Lecture Notes for Math 251: ODE and PDE. Lecture 1: 1.1 Direction Fields

Shawn D. Ryan

Spring 2012

1 Some Basic Mathematical Models; Direction Fields

Definition 1. A differential equation is an equation containing derivatives.

Definition 2. A differential equation that describes some physical process is often called a **mathematical model**

Example 3. (Falling Object)

Consider an object falling from the sky. From Newton's Second Law we have

$$F = ma = m\frac{dv}{dt} \tag{1}$$

When we consider the forces from the free body diagram we also have

$$F = mg - \gamma v \tag{2}$$

where γ is the **drag coefficient**. Combining the two

$$m\frac{dv}{dt} = mg - \gamma v \tag{3}$$

Suppose m = 10kg and $\gamma = 2kg/s$. Then we have

$$\frac{dv}{dt} = 9.8 - \frac{v}{5} \tag{4}$$

Figure 1: Direction field for above example

It looks like the direction field tends towards v = 49m/s. We plot the direction field by plugging in the values for v and t and letting dv/dt be the slope of a line at that point.

Direction Fields are valuable tools in studying the solutions of differential equations of the form

$$\frac{dy}{dt} = f(t, y) \tag{5}$$

where f is a given function of the two variables t and y, sometimes referred to as a **rate function**. At each point on the grid, a short line is drawn whose slope is the value of f at the point. This technique provides a good picture of the overall behavior of a solution.

Two Things to keep in mind:

1. In constructing a direction field we never have to solve the differential equation only evaluate it at points.

2. This method is useful if one has access to a computer because a computer can generate the plots well.

Example 4. (*Population Growth*) Consider a population of field mice, assuming there is nothing to eat the field mice, the population will grow at a constant rate. Denote time by t (in months) and the mouse population by p(t), then we can express the model as

$$\frac{dp}{dt} = rp \tag{6}$$

where the proportionality factor r is called the **rate constant** or **growth constant**. Now suppose owls are killing mice (15 per day), the model becomes

$$\frac{dp}{dt} = 0.5p - 450\tag{7}$$

note that we subtract 450 rather than 15 because time was measured in months. In general

$$\frac{dp}{dt} = rp - k \tag{8}$$

where the growth rate is r and the predation rate k is unspecified. Note the equilibrium solution would be k/r.

Definition 5. The equilibrium solution is the value of p(t) where the system no longer changes, $\frac{dp}{dt} = 0$.

In this example solutions above equilibrium will increase, while solutions below will decrease.

,	/	/	/	/	/	/	/	/	/	/	ŕ	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	1		ł	/	/	/	/	/	/	/	/	/	/
-	~				~			~	L	000	ŧ			~		_	~~			_	
~	~	~	~~~	~	~	~	~	~	~	~ ·	£	~	~	~	~	~	~	~	~	~	~~~
`					$\overline{\}$				$\overline{\}$	\sim											<
`	<	\mathbf{n}	\mathbf{i}	\mathbf{i}	$^{\prime}$	\mathbf{i}	\mathbf{N}	\mathbf{i}	$^{\mathbf{N}}$	\mathbf{i}	k	\mathbf{i}	\mathbf{N}	\mathbf{i}	\mathbf{i}	\mathbf{i}	\mathbf{N}	\mathbf{i}	\mathbf{i}	\sim	\mathbf{i}
)	1	\setminus	\mathbf{N}	\mathbf{X}	\mathbf{X}	\mathbf{N}	\mathbf{X}	\mathbf{N}	\mathbf{X}	500	Ł	\mathbf{N}	\mathbf{X}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{X}	\mathbf{X}	\mathbf{N}	\sim	\setminus
1	1	\setminus	\mathbf{N}	\mathbf{X}	\setminus	1	\mathbf{i}	1	\setminus	Λ	Ł.	\mathbf{N}	\mathbf{N}	\mathbf{X}	\mathbf{N}	N.	\mathbf{X}	Λ.	\mathbf{N}	\setminus	\setminus
)	\	\setminus	\mathbf{N}	Λ.	\setminus	$\langle \cdot \rangle$	1	\mathbf{A}	\setminus	Λ	£	\mathbf{A}	\mathbf{A}	1	\mathbf{A}	\mathbf{A}	$\langle \rangle$	1	N.	1	\
1	1	1	\	1	/	1	1	1	/	1	¥.	1	\	\	1	1	\	1	1	1	\
1	(+	+	+	1	+	+	1	1	+	÷	+	+	1	+	4	+	1	+	ł	-1
- 1	10	1	1	1	1	-,5	1	1	1	1	ŧ.	1	1	1	1	5	1	1	1	1	10
1	1	1	1	1	1	1	1	1	1	1	5	1	1	1	1	1	1	1	1	1	1
1	L	I.	1	1	1	1	1	1	1	1	Į.	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	ł	1	1	L	500	Ŀ.	1	1	1	1	1	ł	1	1	1	1
1	L	I.	1	1	1	1	1	1	1	1	ŧ.	1	1	1	1	1	ł	1	1	1	ł
1	1		L	1	1		1	- X -	1	1	Ł.	1	1	3	1	1	1	1	1	1	1
		1	- 1	1	1	1	1	- 1	- 1		1			1	· · ·						
	ĺ	1	ì	Ì	l	1	1	1	ì	ì	ŧ	ì	1	ì	ì	i.	ł	ï	i.	ï	l
1	, (1	1	1	i l l	1	1	1	(_1	i obo		1	1		1	1	1	i i	1	1	1
1	1	1 1 1	1	1 1 1	1 1 1	1	1	1 1 1		000		1	1	1	1 1 1	1	1	1	1 1 1	1	1 1 1
1		1 1 1 1	1 1	1 1 1 1	1 1 1	1		1	1 -11 1	000		1 1	1 1	1 1 1	1 1 1 1	 	1 	1 1 1	1 1 1	1	111

Figure 2: Direction field for above example

Steps to Constructing Mathematical Models:

1. Identify the independent and dependent variables and assign letters to represent them. Often the independent variable is time.

- 2. Choose the units of measurement for each variable.
- 3. Articulate the basic principle involved in the problem.
- 4. Express the principle in the variables chosen above.
- 5. Make sure each term has the same physical units.
- 6. We will be dealing with models in this chapter which are single differential equations.

Example 6. Draw the direction field for the following, describe the behavior of y as $t \to \infty$. Describe the dependence on the initial value:

$$y' = 2y + 3 \tag{9}$$

Ans: For y > -1.5 the slopes are positive, and hence the solutions increase. For y < -1.5 the slopes are negative, and hence the solutions decrease. All solutions appear to diverge away from the equilibrium solution y(t) = -1.5.

Example 7. Write down a DE of the form dy/dt = ay + b whose solutions have the required behavior as $t \to \infty$. It must approach $\frac{2}{3}$.

Answer: For solutions to approach the equilibrium solution y(t) = 2/3, we must have y' < 0 for y > 2/3, and y' > 0 for y < 2/3. The required rates are satisfied by the DE y' = 2 - 3y.

Example 8. Find the direction field for y' = y(y - 3)

Figure 3: Direction field for above example

HW 1.1 # 6, 9, 16, 17, 20