Lecture Notes for Math 251: ODE and PDE. Lecture 2: 1.2 Solutions to Some DEs

Shawn D. Ryan

Spring 2012

1 Solutions of Some Differential Equations

Last Time: We derived two formulas:

$$
\begin{align*}
m \frac{d v}{d t} & =m g-\gamma v \quad \text { (Falling Bodies) } \tag{1}\\
\frac{d p}{d t} & =r p-k \quad \text { (Population Growth) } \tag{2}
\end{align*}
$$

Both equations have the form:

$$
\begin{equation*}
\frac{d y}{d t}=a y-b \tag{3}
\end{equation*}
$$

Example 1. (Field Mice / Predator-Prey Model)
Consider

$$
\begin{equation*}
\frac{d p}{d t}=0.5 p-450 \tag{4}
\end{equation*}
$$

we want to now solve this equation. Rewrite equation (4) as

$$
\begin{equation*}
\frac{d p}{d t}=\frac{p-900}{2} \tag{5}
\end{equation*}
$$

Note $p=900$ is an equilbrium solution and the system does not change. If $p \neq 900$

$$
\begin{equation*}
\frac{d p / d t}{p-900}=\frac{1}{2} \tag{6}
\end{equation*}
$$

By Chain Rule we can rewrite as

$$
\begin{equation*}
\frac{d}{d t}[\ln |p-900|]=\frac{1}{2} \tag{7}
\end{equation*}
$$

So by integrating both sides we find

$$
\begin{equation*}
\ln |p-900|=\frac{t}{2}+C \tag{8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
p=900+C e^{t / 2} \tag{9}
\end{equation*}
$$

Thus we have infinitely many solutions where a different arbitrary constant C produces a different solution. What if the initial population of mice was 850 . How do we account for this?

Definition 2. The additional condition, $p(0)=850$, that is used to determine C is an example of an initial condition.

Definition 3. The differential equation together with the initial condition form the initial value problem

Consider the general problem

$$
\begin{align*}
\frac{d y}{d t} & =a y-b \tag{10}\\
y(0) & =y_{0} \tag{11}
\end{align*}
$$

The solution has the form

$$
\begin{equation*}
y=(b / a)+\left[y_{0}-(b / a)\right] e^{a t} \tag{12}
\end{equation*}
$$

when $a \neq 0$ this contains all possible solutions to the general equation and is thus called the general solution The geometric representation of the general solution is an infinite family of curves called integral curves.

Example 4. (Dropping a ball) System under consideration:

$$
\begin{align*}
\frac{d v}{d t} & =9.8-\frac{v}{5} \tag{13}\\
v(0) & =0 \tag{14}
\end{align*}
$$

From the formula above we have

$$
\begin{equation*}
v=\left(\frac{-9.8}{-1 / 5}\right)+\left[0-\frac{-9.8}{-1 / 5}\right] e^{-\frac{t}{5}} \tag{15}
\end{equation*}
$$

and the general solution is

$$
\begin{equation*}
v=49+C e^{-t / 5} \tag{16}
\end{equation*}
$$

with the I.C. $C=-49$.
HW 1.2 \# 7, 8, 13

