur in general.
Even when we can use it sometimes it is hard to move beyond the first step. However, it
works for all equations we will be considering in this class, and is a good starting point.
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How does this method work? Plug the separated solution into the heat equation.

∂

∂ t
[X(x)T (t)] = k

∂ 2

∂x2 [X(x)T (t)] (8.169)

X(x)T ′(t) = kX ′′(x)T (t) (8.170)

Now notice that we can move everything depending on x to one side and everything
depending on t to the other.

T ′(t)
kT (t)

=
X ′′(x)
X(x)

(8.171)

This equation should says that both sides are equal for any x or t we choose. Thus they
both must be equal to a constant. Since if what they equal depended on x or t both sides
would not be equal for all x and t. So

T ′(t)
kT (t)

=
X ′′(x)
X(x)

=−λ (8.172)

We have written the minus sign for convenience. It will turn out that λ > 0.
The equation above contains a pair of separate ordinary differential equations

X ′′+λX = 0 (8.173)
T ′+λkT = 0. (8.174)

Notice that our boundary conditions becomes X(0) = 0 and X(l) = 0. Now the second
equation can easily be solved, since we have T ′ =−λkT , so that

T (t) = Ae−λkt . (8.175)

The first equation gives a boundary value problem

X ′′+λX = 0 X(0) = 0 X(l) = 0 (8.176)

This should look familiar. The is the basic eigenfunction problem studied in section 10.1.
As in that example, it turns out our eigenvalues have to be positive. Let λ = µ2 for µ > 0,
our general solution is

X(x) = Bcos(µx)+C sin(µx). (8.177)

The first boundary condition says B= 0. The second condition says that X(l)=C sin(µl)=
0. To avoid only having the trivial solution, we must have µl = nπ . In other words,

λn =
(nπ

l

)2 and Xn(x) = sin
(nπx

l

)
(8.178)

for n = 1,2,3, ...
So we end up having found infinitely many solutions to our boundary value problem,

one for each positive integer n. They are

un(x, t) = Ane−(
nπ

l )2kt sin(
nπx

l
). (8.179)
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The heat equation is linear and homogeneous. As such, the Principle of Superposition still
holds. So a linear combination of solutions is again a solution. So any function of the form

u(x, t) =
N

∑
n=0

Ane−(
nπ

l )2kt sin(
nπx

l
) (8.180)

is also a solution to our problem.
Notice we have not used our initial condition yet. We have

f (x) = u(x,0) =
N

∑
n=0

An sin(
nπx

l
). (8.181)

So if our initial condition has this form, the result of superposition Equation (8.180) is in a
good form to use the IC. The coefficients An just being the associated coefficients from
f (x).

� Example 8.22 Find the solutions to the following heat equation problem on a rod of
length 2.

ut = uxx (8.182)
u(0, t) = u(2, t) = 0 (8.183)

u(x,0) = sin(
3πx

2
)−5sin(3πx) (8.184)

In this problem, we have k = 1. Now we know that our solution will have the form like
Equation (8.180), since our initial condition is just the difference of two sine functions.
We just need to figure out which terms are represented and what the coefficients An are.

Our initial condition is

f (x) = sin(
3πx

2
)−5sin(3πx) (8.185)

Looking at (8.180) with l = 2, we can see that the first term corresponds to n = 3 and the
second n = 6, and there are no other terms. Thus we have A3 = 1 and A6 =−5, and all
other An = 0. Our solution is then

u(x, t) = e−(
9π2

4 )t sin(
3πx

2
)−5e(−9π2)t sin(3πx). (8.186)

�

There is no reason to suppose that our initial distribution is a finite sum of sine functions.
Physically, such situations are special. What do we do if we have a more general initial
temperature distribution?

Let’s consider what happens if we take an infinite sum of our separated solutions. Then
our solution is

u(x, t) =
∞

∑
n=0

Ane−(
nπ

l )2kt sin(
nπx

l
). (8.187)
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Now the initial condition gives

f (x) =
∞

∑
n=0

An sin(
nπx

l
). (8.188)

This idea is due to the French Mathematician Joseph Fourier and is called the Fourier
Sine Series for f (x).

There are several important questions that arise. Why should we believe that our initial
condition f (x) ought to be able to be written as an infinite sum of sines? why should we
believe that such a sum would converge to anything?

8.6.3 Neumann Boundary Conditions
Now let’s consider a heat equation problem with homogeneous Neumann conditions

(DE) : ut = uxx (8.189)
(BC) : ux(0, t) = ux(l, t) = 0 (8.190)
(IC) : u(x,0) = f (x) (8.191)

We will start by again supposing that our solution to Equation (8.189) is separable, so we
have u(x, t) = X(x)T (t) and we obtain a pair of ODEs, which are the same as before

X ′′+λX = 0 (8.192)
T ′+λkT = 0. (8.193)

The solution to the first equation is still

T (t) = Ae−λkt (8.194)

Now we need to determine the boundary conditions for the second equation. Our boundary
conditions are ux(0, t) and ux(l, t). Thus they are conditions for X ′(0) and X ′(l), since the
t-derivative is not controlled at all. So we have the boundary value problem

X ′′+λX = 0 X ′(0) = 0 X ′(l) = 0. (8.195)

Along the lines of the analogous computation last lecture, this has eigenvalues and eigen-
functions

λn =
(nπ

l

)2 (8.196)

yn(x) = cos
(nπx

l

)
(8.197)

for n = 0,1,2, ... So the individual solutions to Equation (8.189) have the form

u(x, t) = Ane(
nπ

l )2kt cos
(nπx

l

)
. (8.198)

Taking finite linear combinations of these work similarly to the Dirichlet case (and is the
solution to Equation (8.189) when f (x) is a finite linear combination of constants and
cosines, but in general we are interested in knowing when we can take infinite sums, i.e.

u(x, t) =
1
2

A0 +
∞

∑
n=1

Ane−(
nπ

l )2kt cos(
nπx

l
) (8.199)
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Notice how we wrote the n = 0 case, as 1
2A0. The reason will be clear when talking about

Fourier Series. The initial conditions means we need

f (x) =
1
2

A0 +
∞

∑
n=1

An cos(
nπx

l
). (8.200)

An expression of the form above is called the Fourier Cosine Series of f (x).

8.6.4 Other Boundary Conditions
It is also possible for certain boundary conditions to require the "full" Fourier Series of the
initial data, this is an expression of the form

f (x) =
1
2

A0 +
∞

∑
n=1

(
An cos

(nπx
l

)
+Bn sin

(nπx
l

))
. (8.201)

but in most cases we will work with Dirichlet or Neumann conditions. However, in the
process of learning about Fourier sine and cosine series, we will also learn how to compute
the full Fourier series of a function.

8.7 Heat Equation Problems
In the previous lecture on the Heat Equation we saw that the product solutions to the heat
equation with homogeneous Dirichlet boundary conditions problem

ut = kuxx (8.202)
u(0, t) = u(l, t) = 0 (8.203)
u(x,0) = f (x) (8.204)

had the form

un(x, t) = Bne−(
nπ

l )kt sin
(nπx

l

)
n = 1,2,3, ... (8.205)

Taking linear combinations of these (over each n) gives a general solution to the above
problem.

u(x, t) =
∞

∑
n=1

Bne−(
nπ

l )kt sin
(nπx

l

)
(8.206)

Setting t = 0, this implies that we must have

f (x) =
∞

∑
n=1

Bn sin
(nπx

l

)
(8.207)

In other words, the coefficients in the general solution for the given initial condition are
the Fourier Sine coefficients of f (x) on (0, l), which are given by

Bn =
2
l

∫ l

0
f (x)sin

(nπx
l

)
dx. (8.208)
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We also, saw that if we instead have a problem with homogeneous Neumann boundary
conditions

ut = kuxx 0 < x < l, t > 0 (8.209)
ux(0, t) = ux(l, t) = 0 (8.210)
u(0, t) = f (x) (8.211)

the product solutions had the form

un(x, t) = Ane−(
nπ

l )2kt cos
(nπx

l

)
n = 1,2,3, ... (8.212)

and the general solution has the form

u(x, t) =
1
2

A0 +
∞

∑
n=1

Ane−(
nπ

l )2kt cos
(nπx

l

)
. (8.213)

With t = 0 this means that the initial condition must satisfy

f (x) =
1
2

A0 +
∞

∑
n=1

An cos
(nπx

l

)
. (8.214)

and so the coefficients for a particular initial condition are the Fourier Cosine coefficients
of f (x), given by

An =
2
l

∫ l

0
f (x)cos

(nπx
l

)
dx. (8.215)

One way to think about this difference is that given the initial data u(x,0) = f (x), the
Dirichlet conditions specify the odd extension of f (x) as the desired periodic solution,
while the Neumann conditions specify the even extension. This should make sense since
odd functions must have f (0) = 0, while even functions must have f ′(0) = 0.

So to solve a homogeneous heat equation problem, we begin by identifying the type
of boundary conditions we have. If we have Dirichlet conditions, we know our solution
will have the form of Equation (8.348). All we then have to do is compute the Fourier Sine
coefficients of f (x). Similarly, if we have Neumann conditions, we know the solution has
the form of Equation (8.363) and we have to compute the Fourier Cosine coefficients of
f (x).

REMARK: Observe that for any homogeneous Dirichlet problem, the temperature
distribution (8.348) will go to 0 as t→ ∞. This should make sense because these boundary
conditions have a physical interpretation where we keep the ends of our rod at freezing
temperature without regulating the heat flow in and out of the endpoints. As a result, if the
interior of the rod is initially above freezing, that heat will radiate towards the endpoints
and into our reservoirs at the endpoints. On the other hand, if the interior of the rod is
below freezing, heat will come from the reservoirs at the endpoints and warm it up until
the temperature is uniform.

For the Neumann problem, the temperature distribution (8.363) will converge to 1
2A0.

Again, this should make sense because these boundary conditions correspond to a situation
where we have insulated ends, since we are preventing any heat from escaping the bar.
Thus all heat energy will move around inside the rod until the temperature is uniform.
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8.7.1 Examples

� Example 8.23 Solve the initial value problem

ut = 3uxx 0 < x < 2, t > 0 (8.216)
u(0, t) = u(2, t) = 0 (8.217)
u(x,0) = 20. (8.218)

This problem has homogeneous Dirichlet conditions, so by (8.348) our general solution
is

u(x, t) =
∞

∑
n=1

Bne−3( nπ

2 )2t sin(
nπx

2
). (8.219)

The coefficients for the particular solution are the Fourier Sine coefficients of u(x,0) = 20,
so we have

Bn =
2
2

∫ 2

0
20sin(

nπx
2

)dx (8.220)

= [− 40
nπ

cos(
nπx

2
)]20 (8.221)

= − 40
nπ

(cos(nπ)− cos(0)) (8.222)

=
40
nπ

(1+(−1)n+1) (8.223)

and the solution to the problem is

u(x, t) =
40
π

∞

∑
n=1

1+(−1)n+1

n
e−

3n2π2
4 t sin(

nπx
2

). (8.224)

�

� Example 8.24 Solve the initial value problem

ut = 3uxx 0 < x < 2, t > 0 (8.225)
ux(0, t) = ux(2, t) = 0 (8.226)
u(x,0) = 3x. (8.227)

This problem has homogeneous Neumann conditions, so by (8.363) our general solu-
tion is

u(x, t) =
1
2

A0 +
∞

∑
n=1

Ane−3( nπ

2 )2t cos(
nπx

2
). (8.228)

The coefficients for the particular solution are the Fourier Cosine coefficients of u(x,0) =
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3x, so we have

A0 =
2
2

∫ 2

0
3xdx = 6 (8.229)

An =
2
2

∫ 2

0
3xcos(

nπx
2

)dx (8.230)

= [− 6x
nπ

cos(
nπx

2
)+

12
n2π2 sin(

nπx
2

)]20 (8.231)

= − 12
nπ

cos(nπ) (8.232)

=
12
nπ

(−1)n+1 (8.233)

and the solution to the problem is

u(x, t) =
3
2
+

12
π

∞

∑
n=1

(−1)n+1

n
e−

3n2π2
4 t cos(

nπx
2

). (8.234)

�

� Example 8.25 Solve the initial value problem

ut = 4uxx 0 < x < 2π, t > 0 (8.235)
u(0, t) = u(2π, t) = 0 (8.236)

u(x,0) =

{
1 0 < x < π

x π < x < 2π
. (8.237)

This problem has homogeneous Dirichlet conditions, so our general solution is

u(x, t) =
∞

∑
n=1

Bne−n2t sin(
nx
2
). (8.238)

The coefficients for the particular solution are the Fourier Sine coefficients of u(x,0), so
we have

Bn =
2

2π

(∫
π

0
sin(

nx
2
)dx+

∫ 2π

π

xsin(
nx
2
)dx
)

(8.239)

= − 2
nπ

cos(
nx
2
)|π0 −

2x
nπ

cos(
nx
2
)|2π

π +
4

n2π
sin(

nx
2
)|2π

π (8.240)

= − 2
nπ

(cos(
nx
2
)− cos(0))− 4

n
cos(nπ)+

2
n

cos(
nπ

2
)− 4

n2π
sin(

nπ

2
) (8.241)

= − 2
nπ

(cos(
nπ

2
)−1)+

4
n
(−1)n+1 +

2
n

cos(
nπ

2
)− 4

n2π
sin(

nπ

2
) (8.242)

=
2
n

(
− 1

π
(cos(

nπ

2
)−1)+2(−1)n+1 cos(

nπ

2
)− 2

nπ
sin(

nπ

2
)

)
(8.243)

and the solution to the problem is

u(x, t) = 2
∞

∑
n=1

1
n

(
− 1

π
(cos(

nπ

2
)−1)+2(−1)n+1 cos(

nπ

2
)− 2

nπ
sin(

nπ

2
)

)
e−n2t sin(

nx
2
).

(8.244)

�
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8.8 Other Boundary Conditions
So far, we have used the technique of separation of variables to produce solutions to the
heat equation

ut = kuxx (8.245)

on 0 < x < l with either homogeneous Dirichlet boundary conditions [u(0, t) = u(l, t) = 0]
or homogeneous Neumann boundary conditions [ux(0, t) = ux(l, t) = 0]. What about for
some other physically relevant boundary conditions?

8.8.1 Mixed Homogeneous Boundary Conditions
We could have the following boundary conditions

u(0, t) = ux(l, t) = 0 (8.246)

Physically, this might correspond to keeping the end of the rod where x = 0 in a bowl of
ice water, while the other end is insulated.

Use Separation of Variables. Let u(x, t) = X(x)T (t), and we get the pair of ODEs

T ′ = −kλT (8.247)
X ′′ = −λX . (8.248)

Thus

T (t) = Be−kλ t . (8.249)

We now have a boundary value problem for X to deal with, where the boundary conditions
are X(0) = X ′(l) = 0. There are only positive eigenvalues, which are given by

λn =

(
(2n−1)π

2l

)2

(8.250)

and their associated eigenfunctions are

Xn(x) = sin(
(2n−1)πx

2l
). (8.251)

The separated solutions are then given by

un(x, t) = Bne−(
(2n−1)π

2l )2kt sin
((2n−1)πx

2l

)
(8.252)

and the general solution is

u(x, t) =
∞

∑
n=1

Bne−(
(2n−1)π

2l )2kt sin
((2n−1)πx

2l

)
. (8.253)

with an initial condition u(x,0) = f (x), we have that

f (x) =
∞

∑
n=1

Bn sin
((2n−1)πx

2l

)
. (8.254)
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This is an example of a specialized sort of Fourier Series, the coefficients are given by

Bn =
2
l

∫ l

0
f (x)sin

((2n−1)πx
2l

)
dx. (8.255)

REMARK: The convergence for a series like the one above is different than that of our
standard Fourier Sine or Cosine series, which converge to the periodic extension of the
odd or even extensions of the original function, respectively. Notice that the terms in the
sum above are periodic with period 4l (as opposed to the 2l-periodic series we have seen
before). In this case, we need to first extend our function f (x), given on (0, l), to a function
on (0,2l) symmetric around x = l. Then, as our terms are all sines, the convergence on
(−2l,2l) will be to the odd extension of this extended function, and the periodic extension
of this will be what the series converges to on the entire real line.

� Example 8.26 Solve the following heat equation problem

ut = 25uxx (8.256)
u(0, t) = 0 ux(10, t) = 0 (8.257)
u(x,0) = 5. (8.258)

By (8.253) our general solution is

u(x, t) =
∞

∑
n=1

Bne−25( (2n−1)π
20 )2t sin

((2n−1)πx
20

)
. (8.259)

The coefficients for the particular solution are given by

Bn =
2

10

∫ 10

0
5sin

((2n−1)πx
20

)
dx (8.260)

= − 10
(2n−1)π

cos
((2n−1)πx

20
)
|10
0 (8.261)

= − 10
(2n−1)π

(
cos(

(2n−1)π
2

)− cos(0)
)

(8.262)

=
10

(2n−1)π
. (8.263)

and the solution to the problem is

u(x, t) =
10
π

∞

∑
n=1

1
(2n−1)

e−
(2n−1)2π2

16 t sin
((2n−1)πx

20
)
. (8.264)

�

8.8.2 Nonhomogeneous Dirichlet Conditions
The next type of boundary conditions we will look at are Dirichlet conditions, which fix the
value of u at the endpoints x = 0 and x = l. For the heat equation, this corresponds to fixing
the temperature at the ends of the rod. We have already looked at homogeneous conditions
where the ends of the rod had fixed temperature 0. Now consider the nonhomogeneous
Dirichlet conditions

u(0, t) = T1, u(l, t) = T2 (8.265)
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This problem is slightly more difficult than the homogeneous Dirichlet condition
problem we have studied. Recall that for separation of variables to work, the differential
equations and the boundary conditions must be homogeneous. When we have nonhomo-
geneous conditions we need to try to split the problem into one involving homogeneous
conditions, which we know how to solve, and another dealing with the nonhomogeneity.

REMARK: We used a similar approach when we applied the method of Undetermined
Coefficients to nonhomogeneous linear ordinary differential equations.

How can we separate the “core" homogeneous problem from what is causing the
nonhomogeneity? Consider what happens as t→ ∞. We should expect that, since we fix
the temperatures at the endpoints and allow free heat flux at the boundary, at some point the
temperature will stabilize and we will be at equilibrium. Such a temperature distribution
would clearly not depend on time, and we can write

lim
t→∞

u(x, t) = v(x) (8.266)

Notice that v(x) must still satisfy the boundary conditions and the heat equation, but we
should not expect it to satisfy the initial conditions (since for large t we are far from
where we initially started). A solution such as v(x) which does not depend on t is called a
steady-state or equilibrium solution.

For a steady-state solution the boundary value problem becomes

0 = kv′′ v(0) = T1 v(l) = T2. (8.267)

It is easy to see that solutions to this second order differential equation are

v(x) = c1x+ c2 (8.268)

and applying the boundary conditions, we have

v(x) = T1 +
T2−T1

l
x. (8.269)

Now, let

w(x, t) = u(x, t)− v(x) (8.270)

so that

u(x, t) = w(x, t)+ v(x). (8.271)

This function w(x, t) represents the transient part of u(x, t) (since v(x) is the equilibrium
part). Taking derivatives we have

ut = wt + vt = wt and uxx = wxx + vxx = wxx. (8.272)

Here we use the fact that v(x) is independent of t and must satisfy the differential equation.
Also, using the equilibrium equation v′′ = vxx = 0.

Thus w(x, t) must satisfy the heat equation, as the relevant derivatives of it are identical
to those of u(x, t), which is known to satisfy the equation. What are the boundary and
initial conditions?

w(0, t) = u(0, t)− v(0) = T1−T1 = 0 (8.273)
w(l, t) = u(l, t)− v(l) = T2−T2 = 0 (8.274)

w(x,0) = u(x,0)− v(x) = f (x)− v(x) (8.275)
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where f (x) = u(x,0) is the given initial condition for the nonhomogeneous problem. Now,
even though our initial condition is slightly messier, we now have homogeneous boundary
conditions, since w(x, t) must solve the problem

wt = kwxx (8.276)
w(0, t) = w(l, t) = 0 (8.277)
w(x,0) = f (x)− v(x) (8.278)

This is just a homogeneous Dirichlet problem. We know the general solution is

w(x, t) =
∞

∑
n=1

Bne−(
nπ

l )2kt sin(
nπx

l
). (8.279)

where the coefficients are given by

Bn =
2
l

∫ l

0
( f (x)− v(x))sin(

nπx
l

)dx. (8.280)

Notice that limt→∞ w(x, t) = 0, so that w(x, t) is transient.
Thus, the solution to the nonhomogeneous Dirichlet problem

ut = kuxx (8.281)
u(0, t) = T1, u(l, t) = T2 (8.282)
u(x,0) = f (x) (8.283)

is u(x, t) = w(x, t)+ v(x), or

u(x, t) =
∞

∑
n=1

Bne−(
nπ

l )2lt sin
(nπx

l

)
+T1 +

T2−T1

l
x (8.284)

with coefficients

Bn =
2
l

∫ l

0
( f (x)−T1−

T2−T1

l
x)sin

(nπx
l

)
dx. (8.285)

REMARK: Do not memorize the formulas but remember what problem w(x, t) has to
solve and that the final solution is u(x, t) = v(x)+w(x, t). For v(x), it is not a hard formula,
but if one is not sure of it, remember vxx = 0 and it has the same boundary conditions as
u(x, t). This will recover it.

� Example 8.27 Solve the following heat equation problem

ut = 3uxx (8.286)
u(0, t) = 20, u(40, t) = 100 (8.287)
u(x,0) = 40−3x (8.288)

We start by writing

u(x, t) = v(x)+w(x, t) (8.289)
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where v(x) = 20+2x. Then w(x, t) must satisfy the problem

wt = 3wxx (8.290)
w(0, t) = w(40, t) = 0 (8.291)
w(x,0) = 40−3x− (20+2x) = 20− x (8.292)

This is a homogeneous Dirichlet problem, so the general solution for w(x, t) will be

w(x, t) =
∞

∑
n=1

e−3( nπ

40 )
2t sin(

nπx
40

). (8.293)

The coefficients are given by

Bn =
2

40

∫ 40

0
(20− x)sin

(nπx
40
)
dx (8.294)

=
1

20
[−40(20− x)

nπ
cos
(nπx

40
)
− 1600

n2π2 sin
(nπx

40
)]40

0 (8.295)

=
1

20

(
800
nπ

cos(nπ)+
800
nπ

cos(0)
)

(8.296)

=
40
nπ

((−1)n +1). (8.297)

So the solution is

u(x, t) = 20+2x+
40
π

∞

∑
n=1

(−1)n +1
n

e−
3n2π2
1600 t sin

(nπx
40
)
. (8.298)

�

8.8.3 Other Boundary Conditions
There are many other boundary conditions one could use, most of which have a physical
interpretation. For example the boundary conditions

u(0, t)+ux(0, t) = 0 u(l, t)+ux(l, t) = 0 (8.299)

say that the heat flux at the end points should be proportional to the temperature. We could
also have had nonhomogeneous Neumann conditions

ux(0, t) = F1 ux(l, t) = F2 (8.300)

which would specify allowing a certain heat flux at the boundaries. These conditions are
not necessarily well suited for the method of separation of variables though and are left for
future classes.

8.9 The Wave Equation
8.9.1 Derivation of the Wave Equation

Consider a completely flexible string of length l and constant density ρ . We will assume
that the string will only undergo relatively small vertical vibrations, so that points do
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not move from side to side. An example might be a plucked guitar string. Thus we can
let u(x, t) be its displacement from equilibrium at time t. The assumption of complete
flexibility means that the tension force is tangent to the string, and the string itself provides
no resistance to bending. This means the tension force only depends on the slope of the
string.

Take a small piece of string going from x to x+∆x. Let Θ(x, t) be the angle from the
horizontal of the string. Our goal is to use Newton’s Second Law F = ma to describe the
motion. What forces are acting on this piece of string?
(a) Tension pulling to the right, which has magnitude T (x+∆x, t) and acts at an angle of
Θ(x+∆x, t) from the horizontal.
(b) Tension pulling to the left, which has magnitude T (x, t) and acts at an angle of Θ(x, t)
from the horizontal.
(c) Any external forces, which we denote by F(x, t).
Initially, we will assume that F(x, t)= 0. The length of the string is essentially

√
(∆x)2 +(∆u)2,

so the vertical component of Newton’s Law says that

ρ

√
(∆x)2 +(∆u)2utt(x, t) = T (x+∆x, t)sin(Θ(x+∆x, t))−T (x, t)sin(Θ(x, t)). (8.301)

Dividing by ∆x and taking the limit as ∆x→ 0, we get

ρ

√
1+(ux)2utt(x, t) =

∂

∂x
[T (x, t)sin(Θ(x, t))]. (8.302)

We assumed our vibrations were relatively small. This means that Θ(x, t) is very close to
zero. As a result, sin(Θ(x, t)) ≡ tan(Θ(x, t)). Moreover, tan(Θ(x, t)) is just the slope of
the string ux(x, t). We conclude, since Θ(x, t) is small, that ux(x, t) is also very small. The
above equation becomes

ρutt(x, t) = (T (x, t)ux(x, t))x. (8.303)

We have not used the horizontal component of Newton’s Law yet. Since we assume there
are only vertical vibrations, our tiny piece of string can only move vertically. Thus the net
horizontal force is zero.

T (x+∆x, t)cos(Θ(x+∆x, t))−T (x, t)cos(Θ(x, t)) = 0. (8.304)

Dividing by ∆x and taking the limit as ∆x→ ∞ yields

∂

∂x
[T (x, t)cos(Θ(x, t))] = 0. (8.305)

Since Θ(x, t) is very close to zero, cos(Θ(x, t)) is close to one. thus we have that ∂T
∂x (x, t)

is close to zero. So T (x, t) is constant along the string, and independent of x. We will also
assume that T is independent of t. Then Equation (8.363) becomes the one-dimensional
wave equation

utt = c2uxx (8.306)

where c2 = T
ρ

.



218 Chapter 8. Introduction to Partial Differential Equations

8.9.2 The Homogeneous Dirichlet Problem
Now that we have derived the wave equation, we can use Separation of Variables to
obtain basic solutions. We will consider homogeneous Dirichlet conditions, but if we had
homogeneous Neumann conditions the same techniques would give us a solution. The
wave equation is second order in t, unlike the heat equation which was first order in t. We
will need to initial conditions in order to obtain a solution, one for the initial displacement
and the other for the initial speed.

The relevant wave equation problem we will study is

utt = c2uxx (8.307)
u(0, t) = u(l, t) = 0 (8.308)
u(x,0) = f (x), ut(x,0) = g(x) (8.309)

The physical interpretation of the boundary conditions is that the ends of the string are
fixed in place. They might be attached to guitar pegs.

We start by assuming our solution has the form

u(x, t) = X(x)T (t). (8.310)

Plugging this into the equation gives

T ′′(t)X(x) = c2T (t)X ′′(x). (8.311)

Separating variables, we have

X ′′

X
=

T ′′

c2T
=−λ (8.312)

where λ is a constant. This gives a pair of ODEs

T ′′+ c2
λT = 0 (8.313)

X ′′+λX = 0. (8.314)

The boundary conditions transform into

u(0, t) = X(0)T (t) = 0 ⇒ X(0) = 0 (8.315)
u(l, t) = X(l)T (t) = 0 ⇒ X(l) = 0. (8.316)

This is the same boundary value problem that we saw for the heat equation and thus the
eigenvalues and eigenfunctions are

λn =
(nπ

l

)2 (8.317)

Xn(x) = sin
(nπx

l

)
(8.318)

for n = 1,2, ... The first ODE (8.313) is then

T ′′+
(cnπ

l

)2T = 0, (8.319)
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and since the coefficient of T is clearly positive this has a general solution

Tn(t) = An cos
(nπct

l

)
+Bn sin

(nπct
l

)
. (8.320)

There is no reason to think either of these are zero, so we end up with separated solutions

un(x, t) =
[

An cos(
nπct

l
)+Bn sin(

nπct
l

)

]
sin(

nπx
l

) (8.321)

and the general solution is

u(x, t) =
∞

∑
n=1

[
An cos(

nπct
l

)+Bn sin(
nπct

l
)

]
sin(

nπx
l

). (8.322)

We can directly apply our first initial condition, but to apply the second we will need to
differentiate with respect to t. This gives us

ut(x, t) =
∞

∑
n=1

[
−nπc

l
An sin(

nπct
l

)+
nπc

l
Bn cos(

nπct
l

)

]
sin(

nπx
l

) (8.323)

Plugging in the initial condition then yields the pair of equations

u(x,0) = f (x) =
∞

∑
n=1

An sin(
nπx

l
) (8.324)

ut(x,0) = g(x) =
∞

∑
n=1

nπc
l

Bn sin(
nπx

l
). (8.325)

These are both Fourier Sine series. The first is directly the Fourier Since series for f (x)
on (0, l). The second equation is the Fourier Sine series for g(x) on (0, l) with a slightly
messy coefficient. The Euler-Fourier formulas then tell us that

An =
2
l

∫ l

0
f (x)sin(

nπx
l

)dx (8.326)

nπc
l

Bn =
2
l

∫ l

0
g(x)sin(

nπx
l

)dx (8.327)

An =
2
l

∫ l

0
f (x)sin(

nπx
l

)dx (8.328)

Bn =
2

nπc

∫ l

0
g(x)sin(

nπx
l

)dx. (8.329)

8.9.3 Examples
� Example 8.28 Find the solution (displacement u(x, t)) for the problem of an elastic
string of length L whose ends are held fixed. The string has no initial velocity (ut(x,0) = 0)
from an initial position

u(x,0) = f (x) =


4x
L 0≤ x≤ L

4
1 L

4 < x < 3L
4

4(L−x)
L

3L
4 ≤ x≤ L

(8.330)
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By the formulas above we see if we separate variables we have the following equation
for T

T ′′+(
cnπ

L
)2T = 0 (8.331)

with the general solution

Tn(t) = An cos(
nπct

L
)+Bn sin(

nπct
L

). (8.332)

since the initial speed is zero, we find T ′(0) = 0 and thus Bn = 0. Therefore the general
solution is

u(x, t) =
∞

∑
n=1

An cos(
nπct

L
)sin(

nπx
L

). (8.333)

where the coefficients are the Fourier Sine coefficients of f (x). So

An =
2
L

∫ L

0
f (x)sin(

nπx
L

)dx (8.334)

=
2
L

[∫ L/4

0

4x
L

sin(
nπx

L
)dx+

∫ 3L/4

L/4
sin(

nπx
L

)dx+
∫ L

3L/4

4L−4x
L

sin(
nπx

L
)dx
]

(8.335)

= 8
sin(nπ

4 )+ sin(3nπ

4 )

n2π2 (8.336)

Thus the displacement of the string will be

u(x, t) =
8

π2

∞

∑
n=1

sin(nπ

4 )+ sin(3nπ

4 )

π2 cos(
nπct

L
)sin(

nπx
L

). (8.337)

�

� Example 8.29 Find the solution (displacement u(x, t)) for the problem of an elastic
string of length L whose ends are held fixed. The string has no initial velocity (ut(x,0) = 0)
from an initial position

u(x,0) = f (x) =
8x(L− x)2

L3 (8.338)

By the formulas above we see if we separate variables we have the following equation
for T

T ′′+(
cnπ

L
)2T = 0 (8.339)

with the general solution

Tn(t) = An cos(
nπct

L
)+Bn sin(

nπct
L

). (8.340)

since the initial speed is zero, we find T ′(0) = 0 and thus Bn = 0. Therefore the general
solution is

u(x, t) =
∞

∑
n=1

An cos(
nπct

L
)sin(

nπx
L

). (8.341)
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where the coefficients are the Fourier Sine coefficients of f (x). So

An =
2
L

∫ L

0
f (x)sin(

nπx
L

)dx (8.342)

=
2
L

∫ L

0

8x(L− x)2

L3 sin(
nπx

L
)dx (8.343)

= 32
2+ cos(nπ)

n3π3 Integrate By Parts (8.344)

Thus the displacement of the string will be

u(x, t) =
32
π3

∞

∑
n=1

2+ cos(nπ)

n3 cos(
nπct

L
)sin(

nπx
L

). (8.345)

�

� Example 8.30 Problem 12 is a great exercise. �

8.10 Laplace’s Equation
We will consider the two-dimensional and three-dimensional Laplace Equations

(2D) : uxx +uyy = 0, (8.346)
(3D) : uxx +uyy +uzz = 0. (8.347)

8.10.1 Dirichlet Problem for a Rectangle
We want to find the function u satisfying Laplace’s Equation

uxx +uyy = 0 (8.348)

in the rectangle 0 < x < a,0 < y < b, and satisfying the boundary conditions

u(x,0) = 0, u(x,b) = 0, 0 < x < a, (8.349)
u(0,y) = 0, u(a,y) = f (y), 0≤ y≤ b. (8.350)

We need four boundary conditions for the four spatial derivatives.
Start by using Separation of Variables and assume u(x,y) = X(x)Y (y). Substitute u

into Equation (8.348). This yields

X ′′

X
=−Y ′′

Y
= λ , (8.351)

where λ is a constant. We obtain the following system of ODEs

X ′′−λX = 0 (8.352)
Y ′′+λY = 0. (8.353)

From the boundary conditions we find

X(0) = 0 (8.354)
Y (0) = 0,Y (b) = 0. (8.355)
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We first solve the ODE for Y , which we have seen numerous times before. Using the BCs
we find there are nontrivial solutions if and only if λ is an eigenvalue

λ =
(nπ

b

)2
, n = 1,2,3, ... (8.356)

and Yn(y) = sin(nπy
b ), the corresponding eigenfunction. Now substituting in for λ we want

to solve the ODE for X . This is another problem we have seen regularly and the solution is

Xn(x) = c1 cosh
(nπx

b

)
+ c2 sinh

(nπx
b

)
(8.357)

The BC implies that c1 = 0. So the fundamental solution to the problem is

un(x,y) = sinh
(nπx

b

)
sin
(nπy

b

)
. (8.358)

By linear superposition the general solution is

u(x,y) =
∞

∑
n=1

cnun(x,y) =
∞

∑
n=1

cn sinh
(nπx

b

)
sin
(nπy

b

)
. (8.359)

Using the last boundary condition u(a,y) = f (y) solve for the coefficients cn.

u(a,y) =
∞

∑
n=1

cn sinh
(nπa

b

)
sin
(nπy

b

)
= f (y) (8.360)

Using the Fourier Since Series coefficients we find

cn =
2

bsinh(nπa
b )

∫ b

0
f (y)sin

(nπy
b

)
dy. (8.361)

8.10.2 Dirichlet Problem For A Circle
Consider solving Laplace’s Equation in a circular region r < a subject to the boundary
condition

u(a,θ) = f (θ) (8.362)

where f is a given function on 0 ≤ θ ≤ 2π . In polar coordinates Laplace’s Equation
becomes

urr +
1
r

ur +
1
r2 uθθ = 0. (8.363)

Try Separation of Variables in Polar Coordinates

u(r,θ) = R(r)Θ(θ), (8.364)

plug into the differential equation, Equation (8.363). This yields

R′′Θ+
1
r

R′Θ+
1
r2 RΘ

′′ = 0 (8.365)
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or

r2 R′′

R
+ r

R′

R
=−Θ′′

Θ
= λ (8.366)

where λ is a constant. We obtain the following system of ODEs

r2R′′+ rR′−λR = 0, (8.367)
Θ
′′+λθ = 0. (8.368)

Since we have no homogeneous boundary conditions we must use instead the fact that the
solutions must be bounded and also periodic in Θ with period 2π . It can be shown that we
need λ to be real. Consider the three cases when λ < 0,λ = 0,λ > 0.

If λ < 0, let λ = −µ2, where µ > 0. So we find the equation for Θ becomes Θ′′−
µ2Θ = 0. So

Θ(θ) = c1eµθ + c2e−µθ (8.369)

Θ can only be periodic if c1 = c2 = 0, so λ cannot be negative (Since we do not get any
nontrivial solutions.

If λ = 0, then the equation for Θ becomes Θ′′ = 0 and thus

Θ(θ) = c1 + c2θ (8.370)

For Θ to be periodic c2 = 0. Then the equation for R becomes

r2R′′+ rR′ = 0. (8.371)

This equation is an Euler equation and has solution

R(r) = k1 + k2 ln(r) (8.372)

Since we also need the solution bounded as r→ ∞, then k2 = 0. So u(r,θ) is a constant,
and thus proportional to the solution u0(r,θ) = 1.

If λ > 0, we let λ = µ2, where µ > 0. Then the system of equations becomes

r2R′′+ rR′−µ
2R = 0 (8.373)

Θ
′′+µ

2
Θ = 0 (8.374)

The equation for R is an Euler equation and has the solution

R(r) = k1rµ + k2r−µ (8.375)

and the equation for Θ has the solution

Θ(θ) = c1 sin(µθ)+ c2 cos(µθ). (8.376)

For Θ to be periodic we need µ to be a positive integer n, so µ = n. Thus the solution
r−µ is unbounded as r→ 0. So k2 = 0. So the solutions to the original problem are

un(r,θ) = rn cos(nθ), vn(r,θ) = rn sin(nθ), n = 1,2,3, ... (8.377)
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Together with u0(r,θ) = 1, by linear superposition we find

u(r,θ) =
c0

2
+

∞

∑
n=1

rn(cn cos(nθ)+ kn sin(nθ)). (8.378)

Using the boundary condition from the beginning

u(a,θ) =
c0

2
+

∞

∑
n=1

an(cn cos(nθ)+ kn sin(nθ)) = f (θ) (8.379)

for 0≤ θ ≤ 2π . We compute to coefficients by using our previous Fourier Series equations

cn =
1

πan

∫ 2π

0
f (θ)cos(nθ)dθ , n = 1,2,3, ... (8.380)

kn =
1

πan

∫ 2π

0
f (θ)sin(nθ)dθ , n = 1,2,3, ... (8.381)

Note we need both terms since sine and cosine terms remain throughout the general
solution.

8.10.3 Example 1
Find the solution u(x,y) of Laplace’s Equation in the rectangle 0 < x < a, 0 < y < b, that
satisfies the boundary conditions

u(0,y) = 0, u(a,y) = 0, 0 < y < b (8.382)
u(x,0) = h(x), u(x,b) = 0, 0≤ x≤ a (8.383)

Answer: Using the method of Separation of Variables, write u(x,y) = X(x)Y (y). We
get the following system of ODEs

X ′′+λX = 0, X(0) = X(a) = 0 (8.384)
Y ′′−λY = 0, Y (b) = 0 (8.385)

It follows that λn = (nπ

a )2 and Xn(x) = sin(nπx
a ). The solution of the second ODE gives

Y (y) = d1 cosh(λ (b− y))+d2 sinh(λ (b− y)). (8.386)

Using y(b) = 0, we find that d1 = 0. Therefore the fundamental solutions are

un(x,y) = sin(
nπx

a
)sinh(λn(b− y)), (8.387)

and the general solution is

u(x,y) =
∞

∑
n=1

cn sin(
nπx

a
)sinh(

nπ(b− y)
a

). (8.388)

Using another boundary condition

h(x) =
∞

∑
n=1

cn sin(
nπx

a
)sinh(

nπb
a

). (8.389)

The coefficients are calculated using the equation from the Fourier Sine Series

cn =
2

asinh(nπb
a )

∫ a

0
h(x)sin(

nπx
a

)dx. (8.390)
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8.10.4 Example 2
Consider the problem of finding a solution u(x,y) of Laplace’s Equation in the rectangle
0 < x < a, 0 < y < b, that satisfies the boundary conditions

ux(0,y) = 0, ux(a,y) = f (y), 0 < y < b, (8.391)
uy(x,0) = 0, uy(x,b) = 0, 0≤ x≤ a (8.392)

This is an example of a Neumann Problem. We want to find the fundamental set of
solutions.

X ′′−λX = 0, X ′(0) = 0 (8.393)
Y ′′+λY = 0, Y ′(0) = Y ′(b) = 0. (8.394)

The solution to the equation for Y is

Y (y) = c1 cos(λ 1/2y)+ c2 sin(λ 1/2y), (8.395)

with Y ′(y) = −c1λ 1/2 sin(λ 1/2y) + c2λ 1/2 cos(λ 1/2y). Using the boundary conditions
we find c2 = 0 and the eigenvalues are λn =

n2π2

b2 , for n = 1,2,3, .... The corresponding
Eigenfunctions are Y (y) = cos(nπy

b ) for n = 1,2,3, ... The solution of the equation for X
becomes X(x) = d1 cosh(nπx

b )+d2 sinh(nπx
b ), with

X ′(x) = d1
nπ

b
sinh(

nπx
b

)+d2
nπ

b
cosh(

nπx
b

). (8.396)

Using the boundary conditions, X(x) = d1 cosh(nπx
b ).So the fundamental set of solutions

is

un(x,y) = cosh(
nπx

b
)cos(

nπy
b

), n = 1,2,3, ... (8.397)

The general solution is given by

u(x,y) =
a0

2
+

∞

∑
n=1

an cosh(
nπx

b
)cos(

nπy
b

) (8.398)




	Part I — Classification of Differential Equations
	1 Introduction
	1.1 Introduction
	1.2 Some Basic Mathematical Models; Direction Fields
	1.3 Solutions of Some Differential Equations
	1.4 Classifications of Differential Equations


	Part II — First Order Differential Equations
	2 Solution Methods For First Order Equations
	2.1 Linear Equations; Method of Integrating Factors
	2.2 Separable Equations
	2.3 Modeling With First Order Equations
	2.4 Existence and Uniqueness
	2.5 Autonomous Equations with Population Dynamics
	2.6 Exact Equations


	Part III — Linear Higher Order Equations
	3 Solutions to Second Order Linear Equations
	3.1 Second Order Linear Differential Equations
	3.2 Solutions of Linear Homogeneous Equations and the Wronskian
	3.3 Complex Roots of the Characteristic Equation
	3.4 Repeated Roots of the Characteristic Equation and Reduction of Order
	3.5 Nonhomogeneous Equations with Constant Coefficients
	3.6 Mechanical and Electrical Vibrations
	3.7 Forced Vibrations

	4 Higher Order Linear Equations
	4.1 General Theory for nth Order Linear Equations
	4.2 Homogeneous Equations with Constant Coefficients


	Part IV — Solutions of ODE with Transforms
	5 Laplace Transforms
	5.1 Definition of the Laplace Transform
	5.2 Laplace Transform for Derivatives
	5.3 Step Functions
	5.4 Differential Equations With Discontinuous Forcing Functions
	5.5 Dirac Delta and the Laplace Transform


	Part V — Systems of Differential Equations
	6 Systems of Linear Differential Equations
	6.1 Systems of Differential Equations
	6.2 Review of Matrices
	6.3 Linear Independence, Eigenvalues and Eigenvectors
	6.4 Homogeneous Linear Systems with Constant Coefficients
	6.5 Complex Eigenvalues
	6.6 Repeated Eigenvalues

	7 Nonlinear Systems of Differential Equations
	7.1 Phase Portrait Review
	7.2 Autonomous Systems and Stability
	7.3 Locally Linear Systems
	7.4 Predator-Prey Equations


	Part VI — Partial Differential Equations
	8 Introduction to Partial Differential Equations
	8.1 Two-Point Boundary Value Problems and Eigenfunctions
	8.2 Fourier Series
	8.3 Convergence of Fourier Series
	8.4 Even and Odd Functions
	8.5 The Heat Equation
	8.6 Separation of Variables and Heat Equation IVPs
	8.7 Heat Equation Problems
	8.8 Other Boundary Conditions
	8.9 The Wave Equation
	8.10 Laplace's Equation

	Index


